CN111939910A - 铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用 - Google Patents

铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用 Download PDF

Info

Publication number
CN111939910A
CN111939910A CN202010932819.7A CN202010932819A CN111939910A CN 111939910 A CN111939910 A CN 111939910A CN 202010932819 A CN202010932819 A CN 202010932819A CN 111939910 A CN111939910 A CN 111939910A
Authority
CN
China
Prior art keywords
iron
aluminum oxide
oxide material
doped aluminum
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010932819.7A
Other languages
English (en)
Other versions
CN111939910B (zh
Inventor
王心晨
阳灿
王文岩
王佳丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010932819.7A priority Critical patent/CN111939910B/zh
Publication of CN111939910A publication Critical patent/CN111939910A/zh
Application granted granted Critical
Publication of CN111939910B publication Critical patent/CN111939910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • C01B17/0434Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铁掺杂氧化铝材料及其制备方法以及在光催化选择性氧化硫化氢上的应用,属于材料制备及催化脱硫的技术领域。将铝源和铁源进行两步热处理,即得到所述的铁掺杂氧化铝材料催化剂。利用廉价前驱体合成铁掺杂氧化铝材料催化剂,能有效地将硫化氢气体氧化成硫单质,并且具有较高的转换效率和选择性,同时反应在室温可见光下进行,相比传统热催化可以大大降低能耗。本发明工艺简单,成本低,可大规模生产,符合实际生产需要,有较大的应用潜力。

Description

铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢 上的应用
技术领域
本发明属于材料制备及催化脱硫技术领域,具体涉及一种铁掺杂氧化铝材料及其制备方法以及在光催化选择性氧化硫化氢上的应用。
背景技术
为了保护环境和实现资源的有效利用,工业尾气排放和处理受到日益关注。大部分工业尾气中的挥发性有机硫因其污染范围广、化学稳定性强、不易被吸附等特点成为最难处理的化学物质之一。目前,对有机硫的主要脱除手段包括湿法脱除、加氢还原、干法催化脱除等。干法催化脱除是通过水解、催化的方式将有机硫进行转化,其具有转化效率高、反应条件温和、成本低廉等特点,是应用最为广泛的脱硫方法之一。但是,在反应过程中会生成大量具有恶臭和毒性的硫化氢气体。因此,寻找一种合适的催化剂和反应体系,实现对硫化氢气体的高效处理具有重要的意义。
目前工业上主要采用Claus工艺处理硫化氢气体,在高温条件下通过选择性氧化对硫化氢进行选择性氧化,最终产物是硫单质和水。由于该反应是放热反应,高温条件下受热力学限制,H2S不能完全转化,即便发展多级Claus工艺后,仍难以将硫化氢浓度降解至0.1 mg/ Nm3以下。
近几年,光催化深度氧化技术具有选择性好、反应条件温和等特点逐渐受到人们的关注。光催化氧化过程的基本原理是半导体吸收光能生成光生电子,与吸附在催化剂表面的氧物种发生反应生成过氧自由基或超氧自由基,进而将污染物氧化降解。氧化铁是一种常见的光催化剂,具有优异的吸光能力和化学稳定性,但由于光催化材料表面的Fe原子易与硫原子生成Fe-S键,导致光催化剂失活。氧化铝比表面积大,化学性质稳定,是一种理想的催化剂载体。我们将Fe均匀分散于氧化铝材料的骨架中,改善了Fe/Al2O3材料的禁带结构和表面结构,能有效地将H2S光催化转化,并具有优异的催化性能和稳定性。综上,本发明成功制备了一种选择性氧化硫化氢光催化剂,为硫化氢光催化转化的实际应用提供了一种可能。
发明内容
本发明的目的在于提供一种铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用,本发明制备的铁掺杂氧化铝催化剂能够在室温可见光条件下高效地实现H2S气体的氧化得到硫磺,并且具有较好的选择性和寿命。本发明工艺简单、成本低、 效率高,符合实际生产需要,有较大的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种铁掺杂氧化铝材料,样品收率高;在可见光下能有效地将硫化氢气体选择性氧化为硫单质,转化率和稳定性高。
具体制备方法是将铝源和铁源两步热处理后,生成具有光催化选择性氧化硫化氢的铁掺杂氧化铝材料。
所述铝源为可水解性铝盐中的任意一种,更优选地,具体为氯化铝、硫酸铝、硝酸铝中的任意一种。
所述铁源为可水解性铁盐中的任意一种,更优选地,具体为氯化铁、硝酸铁、硫酸铁中的任意一种。
具体制备方法包括以下步骤:
1)将铝源、铁源和水放入烧瓶中搅拌、充分溶解,用碱液调节溶液pH;其中铝源、铁源和水的质量比例为1:x:5,0≤x≤1;
2)将步骤1)中烧瓶进行油浴,待固体逐渐析出;
3)将2)所得到固体放入坩埚中,在马弗炉中高温处理;
4)将3)所得粉末,即为铁掺杂氧化铝材料。
步骤1)中铝源、铁源在水中搅拌1h、充分溶解;后用碱液调节溶液pH至7。
步骤1)所述碱液具体为氢氧化钠、氢氧化钾、尿素、氨水中的任意一种。
步骤2)所述油浴具体为100 ℃油浴中保温12h。
步骤3)中所述高温处理具体为升温到600 ℃,并保温2h。
所述铁掺杂氧化铝材料在光催化选择性氧化硫化氢中具有优异的转化率和选择性。
本发明的显著优点在于:
(1)本发明提供了一种简单热处理制备光响应的铁掺杂氧化铝催化剂的方法,其铝、铁前驱体价格低廉,且材料收率高。
(2)该材料光催化剂能高效地将硫化氢气体选择性氧化成硫磺单质,并且具有高选择性和较好的稳定性。
(3)本发明的整个工艺过程简单易控制,能耗低、产率高、成本低,符合实际生产需要,有利于大规模的推广。
附图说明
图1为对比例和实施例1-3所得的不同铁掺杂量的氧化铝催化剂的XRD图;
图2为对比例和实施例1-3所得的不同铁掺杂量的氧化铝催化剂的DRS图;
图3为对比例和实施例1-3所得的不同铁掺杂量的氧化铝催化剂对硫化氢气体光催化选择性氧化活性图;
图4为实施例2所得的铁掺杂氧化铝催化剂对硫化氢气体光催化选择性氧化寿命图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
对比例
1)将质量比例为1:5的硝酸铝和水放入烧瓶中搅拌、充分溶解,后用氨水调节溶液pH至7;
2)将步骤1)中烧瓶在100℃油浴中保温处理12h,待固体逐渐析出;
3)将2)所得到固体放入坩埚中,在马弗炉中以10℃/min的升温速率从室温升温到600℃,并保温2h;
4)将3)所得粉末即为氧化铝材料Al2O3,收率95%以上。
实施例1
1)将质量比例为1:0.008:5的硝酸铝、氯化铁和水放入烧瓶中搅拌、充分溶解,后用氨水调节溶液pH至7;
2)将步骤1)中烧瓶在100℃油浴中保温处理12h,待固体逐渐析出;
3)将2)所得到固体放入坩埚中,在马弗炉中以10℃/min的升温速率从室温升温到600℃,并保温2h;
4)将3)所得粉末即为铁掺杂氧化铝材料Fe1/Al2O3,收率95%以上。
实施例2
1)将质量比例为1:0.04:5的硝酸铝、氯化铁和水放入烧瓶中搅拌、充分溶解,后用氨水调节溶液pH至7;
2)将步骤1)中烧瓶在100℃油浴中保温处理12h,待固体逐渐析出;
3)将2)所得到固体放入坩埚中,在马弗炉中以10℃/min的升温速率从室温升温到600℃,并保温2h;
4)将3)所得粉末即为铁掺杂氧化铝材料Fe2/Al2O3,收率95%以上。
实施例3
1)将质量比例为1:0.2:5硝酸铝、氯化铁和水放入烧瓶中搅拌、充分溶解,后用氨水调节溶液pH至7;
2)将步骤1)中烧瓶在100℃油浴中保温处理12h,待固体逐渐析出;
3)将2)所得到固体放入坩埚中,在马弗炉中以10℃/min的升温速率从室温升温到600℃,并保温2h;
4)将3)所得粉末即为铁掺杂氧化铝材料Fe3/Al2O3,收率95%以上。
实施例4
1)将质量比例为1:0.2:5硝酸铝、氯化铁和水放入烧瓶中搅拌、充分溶解,后用尿素调节溶液pH至7;
2)将步骤1)中烧瓶在100℃油浴中保温处理12h,待固体逐渐析出;
3)将2)所得到固体放入坩埚中,在马弗炉中以10℃/min的升温速率从室温升温到600℃,并保温2h;
4)将3)所得粉末即为铁掺杂氧化铝材料Fe3/Al2O3,收率95%以上。
图1为对比例和实施例1-3所得的不同铁掺杂量的氧化铝催化剂的XRD图,表明所制得产物主体是氧化铝。
图2为对比例和实施例1-3所得的不同铁掺杂量的氧化铝催化剂的DRS图,表明随着铁含量的增加,样品的吸光能力增强。
图3为对比例和实施例1-3所得的不同铁掺杂量的氧化铝催化剂在含20 ppm硫化氢、10 ppm氧气的混合气中,空速为3600 ml•g-1•h-1的流速下,对硫化氢气体选择性氧化活性图。从图中可以看出,对硫化氢的转化率最高可以达到99.9%以上,并且没有二氧化硫生成。
图4为实施例2所得的铁掺杂氧化铝催化剂在含20 ppm硫化氢、10 ppm氧气的混合气中,空速为3600 ml•g-1•h-1的流速下,对硫化氢气体选择性氧化寿命图。可以看出,所得催化剂进行连续脱硫48小时其对单质硫的产率保持在99%以上。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种铁掺杂氧化铝材料的制备方法,其特征在于:将铝源和铁源两步热处理后,生成铁掺杂氧化铝材料。
2.根据权利要求1所述的一种铁掺杂氧化铝材料的制备方法,其特征在于:所述铝源为可水解性铝盐中的任意一种。
3.根据权利要求1所述的一种铁掺杂氧化铝材料的制备方法,其特征在于:所述铁源为可水解性铁盐中的任意一种。
4.根据权利要求1所述的一种铁掺杂氧化铝材料的制备方法,其特征在于:具体包括以下步骤:
1)将铝源、铁源和水放入烧瓶中搅拌、充分溶解,用碱液调节溶液pH;其中铝源、铁源和水的质量比例为1:x:5,0≤x≤1;
2)将步骤1)中烧瓶进行油浴,待固体逐渐析出;
3)将2)所得到固体放入坩埚中,在马弗炉中高温处理;
4)将3)所得粉末,即为铁掺杂氧化铝材料。
5.根据权利要求2所述的一种铁掺杂氧化铝材料的制备方法,其特征在于:步骤1)中铝源、铁源在水中搅拌1h、充分溶解;后用碱液调节溶液pH至7。
6.根据权利要求2所述的一种铁掺杂氧化铝材料的制备方法,其特征在于:步骤1)所述碱液具体为氢氧化钠、氢氧化钾、尿素、氨水中的任意一种。
7.根据权利要求2所述的一种铁掺杂氧化铝材料的制备方法,其特征在于:步骤2)所述油浴具体为100 ℃油浴中保温12h。
8.根据权利要求2所述的一种铁掺杂氧化铝材料的制备方法,其特征在于:步骤3)中所述高温处理具体为升温到600 ℃,并保温2h。
9.一种如权利要求1-8任一项所述方法制备的铁掺杂氧化铝材料。
10.一种如权利要求1-8任一项所述方法制备的铁掺杂氧化铝材料在光催化选择性氧化硫化氢上的应用。
CN202010932819.7A 2020-09-08 2020-09-08 铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用 Active CN111939910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010932819.7A CN111939910B (zh) 2020-09-08 2020-09-08 铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010932819.7A CN111939910B (zh) 2020-09-08 2020-09-08 铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用

Publications (2)

Publication Number Publication Date
CN111939910A true CN111939910A (zh) 2020-11-17
CN111939910B CN111939910B (zh) 2022-11-15

Family

ID=73356468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010932819.7A Active CN111939910B (zh) 2020-09-08 2020-09-08 铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用

Country Status (1)

Country Link
CN (1) CN111939910B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517008A (zh) * 2020-12-29 2021-03-19 福州大学 一种Fe掺杂的镁铝尖晶石催化剂的制备方法及其在脱硫领域的应用
CN115448344A (zh) * 2022-09-02 2022-12-09 苏州博来纳润电子材料有限公司 一种复合型纳米氧化铝及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695659A (zh) * 2009-10-23 2010-04-21 中国烟草总公司郑州烟草研究院 一种用于降低卷烟烟气co含量的铁铝催化剂及其制备方法
US20130009098A1 (en) * 2011-02-14 2013-01-10 Indian Institute Of Technology Kanpur Doped aluminum oxides
CN105944732A (zh) * 2016-05-20 2016-09-21 湘潭大学 一种双金属K、Fe掺杂的镍基活性炭催化剂的制备方法和应用
CN107790133A (zh) * 2017-11-07 2018-03-13 中国科学院理化技术研究所 一种钴铁基光催化剂及其制备与应用
CN108636410A (zh) * 2018-05-14 2018-10-12 福州大学 一种具有多孔结构的铁掺杂氧化铝中空微球的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695659A (zh) * 2009-10-23 2010-04-21 中国烟草总公司郑州烟草研究院 一种用于降低卷烟烟气co含量的铁铝催化剂及其制备方法
US20130009098A1 (en) * 2011-02-14 2013-01-10 Indian Institute Of Technology Kanpur Doped aluminum oxides
CN105944732A (zh) * 2016-05-20 2016-09-21 湘潭大学 一种双金属K、Fe掺杂的镍基活性炭催化剂的制备方法和应用
CN107790133A (zh) * 2017-11-07 2018-03-13 中国科学院理化技术研究所 一种钴铁基光催化剂及其制备与应用
CN108636410A (zh) * 2018-05-14 2018-10-12 福州大学 一种具有多孔结构的铁掺杂氧化铝中空微球的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.S. AL-FATESH等: ""Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature"", 《JOURNAL OF SAUDI CHEMICAL SOCIETY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517008A (zh) * 2020-12-29 2021-03-19 福州大学 一种Fe掺杂的镁铝尖晶石催化剂的制备方法及其在脱硫领域的应用
CN112517008B (zh) * 2020-12-29 2023-10-27 福州大学 一种Fe掺杂的镁铝尖晶石催化剂的制备方法及其在脱硫领域的应用
CN115448344A (zh) * 2022-09-02 2022-12-09 苏州博来纳润电子材料有限公司 一种复合型纳米氧化铝及其制备方法和应用

Also Published As

Publication number Publication date
CN111939910B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
Zhang et al. Building heterogeneous nanostructures for photocatalytic ammonia decomposition
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
CN111939910B (zh) 铁掺杂氧化铝材料制备方法以及在光催化选择性氧化硫化氢上的应用
CN111992236B (zh) 熔融盐热聚合法制备具有光催化氧化硫化氢气体功能的碳氮催化剂及其制备方法和应用
CN108786859A (zh) 一种碳掺杂碘氧铋碘酸氧铋异质结构的制备方法
CN109126854A (zh) 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法
CN113786842B (zh) 一种no氧化物合成氨的催化剂及其制备方法和应用
CN104096585A (zh) 低温催化氧化二氧化硫的炭基脱硫催化剂及其制备与应用
CN104941642A (zh) 负载纳米金颗粒的CeO2-TiO2复合催化剂的制备方法
CN104772143A (zh) 用于脱除低浓度二硫化碳的负载型污泥基催化剂的制备方法
CN115920940A (zh) 一种新型氮掺杂碳脱硫催化剂的制备及其应用
CN114029048B (zh) 一种多孔碳包裹的氧化钨催化剂的制备方法及应用
CN102389836B (zh) 聚苯胺/二氧化钛/粘土纳米复合光催化剂及其制备方法
CN110743575A (zh) 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
CN116060015B (zh) 一种光热协同吸附催化剂的合成方法
CN113244929B (zh) 铁铋氧化物Bi2Fe4O9的制备方法及在有机废水处理中的应用
CN112608772A (zh) 一种脱除高炉煤气中有机硫的方法
CN104162419A (zh) 一种氰化氢水解催化剂的制备方法及应用
CN106563508A (zh) 一种用于脱除有机硫的铁铈基多孔催化剂的制备方法
CN113304742A (zh) 一种Ti3+自掺杂TiO2载活性炭的光催化材料的制备方法
CN108854518B (zh) 一种光催化氧化氨气的方法
CN111185207A (zh) 一种Ag/BiPO4纳米复合光催化剂的制备方法
CN111659447A (zh) 一种处理高盐废水中染料的光催化剂及其制备方法
CN112403505A (zh) 一种CoP-g-C3N4电子集流体光催化剂及其制备方法和应用
CN114345338B (zh) 一种用于转化硫醇化合物的高选择性催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant