CN111969052A - 一种具有多沟槽的双极结型晶体管 - Google Patents

一种具有多沟槽的双极结型晶体管 Download PDF

Info

Publication number
CN111969052A
CN111969052A CN202010887628.3A CN202010887628A CN111969052A CN 111969052 A CN111969052 A CN 111969052A CN 202010887628 A CN202010887628 A CN 202010887628A CN 111969052 A CN111969052 A CN 111969052A
Authority
CN
China
Prior art keywords
region
type
bipolar junction
junction transistor
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010887628.3A
Other languages
English (en)
Inventor
李泽宏
程然
胡汶金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010887628.3A priority Critical patent/CN111969052A/zh
Publication of CN111969052A publication Critical patent/CN111969052A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明属于功率半导体技术领域,涉及一种具有多沟槽的双极结型晶体管。本发明相比于传统工艺制作的双极结型晶体管,采用沟槽工艺来制作双极结型晶体管的发射区、基区以及集电区,一是沟槽工艺使得每个沟槽区域浓度分布更加均匀更容易控制,导通时的电流路径分布更加均匀,避免电流线集中在某一区域,增加了整个器件的可靠性;二是沟槽工艺可以提高整个器件的过电流能力,可以减小整个器件的面积,增加了其电流泄放能力;最后沟槽工艺可以改善其结形貌,避免提前击穿,从而提高其击穿电压。

Description

一种具有多沟槽的双极结型晶体管
技术领域
本发明属于功率半导体技术领域,具体涉及一种具有多沟槽的双极结型晶体管。
背景技术
功率半导体器件在电力电子应用系统中处于非常重要的地位,是电力电子技术中进行电能变换、功率控制和处理,以及实现能量管理调节的核心器件。功率半导体器件应用非常广泛,从日常生活使用的计算机、汽车、数码相机等消费类电子到电气自动化中的大功率变换设备,以及远距离高压电力传输中用到的设备等。
在功率半导体中,双极结型晶体管能够放大信号,并且具有较好的功率控制、高速工作以及耐久能力,所以它常被用来构成放大器电路,或驱动扬声器、电动机等设备,并被广泛地应用于航空航天工程、医疗器械和机器人等应用产品中,图1为常规双极结型晶体管的结构示意图。虽然在传统的硅材料半导体器件领域,MOSFET等场效应器件己经占有了相当一部分市场份额,但是双极结型晶体管在高功率和高开关速等方面的应用仍然大有作为。
发明内容
本发明就是根据传统的双极结型晶体管结构,对其发射极以及集电极进行优化,提出了一种具有多沟槽的双极结型晶体管结构。
本发明的技术方案是:一种具有多沟槽的双极结型晶体管,如图2所示,包括N型衬底201、位于N型衬底201下表面的集电极208、位于N型衬底201上表面的P型基区202和N型区,在P型基区202上层远离N型区的一端具有N型重掺杂区,在N型重掺杂区上表面具有发射极207,在P型基区202上表面具有基极205,N型区、P型基区202和N型重掺杂区上表面除基极205和发射极207外的部分覆盖有介质层206;所述N型区中具有多个沟槽,形成N型沟槽扩散区203;所述N型重掺杂区中具有多个沟槽,形成N型重掺杂沟槽扩散区204;在基极205下方,P型基区202上层具有多个沟槽,形成与基极205接触的P型多晶硅沟槽区211。
进一步的,所述介质层206采用的材料为二氧化硅。
上述方案中的N型沟槽扩散区203,N型重掺杂沟槽扩散区204,P型多晶硅沟槽区211沟槽的横向宽度和纵向长度,沟槽间的横向间距以及沟槽数量都可以根据实际情况进行变化。
本发明的有益效果为:相比于传统工艺制作的双极结型晶体管,采用沟槽工艺来制作双极结型晶体管的发射区、基区以及集电区,一是沟槽工艺使得每个沟槽区域浓度分布更加均匀更容易控制,导通时的电流路径分布更加均匀,避免电流线集中在某一区域,增加了整个器件的可靠性;二是沟槽工艺可以提高整个器件的过电流能力,可以减小整个器件的面积,增加了其电流泄放能力;最后沟槽工艺可以改善其结形貌,避免提前击穿,从而提高其击穿电压。
附图说明
图1为常规双极结型晶体管的结构示意图;
图2为本发明的一种具有多沟槽的双极结型晶体管的结构示意图;
具体实施方式
下面结合附图,详细描述本发明的技术方案:
如图2所示,本发明的具有多沟槽的双极结型晶体管包括N型衬底201,P型基区202,N型沟槽扩散区203,N型重掺杂沟槽扩散区204,N型多晶硅沟槽区209,N型多晶硅重掺杂沟槽区210,P型多晶硅沟槽区211,基极电极205,发射极电极207,介质层206,集电极电极208。所述的P型基区202形成于N型衬底201之上;所述的N型沟槽扩散区203形成于P型基区202内并且与N型衬底201相通;所述P型多晶硅沟槽区211位于P型基区202表面;所述的N型重掺杂沟槽扩散区204形成于P型基区202内;所述的N型沟槽扩散区203是由N型多晶硅沟槽区209高温退火扩散形成的;所述的N型重掺杂沟槽扩散区204是由N型多晶硅重掺杂沟槽区210高温退火扩散形成的;所述的基极电极205位于P型多晶硅沟槽区211表面并与之相接触;所述的发射极电极207位于N型多晶硅重掺杂沟槽区210上并与之相接触;所述的基极电极205和发射极电极207通过介质层206相隔离;所述的集电极电极208位于N型衬底201的底部并与之相接触。
所述沟槽结构包括N型多晶硅沟槽区209、N型多晶硅重掺杂沟槽区210以及P型多晶硅沟槽区211;所述的N型多晶硅沟槽区209的深度一致,且每个沟槽的间隔均相同;所述的N型沟槽扩散区203是由N型多晶硅沟槽区209高温退火扩散形成;所述的N型多晶硅重掺杂沟槽区210的深度一致,且每个沟槽的间隔均相同;所述P型多晶硅沟槽区211的深度一致,且每个沟槽的间隔均相同;所述的N型重掺杂沟槽扩散区204是由N型多晶硅重掺杂沟槽区210高温退火扩散形成的;所述的N型沟槽扩散区203与P型基区202以及N型重掺杂沟槽扩散区204通过介质层206相隔离。
以NPN型双极结型晶体管为例,说明本发明的工作原理:
本发明提供一种具有多沟槽的双极型晶体管,在P型基区202内通过刻蚀形成N型多晶硅沟槽区209,并通过高温退火扩散形成N型沟槽扩散区203,再通过刻蚀形成N型多晶硅重掺杂沟槽区210,并通过高温退火扩散形成N型沟槽扩散区204,另外刻蚀P型多晶硅沟槽区211。当发射极电极207正偏,集电极208反偏,N型多晶硅重掺杂沟槽区210与P型基区202形成反向偏置的PN结,随着发射极电极207的电压逐渐增大,N型多晶硅重掺杂沟槽区210与P型基区202的PN结耗尽区会随之扩展,直至发生雪崩击穿,当雪崩击穿发生时,形成一条途径P型多晶硅沟槽区211以及N型多晶硅沟槽区209最后流向集电极电极208的电流路径。
相对于传统的双极性晶体管制作,由于N型多晶硅沟槽区209,N型多晶硅重掺杂沟槽区210,P型多晶硅沟槽区211均是由沟槽工艺制作而成,浓度分布更加均匀,导通时电流途径的面积更多,对于电流的泄放能力更强;N型沟槽扩散区203以及N型沟槽扩散区204均是通过深槽注入多晶硅在高温退火扩散形成的,相比于穿通的双极结型晶体管结的形成,减少了横扩;最后沟槽工艺可以改善其结形貌,避免提前击穿,从而提高其击穿电压。

Claims (2)

1.一种具有多沟槽的双极结型晶体管,包括N型衬底(201)、位于N型衬底(201)下表面的集电极(208)、位于N型衬底(201)上表面的P型基区(202)和N型区,在P型基区(202)上层远离N型区的一端具有N型重掺杂区,在N型重掺杂区上表面具有发射极(207),在P型基区(202)上表面具有基极(205),N型区、P型基区(202)和N型重掺杂区上表面除基极(205)和发射极(207)外的部分覆盖有介质层(206);其特征在于,
所述N型区中具有多个沟槽,形成N型沟槽扩散区(203);所述N型重掺杂区中具有多个沟槽,形成N型重掺杂沟槽扩散区(204);在基极(205)下方,P型基区(202)上层具有多个沟槽,形成与基极(205)接触的P型多晶硅沟槽区(211)。
2.根据权利要求1所述的一种具有多沟槽的双极结型晶体管,其特征在于,所述介质层采用的材料(206)为二氧化硅。
CN202010887628.3A 2020-08-28 2020-08-28 一种具有多沟槽的双极结型晶体管 Pending CN111969052A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010887628.3A CN111969052A (zh) 2020-08-28 2020-08-28 一种具有多沟槽的双极结型晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010887628.3A CN111969052A (zh) 2020-08-28 2020-08-28 一种具有多沟槽的双极结型晶体管

Publications (1)

Publication Number Publication Date
CN111969052A true CN111969052A (zh) 2020-11-20

Family

ID=73400900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010887628.3A Pending CN111969052A (zh) 2020-08-28 2020-08-28 一种具有多沟槽的双极结型晶体管

Country Status (1)

Country Link
CN (1) CN111969052A (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811071A (en) * 1984-09-06 1989-03-07 Siemens Aktiengesellschaft Vertical transistor structure
JPH11186284A (ja) * 1997-12-25 1999-07-09 Sony Corp 半導体装置およびその製造方法
US6255184B1 (en) * 1999-08-30 2001-07-03 Episil Technologies, Inc. Fabrication process for a three dimensional trench emitter bipolar transistor
US20010013635A1 (en) * 1996-10-21 2001-08-16 Hideki Kitahata Bipolar transistor with trenched-groove isolation regions
US20020158270A1 (en) * 2001-04-25 2002-10-31 Makoto Yamamoto Lateral transistor having graded base region, semiconductor integrated circuit and fabrication method thereof
US20080157280A1 (en) * 2006-12-27 2008-07-03 Nam Joo Kim Bjt and method for fabricating the same
US20090152587A1 (en) * 2007-12-14 2009-06-18 Stmicroelectronics S.R.L. Deep guard regions for reducing latch-up in electronics devices
CN101908540A (zh) * 2009-06-02 2010-12-08 台湾积体电路制造股份有限公司 集成电路元件
CN102592995A (zh) * 2012-02-27 2012-07-18 上海先进半导体制造股份有限公司 齐纳二极管的制造方法
KR101228367B1 (ko) * 2011-10-14 2013-02-01 주식회사 동부하이텍 바이폴라 트랜지스터와 그 제조 방법
CN202888178U (zh) * 2012-09-25 2013-04-17 杭州士兰集成电路有限公司 低漏电的低压二极管芯片
CN103295898A (zh) * 2013-05-10 2013-09-11 江苏应能微电子有限公司 一种利用超深沟槽结构制造瞬变电压抑制二极管的方法
CN204118073U (zh) * 2014-10-17 2015-01-21 无锡固电半导体股份有限公司 高频非穿通型绝缘栅双极型晶体管
CN104617157A (zh) * 2015-01-23 2015-05-13 应能微电子(上海)有限公司 一种具有超深沟槽的瞬态电压抑制器结构
CN108133959A (zh) * 2017-12-25 2018-06-08 深圳市晶特智造科技有限公司 沟槽三极管及其制作方法
US10249607B1 (en) * 2017-12-15 2019-04-02 Texas Instruments Incorporated Internally stacked NPN with segmented collector
CN110085669A (zh) * 2019-03-22 2019-08-02 泉州齐美电子科技有限公司 一种三极管及其制作方法
CN111223919A (zh) * 2020-03-27 2020-06-02 上海维安半导体有限公司 一种利用深槽刻蚀并填充高浓度多晶硅的tvs及其制造方法
EP3664151A1 (en) * 2018-12-06 2020-06-10 Nexperia B.V. Bipolar transistor with polysilicon emitter and method of manufacturing
CN111640786A (zh) * 2020-06-12 2020-09-08 电子科技大学 一种具有多沟槽的ligbt器件

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811071A (en) * 1984-09-06 1989-03-07 Siemens Aktiengesellschaft Vertical transistor structure
US20010013635A1 (en) * 1996-10-21 2001-08-16 Hideki Kitahata Bipolar transistor with trenched-groove isolation regions
JPH11186284A (ja) * 1997-12-25 1999-07-09 Sony Corp 半導体装置およびその製造方法
US6255184B1 (en) * 1999-08-30 2001-07-03 Episil Technologies, Inc. Fabrication process for a three dimensional trench emitter bipolar transistor
US20020158270A1 (en) * 2001-04-25 2002-10-31 Makoto Yamamoto Lateral transistor having graded base region, semiconductor integrated circuit and fabrication method thereof
US20080157280A1 (en) * 2006-12-27 2008-07-03 Nam Joo Kim Bjt and method for fabricating the same
US20090152587A1 (en) * 2007-12-14 2009-06-18 Stmicroelectronics S.R.L. Deep guard regions for reducing latch-up in electronics devices
CN101908540A (zh) * 2009-06-02 2010-12-08 台湾积体电路制造股份有限公司 集成电路元件
KR101228367B1 (ko) * 2011-10-14 2013-02-01 주식회사 동부하이텍 바이폴라 트랜지스터와 그 제조 방법
CN102592995A (zh) * 2012-02-27 2012-07-18 上海先进半导体制造股份有限公司 齐纳二极管的制造方法
CN202888178U (zh) * 2012-09-25 2013-04-17 杭州士兰集成电路有限公司 低漏电的低压二极管芯片
CN103295898A (zh) * 2013-05-10 2013-09-11 江苏应能微电子有限公司 一种利用超深沟槽结构制造瞬变电压抑制二极管的方法
CN204118073U (zh) * 2014-10-17 2015-01-21 无锡固电半导体股份有限公司 高频非穿通型绝缘栅双极型晶体管
CN104617157A (zh) * 2015-01-23 2015-05-13 应能微电子(上海)有限公司 一种具有超深沟槽的瞬态电压抑制器结构
US10249607B1 (en) * 2017-12-15 2019-04-02 Texas Instruments Incorporated Internally stacked NPN with segmented collector
CN108133959A (zh) * 2017-12-25 2018-06-08 深圳市晶特智造科技有限公司 沟槽三极管及其制作方法
EP3664151A1 (en) * 2018-12-06 2020-06-10 Nexperia B.V. Bipolar transistor with polysilicon emitter and method of manufacturing
CN110085669A (zh) * 2019-03-22 2019-08-02 泉州齐美电子科技有限公司 一种三极管及其制作方法
CN111223919A (zh) * 2020-03-27 2020-06-02 上海维安半导体有限公司 一种利用深槽刻蚀并填充高浓度多晶硅的tvs及其制造方法
CN111640786A (zh) * 2020-06-12 2020-09-08 电子科技大学 一种具有多沟槽的ligbt器件

Similar Documents

Publication Publication Date Title
US11081575B2 (en) Insulated gate bipolar transistor device and method for manufacturing the same
CN103383958A (zh) 一种rc-igbt器件及其制作方法
US8557678B2 (en) Method for manufacturing semiconductor substrate of large-power device
CN114823886A (zh) 提升转换效率的沟槽型rc-igbt器件及制备方法
CN108155230B (zh) 一种横向rc-igbt器件及其制备方法
CN102163552B (zh) 半导体元件的制造方法
CN117747648A (zh) 半导体装置
CN113270475A (zh) 一种由肖特基结势垒控制的短路阳极横向绝缘栅双极型晶体管及其制作方法
CN116110961A (zh) 一种沟槽栅双极型晶体管及其制作工艺
CN108258040B (zh) 具有宽带隙半导体衬底材料的绝缘栅双极晶体管及其制作方法
CN103247694A (zh) 一种沟槽肖特基半导体装置及其制备方法
CN111969052A (zh) 一种具有多沟槽的双极结型晶体管
CN104409508A (zh) Soi衬底双向击穿保护双栅绝缘隧穿增强晶体管及制造方法
CN111211167B (zh) 一种消除负阻效应的rc-igbt器件结构
CN211629117U (zh) 复合沟道igbt器件
CN111430468A (zh) 双胞封装肖特基二极管芯片的双芯隔离结构及制造方法
CN107464839B (zh) 一种防止关断失效的栅控晶闸管器件
CN111341843A (zh) 复合沟道igbt器件及其制造方法
CN113571577B (zh) 一种由肖特基结势垒控制的逆导型绝缘栅双极型晶体管及其制作方法
GB2589057A (en) Bipolar semiconductor device and method for manufacturing such a semiconductor device
CN115064584B (zh) 一种具有载流子存储层的沟槽栅igbt器件
CN117637827B (zh) 半导体装置和半导体装置的制造方法
CN103035748B (zh) 锗硅BiCMOS工艺中的齐纳二极管及制造方法
CN109148293B (zh) 横向rc-igbt器件及其制造方法
CN116454025B (zh) Mosfet芯片的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201120