CN112898601A - 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法 - Google Patents

一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法 Download PDF

Info

Publication number
CN112898601A
CN112898601A CN202110183773.8A CN202110183773A CN112898601A CN 112898601 A CN112898601 A CN 112898601A CN 202110183773 A CN202110183773 A CN 202110183773A CN 112898601 A CN112898601 A CN 112898601A
Authority
CN
China
Prior art keywords
chitosan
based hydrogel
nano
inorganic
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110183773.8A
Other languages
English (en)
Other versions
CN112898601B (zh
Inventor
胡巧玲
姜质琦
董晓飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110183773.8A priority Critical patent/CN112898601B/zh
Publication of CN112898601A publication Critical patent/CN112898601A/zh
Application granted granted Critical
Publication of CN112898601B publication Critical patent/CN112898601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法,该水凝胶由预处理后的壳聚糖和无机纳米粒子构成。本发明首先利用氢氧化钠预处理壳聚糖;再将无机纳米粒子与改性的壳聚糖溶液混合,调节温度使壳聚糖凝胶化,制得无机纳米粒子复合的壳聚糖基水凝胶。本发明制得的壳聚糖基复合水凝胶,不仅保持了壳聚糖良好的生物相容性,同时由于无机纳米粒子的引入,壳聚糖基复合水凝胶还具有优异的力学性能。本发明制得的复合水凝胶,进一步拓宽了壳聚糖基水凝胶的应用范围,其有望应用于组织工程、细胞工程等诸多生物医学领域。

Description

一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚 糖基水凝胶及其制备方法
技术领域
本发明涉及一种无机纳米粒子增强的壳聚糖基复合水凝胶,尤其涉及一种高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法。
背景技术
壳聚糖是一种可生物降解的天然多糖,具有优异的生物相容性、抑菌性。不仅如此,壳聚糖来源于生物体,是虾壳、螃蟹壳的重要组成部分,即壳聚糖原料广泛易得,这也使得壳聚糖具有广泛的应用前景。在壳聚糖的诸多应用中,壳聚糖的水凝胶占据着一席之地。壳聚糖水凝胶不仅具有水凝胶的普遍特性,同时也可以表达出壳聚糖的本征属性。但是壳聚糖水凝胶,作为传统方法合成出的水凝胶之一,也同样具有弊端,即壳聚糖水凝胶的力学性能不够理想,从而限制了壳聚糖水凝胶的应用。
目前,改善单一交联网络水凝胶强度的热门方法通常有采用双重交联网络的构建,但是倘若构建双重网络来增强壳聚糖水凝胶的力学性能,会改变壳聚糖基水凝胶的表面性质,使其失去诸多本征优良特性,如生物相容性。无机纳米粒子的引入,既能实现水凝胶力学强度的增强,又能保持壳聚糖基水凝胶表面性质不变。随着无机纳米粒子精细化技术的进步和粒子表面修饰技术的发展,特别是近年来纳米尺寸的增强粒子的出现,为水凝胶的修饰、改性提供了方法和途径,也为壳聚糖基水凝胶的增强提供了新的思路。
发明内容
本发明的目的在于针对现有技术的不足,提供一种有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法。本发明制得的复合水凝胶兼具有高强度和优良的生物相容性,拓宽了壳聚糖基水凝胶的应用范围,有望应用于组织工程、细胞工程等诸多生物医学领域。
本发明采用的技术方案如下:
一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶,所述的壳聚糖基水凝胶由预处理后的壳聚糖和无机纳米粒子构成,其中所述的无机纳米粒子为纳米SiO2、纳米Ca(OH)2、纳米黏土颗粒、纳米TiO2、纳米ZnO、或纳米Fe3O4,所述的预处理为采用碱溶液处理壳聚糖。
其制备方法包括如下:首先将预处理后的壳聚糖分散于氢氧化锂和尿素的混合溶剂中,采用冷冻爆破法使预处理后的壳聚糖溶解得壳聚糖溶液;将无机纳米粒子加入所述壳聚糖溶液中混合;将混合液置于20-50℃条件下,静置3小时-72小时,使壳聚糖完全凝胶化,制得无机纳米粒子增强壳聚糖基水凝胶。
其中,进一步的,所述壳聚糖溶液中壳聚糖的质量分数为1%-5%,氢氧化锂的质量分数为5%-10%,尿素的质量分数为10%-20%。
进一步的,所述混合液中无机纳米粒子的质量分数为0.02%-0.2%。
进一步的,所述的预处理后的壳聚糖的制备方法如下:
称取氢氧化钠溶解于去离子水中,搅拌均匀制得浓碱溶液;称取壳聚糖分散在上述浓碱溶液中获得混合溶液,磁力搅拌下,40-70℃环境下反应10小时-24小时;反应结束后,静置,倒去上清液,用去离子水洗涤壳聚糖至中性,烘干,得到预处理后的壳聚糖。
进一步的,混合溶液中壳聚糖的质量分数为1%-5%,氢氧化钠的质量分数为30%-60%,所用壳聚糖的粘均分子量为10~150万、脱乙酰度为50~99%。
本发明的有益效果在于:
本发明在保持壳聚糖基复合水凝胶的良好生物相容性的前提下,通过引入无机纳米粒子作为物理交联点实现了壳聚糖基水凝胶的力学性能的增强。本发明首先采用氢氧化钠的浓溶液对壳聚糖进行预处理,提高壳聚糖的脱乙酰度,使得壳聚糖重复单元上的乙酰基转化为氨基,增加了壳聚糖上氨基的数目。当无机纳米粒子和改性的壳聚糖溶液混合后,在壳聚糖混合溶液静置使其凝胶化的过程中,由于无机纳米粒子表面可以携带负电,壳聚糖上的大量氨基基团带有正电,分散在溶液中的无机纳米粒子和壳聚糖之间存在静电相互作用,因此,无机纳米粒子可以作为壳聚糖基水凝胶的物理交联点,使壳聚糖水凝胶的微观结构变得更为致密,进而实现对壳聚糖基复合水凝胶的力学强度的增强。再者,由于无机纳米粒子均匀分散于壳聚糖基水凝胶的内部,壳聚糖基水凝胶的表面依然由壳聚糖大分子链组成,所以无机纳米粒子的引入完美地保持了水凝胶的良好的生物相容性。由于兼具高强度和优异的生物相容性,本发明制得的壳聚糖基复合水凝胶有望应用于组织工程、细胞工程等生物医学领域。
附图说明
图1未添加纳米粒子的壳聚糖凝胶(a)以及无机纳米粒子增强的壳聚糖凝胶(b)微观结构的SEM表征图像;
图2是未添加纳米粒子的壳聚糖凝胶(对照组)以及无机纳米粒子增强的壳聚糖凝胶(实验组)微观结构的力学压缩性能对比。
具体实施方式
以下结合附图和具体实例进一步说明本发明。
实施例1:
1)称取1500g的氢氧化钠溶解于1500ml去离子水中,搅拌均匀制得浓碱溶液;称取60g粘均分子量为10~150万、脱乙酰度为50~80%的壳聚糖分散在上述浓碱溶液中,磁力搅拌下,60℃环境下反应18小时;反应结束后,静置,倒去上清液浓碱,用去离子水洗涤壳聚糖至中性,烘干,得到预处理后的高脱乙酰度的壳聚糖;
2)称取8.4g的氢氧化锂和16g尿素溶解于72.6ml去离子水中,搅拌均匀,得到混合溶剂体系;称取3g步骤1)得到的壳聚糖于上述混合溶剂中,采用冷冻爆破法,使壳聚糖溶解,得到质量分数为3%的壳聚糖溶液;
3)称取60mg的纳米黏土颗粒,分散于步骤2)制得的壳聚糖的溶液中,搅拌使其混合均匀后,离心除去气泡,在25℃环境下,静置4小时,制得无机纳米粒子复合的壳聚糖基水凝胶。
本例制得的纳米黏土颗粒增强的壳聚糖水凝胶以及未添加纳米黏土颗粒增强的壳聚糖水凝胶的SEM表征如图1所示,从凝胶的微观结构表征中可以看到,纳米黏土颗粒的引入使得壳聚糖水凝胶的结构更为致密,从而力学性能更优。
本例制得的纳米黏土颗粒增强的壳聚糖水凝胶以及未添加纳米黏土颗粒增强的壳聚糖水凝胶的力学性能表征如图2所示,从力学性能表征中可以看到,纳米黏土颗粒的引入使得壳聚糖水凝胶的力学性能更加优异。
实施例2:
1)称取1500g的氢氧化钠溶解于1500ml去离子水中,搅拌均匀制得浓碱溶液;称取60g粘均分子量为10~150万、脱乙酰度为50~80%的壳聚糖分散在上述浓碱溶液中,磁力搅拌下,60℃环境下反应18小时;反应结束后,静置,倒去上清液浓碱,用去离子水洗涤壳聚糖至中性,烘干,得到预处理后的高脱乙酰度的壳聚糖;
2)称取8.4g的氢氧化锂和16g尿素溶解于72.6ml去离子水中,搅拌均匀,得到混合溶剂体系;称取3g步骤1)得到的壳聚糖于上述混合溶剂中,采用冷冻爆破法,使壳聚糖溶解,得到质量分数为3%的壳聚糖溶液;
3)称取60mg的纳米Ca(OH)2,分散于步骤2)制得的壳聚糖的溶液中,搅拌使其混合均匀后,离心除去气泡,在37℃环境下,静置2小时,制得无机纳米粒子复合的壳聚糖基水凝胶。
实施例3:
1)称取1500g的氢氧化钠溶解于1500ml去离子水中,搅拌均匀制得浓碱溶液;称取60g粘均分子量为10~150万、脱乙酰度为50~80%的壳聚糖分散在上述浓碱溶液中,磁力搅拌下,60℃环境下反应18小时;反应结束后,静置,倒去上清液浓碱,用去离子水洗涤壳聚糖至中性,烘干,得到预处理后的高脱乙酰度的壳聚糖;
2)称取8.4g的氢氧化锂和16g尿素溶解于72.6ml去离子水中,搅拌均匀,得到混合溶剂体系;称取3g步骤1)得到的壳聚糖于上述混合溶剂中,采用冷冻爆破法,使壳聚糖溶解,得到质量分数为3%的壳聚糖溶液;
3)称取120mg的纳米ZnO,分散于步骤2)制得的壳聚糖的溶液中,搅拌使其混合均匀后,离心除去气泡,在25℃环境下,静置4小时,制得无机纳米粒子复合的壳聚糖基水凝胶。

Claims (6)

1.一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶,其特征在于,所述的壳聚糖基水凝胶由预处理后的壳聚糖和无机纳米粒子构成,其中所述的无机纳米粒子为纳米SiO2、纳米Ca(OH)2、纳米黏土颗粒、纳米TiO2、纳米ZnO、或纳米Fe3O4,所述的预处理为采用碱溶液处理壳聚糖。
2.根据权利要求1所述的具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶,其特征在于,其制备方法包括如下:首先将预处理后的壳聚糖分散于氢氧化锂和尿素的混合溶剂中,采用冷冻爆破法使预处理后的壳聚糖溶解得壳聚糖溶液;将无机纳米粒子加入所述壳聚糖溶液中混合;将混合液置于20-50℃条件下,静置3小时-72小时,使壳聚糖完全凝胶化,制得无机纳米粒子增强壳聚糖基水凝胶。
3.根据权利要求2所述的具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶,其特征在于,所述壳聚糖溶液中壳聚糖的质量分数为1%-5%,氢氧化锂的质量分数为5%-10%,尿素的质量分数为10%-20%。
4.根据权利要求2所述的具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶,其特征在于,所述混合液中无机纳米粒子的质量分数为0.02%-0.2%。
5.根据权利要求1所述的具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶,其特征在于,所述的预处理后的壳聚糖的制备方法如下:
称取氢氧化钠溶解于去离子水中,搅拌均匀制得浓碱溶液;称取壳聚糖分散在上述浓碱溶液中获得混合溶液,磁力搅拌下,40-70℃环境下反应10小时-24小时;反应结束后,静置,倒去上清液,用去离子水洗涤壳聚糖至中性,烘干,得到预处理后的壳聚糖。
6.根据权利要求5所述的具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶,其特征在于,混合溶液中壳聚糖的质量分数为1%-5%,氢氧化钠的质量分数为30%-60%,所用壳聚糖的粘均分子量为10~150万、脱乙酰度为50~99%。
CN202110183773.8A 2021-02-08 2021-02-08 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法 Active CN112898601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110183773.8A CN112898601B (zh) 2021-02-08 2021-02-08 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110183773.8A CN112898601B (zh) 2021-02-08 2021-02-08 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN112898601A true CN112898601A (zh) 2021-06-04
CN112898601B CN112898601B (zh) 2022-04-01

Family

ID=76123472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110183773.8A Active CN112898601B (zh) 2021-02-08 2021-02-08 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN112898601B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663127A (zh) * 2021-08-19 2021-11-19 深圳市人民医院 一种纳米复合水凝胶及其制备方法和应用
CN114652621A (zh) * 2022-03-31 2022-06-24 宁德师范学院 一种高乙醇含量的壳聚糖氧化硅复合水凝胶

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019272A1 (fr) * 2003-07-25 2005-03-03 Universite Lyon 1 Claude Bernard Procede de production de chitosane de haut poids moleculaire totalement desacetyle
CN101215389A (zh) * 2008-01-14 2008-07-09 浙江大学 一种壳聚糖水凝胶及其制备方法
CN106009002A (zh) * 2016-06-28 2016-10-12 盐城工学院 一种壳聚糖/蒙脱土纳米复合水凝胶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019272A1 (fr) * 2003-07-25 2005-03-03 Universite Lyon 1 Claude Bernard Procede de production de chitosane de haut poids moleculaire totalement desacetyle
CN101215389A (zh) * 2008-01-14 2008-07-09 浙江大学 一种壳聚糖水凝胶及其制备方法
CN106009002A (zh) * 2016-06-28 2016-10-12 盐城工学院 一种壳聚糖/蒙脱土纳米复合水凝胶及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663127A (zh) * 2021-08-19 2021-11-19 深圳市人民医院 一种纳米复合水凝胶及其制备方法和应用
CN114652621A (zh) * 2022-03-31 2022-06-24 宁德师范学院 一种高乙醇含量的壳聚糖氧化硅复合水凝胶
CN114652621B (zh) * 2022-03-31 2023-11-07 宁德师范学院 一种高乙醇含量的壳聚糖氧化硅复合水凝胶

Also Published As

Publication number Publication date
CN112898601B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN112011067B (zh) 一种可降解、自修复和自粘附导电水凝胶及制备方法
Fu et al. The chitosan hydrogels: From structure to function
CN112898601B (zh) 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法
Liu et al. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties
CN110551299B (zh) 一种自粘附性聚丙烯酰胺复合水凝胶及其制备方法与应用
Lin et al. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges
Ma et al. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
Chiellini et al. Ulvan: A versatile platform of biomaterials from renewable resources
CN105906821A (zh) 一种自粘附导电水凝胶的制备方法
CN109054051B (zh) 一种基于双重离子配位的高强韧自修复物理水凝胶及其制备方法
CN108409997B (zh) 一种含有纤维素纳米晶须的超高强度各向异性水凝胶的制备方法
Liu et al. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology
Ren et al. Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength
CN112266486A (zh) 一种单宁酸包覆纳米纤维素/聚丙烯酸粘附性水凝胶及其制备方法
CN110105483B (zh) 一种水滑石基双网络纳米复合水凝胶及其制备方法
CN111592693B (zh) 一种高强度甲壳素复合水凝胶材料及其制备方法与应用
CN112957525A (zh) 一种纳米羟基磷灰石/丝素蛋白/纤维素复合气凝胶及其制备方法
CN110818917A (zh) 一种壳聚糖基纯物理交联双网络水凝胶及其制备方法
Pourjavadi et al. Preparation of PVA nanocomposites using salep-reduced graphene oxide with enhanced mechanical and biological properties
CN107661540B (zh) 一种利用3d打印制备高强度羟基磷灰石-壳聚糖-二氧化硅杂化支架的方法
CN110180023B (zh) 一种高强度生物质组织工程支架材料的制备方法
Chen et al. Preparation of nanochitin hydrogel with adjustable inter-structure by sequencial genipin crosslinking and ice-templating under acid condition
Jiang et al. Surface engineering of cellulose nanocrystals via SI-AGET ATRP of glycidyl methacrylate and ring-opening reaction for fabricating self-healing nanocomposite hydrogels
CN111498822B (zh) 一种功能性的纤维化杂化凝胶及其制备方法与应用
CN113292762A (zh) 一种双醛纳米纤维素三维柔性材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant