CN111889694B - 一种一维银纳米材料的合成及制备导电油墨的方法 - Google Patents

一种一维银纳米材料的合成及制备导电油墨的方法 Download PDF

Info

Publication number
CN111889694B
CN111889694B CN202010512812.XA CN202010512812A CN111889694B CN 111889694 B CN111889694 B CN 111889694B CN 202010512812 A CN202010512812 A CN 202010512812A CN 111889694 B CN111889694 B CN 111889694B
Authority
CN
China
Prior art keywords
solution
nano material
silver nano
dimensional
dimensional silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010512812.XA
Other languages
English (en)
Other versions
CN111889694A (zh
Inventor
侯成敏
陈伊玉
赵思远
关丹丹
宋宇宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Top Color Printing Materials Co ltd
Original Assignee
Guangzhou Top Color Printing Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Top Color Printing Materials Co ltd filed Critical Guangzhou Top Color Printing Materials Co ltd
Priority to CN202010512812.XA priority Critical patent/CN111889694B/zh
Publication of CN111889694A publication Critical patent/CN111889694A/zh
Application granted granted Critical
Publication of CN111889694B publication Critical patent/CN111889694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Abstract

本发明公开了一种一维银纳米材料的合成方法,具体为:将纤维分散在乙二醇溶液中,形成A溶液;将硝酸银、聚乙烯吡咯烷酮PVP溶解在A溶液中,形成B溶液;将卤化物溶解于水溶液中,形成C溶液;将溶液B搅拌均匀后加入C溶液得到混合溶液,搅拌,待溶液颜色变为深红棕色后,调温至100~180℃,恒温磁力搅拌,得到一维银纳米材料母液,然后将得到的一维银纳米材料母液用无水乙醇离心清洗,得到的沉淀物分散在无水乙醇中,得到一维银纳米材料。本发明将模板法和醇热法结合,引入纤维作为银纳米颗粒的沉积模板,并诱导其生长成一维的形态,可以快速简易地合成一维银纳米材料。本发明还公开了一种采用一维银纳米材料制备导电油墨的方法。

Description

一种一维银纳米材料的合成及制备导电油墨的方法
技术领域
本发明属于金属纳米材料技术领域,涉及一种一维银纳米材料的合成方法,本发明还涉及采用上述一维银纳米材料制备导电油墨的方法。
背景技术
随着互联网技术的蓬勃发展以及智能化、个性化需求的激增,柔性电子市场规模不断扩大,拥有诱人的发展潜力。而印刷电子作为柔性电子产品的实现技术之一,相较需要高额成本的蚀刻技术,其利用印刷的方式实现了低成本、大规模、高效率的生产,目前在无线射频标签、柔性太阳能电池已有规模化的应用。
印刷电子技术的关键问题是导电油墨的研发。目前,导电油墨市场主要以银系导电油墨为主,因为银的导电性在所有金属中最佳,且导热性优良。而在大多数关于纳米银导电油墨的研究中,导电填料纳米银多以颗粒的形态存在,即三维不规则状态。该形态的纳米银油墨经涂和后处理后,纳米银颗粒交联形成的导电节点少,导电性能较差。
一维银纳米材料如银纳米线与银纳米棒可以改善以上问题。相比颗粒状的银纳米材料,一维银纳米材料经后处理之后能够形成更多的导电节点,即形成更为密集的导电通路,进而使制备的导电薄膜的导电性能愈加优越。因此,同等导电性能下,基于一维银纳米线材料的导电油墨所需的银更少,所以该类油墨的生产成本更低。一维银纳米材料用作导电材料时,长径比越高,单位密度的一维银纳米材料交织而成的导电结点越多,形成的导电通路就越多,导电薄膜的导电性能愈佳。故而,如何合成高长径比的一维银纳米材料是优化银系导电油墨的有效途径之一。此外,银单质的质量较大,在溶液很容易发生沉积交联,使分散系很不稳定,所以易造成导电油墨导电性能大打折扣甚至失去导电功能。所以,如何使合成的一维银纳米材料易于稳定地分散于溶液是改善银系导电油墨的关键问题。
目前一维银纳米材料的制备方法主要要有模板法和醇热法,模板法可以严格控制一维银纳米材料的形貌和尺寸,但是其合成的一维银纳米材料的长度通常较短,且大批量生产难度较高。而醇热法产率高,成本低且操作简单,但由于影响因素繁多,故难以控制一维银纳米材料的形态,同时,其产物中常常含有其他形态的杂质银纳米颗粒。
发明内容
本发明的目的是提供一种一维银纳米材料的合成方法,将模板法和醇热法结合,引入纤维作为银纳米颗粒的沉积模板,并诱导其生长成一维的形态,可以快速简易地合成一维银纳米材料。
本发明的另一目的是提供一种采用一维银纳米材料制备导电油墨的方法。
本发明所采用的技术方案是,一种一维银纳米材料的合成方法,具体按照如下步骤实施:
步骤1,将纤维分散在乙二醇溶液,形成A溶液;
步骤2,将硝酸银、聚乙烯吡咯烷酮PVP溶解在A溶液中,形成B溶液;
步骤3,将卤化物溶解于水溶液中,形成C溶液;
步骤4,将溶液B磁力搅拌均匀后加入C溶液得到混合溶液,将混合溶液在40~100℃下磁力搅拌10~60min,待溶液颜色变为深红棕色后,将温度调高至100~180℃,恒温磁力搅拌60~180min,得到一维银纳米材料母液,然后将得到的一维银纳米材料母液用无水乙醇离心清洗至少两次,得到的沉淀物分散在无水乙醇中,得到一维银纳米材料。
本发明的特征还在于,
步骤1中A溶液的质量分数为1.4×10-3~5.6×10-3g/mL。
硝酸银与聚乙烯吡咯烷酮PVP的摩尔浓度比例为1~5:1。
步骤2中聚乙烯吡咯烷酮PVP的平均分子量,即就是K值为15~90。
步骤3中的卤化物为氯化钠、氯化铜、三氯化铁、溴化钠、溴化铜、溴化铁、氟化钠中的一种或几种的混合,卤化物浓度为4~10mmol/L。
本发明采用的另一种技术方案是,一种采用一维维银纳米材料制备导电油墨的方法,其特征在于,具体按照如下步骤实施:
步骤a、将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和助剂混合制备成水性树脂体系M;
步骤b、将上述制备的一维银纳米材料分散在去离子水中,得到银纳米线分散液N;
步骤c、在树脂体系M中加入聚乙烯吡咯烷酮PVP,搅拌均匀后加入一维银纳米材料分散液N,分散均匀后得到导电油墨。
步骤a中水性丙烯酸树脂、水性丙烯酸乳液、去离子水和助剂的体积比为:水性丙烯酸树脂、水性丙烯酸乳液、去离子水:助剂=4~6:6~10:1:2。
本发明另一种技术方案的特征还在于,
助剂为油墨助剂,为润湿剂、消泡剂、pH值调节剂、增稠剂、附着力促进剂、触变剂、流平剂、固化剂中的一种或几种。
步骤b中的银纳米线分散液N的质量浓度为1~3mg/mL。
步骤c中的树脂体系M与一维银纳米材料分散液N的体积比例为1:2~6。
本发明的有益效果是:
本发明将模板法和醇热法结合,引入纤维作为银纳米颗粒的沉积模板,并诱导其生长成一维的形态,可以快速简易地合成一维银纳米材料。
本发明合成的一维银纳米材料颗粒只在纤维表面沉积薄薄的一层,所以生成的一维银纳米材料相比单纯的一维银纳米材料质量更轻,更易于分散在溶液中,从而形成稳定的分散系,因此利用其制备的导电油墨拥有更高的稳定性。
附图说明
图1为本发明一种一维银纳米材料的合成方法中实施例1所制备的一维银纳米材料的扫描电子显微镜照片;
图2为为本发明一种一维银纳米材料的合成方法中实施例1所制备的一维银纳米材料的直径分布柱状图与正态分布情况。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种一维银纳米材料的合成方法,具体按照如下步骤实施:
步骤1,将纤维分散在乙二醇溶液,形成A溶液,其中,A溶液的质量分数为1.4×10-3~5.6×10-3g/mL;
步骤2,将硝酸银、聚乙烯吡咯烷酮PVP溶解在A溶液中,形成B溶液,其中,硝酸银与聚乙烯吡咯烷酮PVP的摩尔浓度比例为1~5:1,聚乙烯吡咯烷酮PVP的平均分子量,即就是K值为15~90;
步骤3,将卤化物溶解于水溶液中,形成C溶液,其中还,卤化物为氯化钠、氯化铜、三氯化铁、溴化钠、溴化铜、溴化铁、氟化钠中的一种或几种的混合,卤化物浓度为4~10mmol/L;
步骤4,将溶液B磁力搅拌均匀后加入C溶液得到混合溶液,将混合溶液在40~100℃下磁力搅拌10~60min,待溶液颜色变为深红棕色后,将温度调高至100~180℃,恒温磁力搅拌60~180min,得到一维银纳米材料母液,然后将得到的一维银纳米材料母液用无水乙醇离心清洗至少两次,得到的沉淀物分散在无水乙醇中,得到一维银纳米材料。
本发明的纤维包括棉秆纤维、苎麻纤维、棉花纤维、剑麻纤维、黄麻纤维等植物纤维,聚酯纤维、醋酸纤维、碳纤维等化学纤维,以及其他种类纤维等。
本发明一种采用一维维银纳米材料制备导电油墨的方法,其特征在于,具体按照如下步骤实施:
步骤a、将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和助剂混合制备成水性树脂体系M,其中水性丙烯酸树脂、水性丙烯酸乳液、去离子水和助剂的体积比为:水性丙烯酸树脂、水性丙烯酸乳液、去离子水:助剂=4~6:6~10:1:2,助剂为油墨助剂,为润湿剂、消泡剂、pH值调节剂、增稠剂、附着力促进剂、触变剂、流平剂、固化剂中的一种或几种;
步骤b、将上述制备的一维银纳米材料分散在去离子水中,得到银纳米线分散液N,银纳米线分散液N的质量浓度为1~3mg/mL;
步骤c、在树脂体系M中加入聚乙烯吡咯烷酮PVP,搅拌均匀后加入一维银纳米材料分散液N,分散均匀后得到导电油墨,其中,树脂体系M与一维银纳米材料分散液N的体积比例为1:2~6。
实施例1
将聚碳酸酯纤维裁剪和分离为长度大约为3mm的细纤维,取0.1g均匀分散在70mL的乙二醇溶液中,配制成质量浓度为1.4×10-3g/mL的聚碳酯的乙二醇分散溶液,将1g硝酸银、1.4g K值为90的PVP溶解在上述的分散溶液中,得到混合溶液A;在混合溶液加入1.6mL浓度为5mmol/L的三氯化铁溶液,得到混合溶液B,将混合溶液B磁力搅拌均匀,70℃恒温加热40min后,160℃恒温磁力加热80min,加热完成后,让反应体系随炉冷却;
将上述制备得到的一维银纳米材料的母液用无水乙醇稀释,用离心机在10000rpm的转速下清洗多遍,,留最终沉淀物。将得到的沉淀物分散在无水乙醇,合成的一维银纳米材料的直径分布在40~80nm,长径比可达500,其扫描电子显微镜照片如图1所示,采用的场发射扫描电镜的型号为SU-8010,所制备的一维银纳米材料的直径分布柱状图与正态分布情况如图2所示。
将上述制得的一维银纳米材料在离心机中3000rpm离心5分钟,清洗3-5次,将其分散到去离子水中,得到一维银纳米材料分散液,使一维银纳米材料的质量浓度为2mg/mL,然后,按照质量比为6:8:1:2的比例,将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和分散剂混合制备成水性树脂体系M,取10ml的以上配制的水性树脂体系M,加入0.12g的PVP搅拌均匀,最后加入20mL上述配制的质量浓度为2mg/mL一维银纳米材料分散液,使树脂体系M与分散液体积比例为1:2。搅拌均匀后,得到了一维银纳米材料油墨。
将上述制得的一维银纳米材料油墨手工涂布于克重为150g的铜版纸上,测量10mm内两点的电阻值,电阻值小于5Ω,静置5天没有肉眼可见的沉降分层。
实施例2
将聚碳酸酯纤维裁剪和分离为长度大约为3mm的细纤维,取0.3g均匀分散在70mL的乙二醇溶液中,配制成质量浓度为4.2×10-3g/mL的聚碳酯纤维的乙二醇分散溶液。将1g硝酸银、1.4g K值为60的PVP溶解在上述的分散溶液中,得到混合溶液A;在混合溶液加入2mL浓度为4mmol/L的溴化钠溶液,得到混合溶液B,将混合溶液B磁力搅拌均匀,70℃恒温加热40min后,180℃恒温磁力加热80min,加热完成后,让反应体系随炉冷却;
将上述制备得到的一维银纳米材料的母液用无水乙醇稀释,用离心机在10000rpm的转速下清洗多遍,,留最终沉淀物。将得到的沉淀物分散在无水乙醇。合成的一维银纳米材料的直径分布在20~50nm,长径比可达600。
将上述制得的一维银纳米材料在离心机中3000rpm离心5分钟,清洗3-5次,将其分散到去离子水中,使一维银纳米材料的质量浓度为2mg/mL。然后,按照质量比为7:9:1:2的比例,将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和消泡剂混合制备成水性树脂体系M;取10ml的以上配制的水性树脂体系M,加入0.12g的PVP搅拌均匀,最后加入30mL上述配制的质量浓度为2mg/mL一维银纳米材料分散液,使树脂体系M与分散液体积比例为1:3,搅拌均匀后,得到了一维银纳米材料油墨。
将上述制得的一维银纳米材料油墨手工涂布于克重为150g的铜版纸上,测量10mm内两点的电阻值,电阻值小于4Ω,静置7天没有肉眼可见的沉降分层。
实施例3
将黄麻纤维裁剪和分离为长度大约为3mm的细纤维,取0.1g均匀分散在70mL的乙二醇溶液中,配制成质量浓度为1.4×10-3g/mL的黄麻纤维的乙二醇分散溶液。将1.5g硝酸银、1.4g K值为60的PVP溶解在上述的分散溶液中,得到混合溶液A;在混合溶液加入1.6mL浓度为7mmol/L的三氯化铁溶液,得到混合溶液B。将混合溶液B磁力搅拌均匀,80℃恒温加热40min后,160℃恒温磁力加热80min。加热完成后,让反应体系随炉冷却;
将上述制备得到的一维银纳米材料的母液用无水乙醇稀释,用离心机在10000rpm的转速下清洗多遍,,留最终沉淀物。将得到的沉淀物分散在无水乙醇。合成的一维银纳米材料的直径分布在30~90nm,长径比可达500。
将上述制得的一维银纳米材料在离心机中3000rpm离心5分钟,清洗3-5次,将其分散到去离子水中,使一维银纳米材料的质量浓度为2mg/mL。然后,按照质量比为4:6:1:2的比例,将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和增稠剂混合制备成水性树脂体系M;取10ml的以上配制的水性树脂体系M,加入0.12g的PVP搅拌均匀,最后加入20mL上述配制的质量浓度为3mg/mL一维银纳米材料分散液,使树脂体系M与分散液体积比例为1:2。搅拌均匀后,得到了一维银纳米材料油墨。
将上述制得的一维银纳米材料油墨手工涂布于克重为150g的铜版纸上,测量10mm内两点的电阻值,电阻值小于6Ω,静置5天没有肉眼可见的沉降分层。
实施例4
将取0.3g目数为100的棉秆纤维分离均匀分散在70mL的乙二醇溶液中,配制成质量浓度为4.2×10-3g/mL的棉秆纤维的乙二醇分散溶液。将1g硝酸银、1.4g K值为15的PVP溶解在上述的分散溶液中,得到混合溶液A;在混合溶液加入1.6mL浓度为8mmol/L的溴化铁溶液,得到混合溶液B。将混合溶液B磁力搅拌均匀,100℃恒温加热10min后,120℃恒温磁力加热100min。加热完成后,让反应体系随炉冷却;
将上述制备得到的一维银纳米材料的母液用无水乙醇稀释,用离心机在10000rpm的转速下清洗多遍,,留最终沉淀物。将得到的沉淀物分散在无水乙醇。合成的一维银纳米材料的直径分布在40~110nm,长径比可达300。
将上述制得的一维银纳米材料在离心机中3000rpm离心5分钟,清洗3-5次,将其分散到去离子水中,使一维银纳米材料的质量浓度为2mg/mL。然后,按照质量比为6:10:1:2的比例,将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和分散剂混合制备成水性树脂体系M;取10ml的以上配制的水性树脂体系M,加入0.12g的PVP搅拌均匀,最后加入40mL上述配制的质量浓度为2mg/mL一维银纳米材料分散液,使树脂体系M与分散液体积比例为1:4。搅拌均匀后,得到了一维银纳米材料油墨。
将上述制得的一维银纳米材料油墨手工涂布于克重为150g的铜版纸上,测量10mm内两点的电阻值,电阻值小于10Ω,静置4天没有肉眼可见的沉降分层。
实施例5
将剑麻纤维裁剪和分离为长度大约为3mm的细纤维,取0.3g均匀分散在70mL的乙二醇溶液中,配制成质量浓度为4.2×10-3g/mL剑麻纤维的乙二醇分散溶液。将1.5g硝酸银、1.4g K值为30的PVP溶解在上述的分散溶液中,得到混合溶液A;在混合溶液加入1.6mL浓度为7mmol/L的氯化钠溶液,得到混合溶液B。将混合溶液B磁力搅拌均匀,40℃恒温加热60min后,180℃恒温磁力加热60min。加热完成后,让反应体系随炉冷却;
将上述制备得到的一维银纳米材料的母液用无水乙醇稀释,用离心机在10000rpm的转速下清洗多遍,,留最终沉淀物。将得到的沉淀物分散在无水乙醇。合成的一维银纳米材料的直径分布在60~100nm,长径比可达250。
将上述制得的一维银纳米材料在离心机中1500rpm离心5分钟,清洗3-5次,将其分散到去离子水中,使一维银纳米材料的质量浓度为2mg/mL。然后,按照质量比为6:9:1:2的比例,将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和分散剂混合制备成水性树脂体系M;取10ml的以上配制的水性树脂体系M,加入0.12g的PVP搅拌均匀,最后加入60mL上述配制的质量浓度为1mg/mL一维银纳米材料分散液,使树脂体系M与分散液体积比例为1:6。搅拌均匀后,得到了一维银纳米材料油墨。
将上述制得的一维银纳米材料油墨手工涂布于克重为150g的铜版纸上,测量10mm内两点的电阻值,电阻值小于30Ω,静置4天没有肉眼可见的沉降分层。
实施例6
将苎麻纤维裁剪和分离为长度大约为3mm的细纤维,取0.2g均匀分散在70mL的乙二醇溶液中,配制成质量浓度为2.8×10-3g/mL的苎麻纤维的乙二醇分散溶液。将1.5g硝酸银、1.4g K值为60的PVP溶解在上述的分散溶液中,得到混合溶液A;在混合溶液加入1.6mL浓度为8mmol/L的三氯化铁溶液,得到混合溶液B。将混合溶液B磁力搅拌均匀,80℃恒温加热40min后,160℃恒温磁力加热100min。加热完成后,让反应体系随炉冷却;
将上述制备得到的一维银纳米材料的母液用无水乙醇稀释,用离心机在10000rpm的转速下清洗多遍,,留最终沉淀物。将得到的沉淀物分散在无水乙醇。合成的一维银纳米材料的直径分布在20-40nm,长径比可达560。
将上述制得的一维银纳米材料在离心机中1500rpm离心5分钟,清洗3-5次,将其分散到去离子水中,使一维银纳米材料的质量浓度为2mg/mL。然后,按照质量比为5:9:1:2的比例,将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和消泡剂混合制备成水性树脂体系M;取10ml的以上配制的水性树脂体系M,加入0.12g的PVP搅拌均匀,最后20mL上述配制的质量浓度为2mg/mL一维银纳米材料分散液,使树脂体系M与分散液体积比例为1:2。搅拌均匀后,得到了一维银纳米材料油墨。
将上述制得的一维银纳米材料油墨手工涂布于克重为150g的铜版纸上,测量10mm内两点的电阻值,电阻值小于5Ω,静置7天没有肉眼可见的沉降分层。
实施例7
将醋酸纤维裁剪和分离为长度大约为3mm的细纤维,取0.4g均匀分散在70mL的乙二醇溶液中,配制成质量浓度为5.6×10-3g/mL的醋酸纤维的乙二醇分散溶液。将1.5g硝酸银、1.4g K值为90的PVP溶解上述的分散溶液中,得到混合溶液A;在混合溶液加入1.6mL浓度为7mmol/L的氯化铜溶液,得到混合溶液B。将混合溶液B磁力搅拌均匀,70℃恒温加热40min后,160℃恒温磁力加热80min。加热完成后,让反应体系随炉冷却;
将上述制备得到的一维银纳米材料的母液用无水乙醇稀释,用离心机在10000rpm的转速下清洗多遍,,留最终沉淀物。将得到的沉淀物分散在无水乙醇。合成的一维银纳米材料的直径分布在30~90nm,长径比可达500。
将上述制得的一维银纳米材料在离心机中3000rpm离心5分钟,清洗3-5次,将其分散到去离子水中,使一维银纳米材料的质量浓度为2mg/mL。然后,按照质量比为5:8:1:2的比例,将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和润湿剂混合制备成水性树脂体系M;取10ml的以上配制的水性树脂体系M,加入0.12g的PVP搅拌均匀,最后加入30mL上述配制的质量浓度为2mg/mL一维银纳米材料分散液,使树脂体系M与分散液体积比例为1:3。搅拌均匀后,得到了一维银纳米材料油墨。
将上述制得的一维银纳米材料油墨手工涂布于克重为150g的铜版纸上,测量10mm内两点的电阻值,电阻值小于10Ω,静置5天没有肉眼可见的沉降分层。

Claims (7)

1.一种一维银纳米材料的合成方法,其特征在于,具体按照如下步骤实施:
步骤1,将纤维分散在乙二醇溶液,形成A溶液,A溶液的质量分数为1.4×10-3~5.6×10-3g/mL;
步骤2,将硝酸银、聚乙烯吡咯烷酮PVP溶解在A溶液中,形成B溶液;
步骤3,将卤化物溶解于水溶液中,形成C溶液;
步骤4,将B溶液磁力搅拌均匀后加入C溶液得到混合溶液,将混合溶液在40~100℃下磁力搅拌10~60min,待溶液颜色变为深红棕色后,将温度调高至100~180℃,恒温磁力搅拌60~180min,然后随炉冷却,得到一维银纳米材料母液,然后将得到的一维银纳米材料母液用无水乙醇离心清洗至少两次,得到的沉淀物分散在无水乙醇中,得到一维银纳米材料;
所述步骤1纤维为棉秆纤维、苎麻纤维、棉花纤维、剑麻纤维、黄麻纤维、聚酯纤维、醋酸纤维、碳纤维中的一种,所述硝酸银与聚乙烯吡咯烷酮PVP的摩尔浓度比例为1~5:1。
2.根据权利要求1所述的一种一维银纳米材料的合成方法,其特征在于,所述步骤2中聚乙烯吡咯烷酮PVP的平均分子量,即就是K值为15~90。
3.根据权利要求1所述的一种一维银纳米材料的合成方法,其特征在于,所述步骤3中卤化物为氯化钠、氯化铜、三氯化铁、溴化钠、溴化铜、溴化铁、氟化钠中的一种或几种的混合,卤化物浓度为4~10mmol/L。
4.一种采用一维银纳米材料制备导电油墨的方法,其特征在于,具体按照如下步骤实施:
步骤a、将水性丙烯酸树脂、水性丙烯酸乳液、去离子水和助剂混合制备成水性树脂体系M;
步骤b、将权利要求1制备的一维银纳米材料分散在去离子水中,得到银纳米线分散液N;
步骤c、在树脂体系M中加入聚乙烯吡咯烷酮PVP,搅拌均匀后加入一维银纳米材料分散液N,分散均匀后得到导电油墨,所述树脂体系M与一维银纳米材料分散液N的体积比例为1:2~6。
5.根据权利要求4所述的一种采用一维银纳米材料制备导电油墨的方法,其特征在于,所述步骤a中水性丙烯酸树脂、水性丙烯酸乳液、去离子水和助剂的体积比为:水性丙烯酸树脂、水性丙烯酸乳液、去离子水:助剂=4~6:6~10:1:2。
6.根据权利要求4所述的一种采用一维银纳米材料制备导电油墨的方法,其特征在于,所述助剂为油墨助剂,为润湿剂、消泡剂、pH值调节剂、增稠剂、附着力促进剂、触变剂、流平剂、固化剂中的一种或几种。
7.根据权利要求4所述的一种采用一维银纳米材料制备导电油墨的方法,其特征在于,所述步骤b中的银纳米线分散液N的质量浓度为1~3mg/mL。
CN202010512812.XA 2020-06-08 2020-06-08 一种一维银纳米材料的合成及制备导电油墨的方法 Active CN111889694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010512812.XA CN111889694B (zh) 2020-06-08 2020-06-08 一种一维银纳米材料的合成及制备导电油墨的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010512812.XA CN111889694B (zh) 2020-06-08 2020-06-08 一种一维银纳米材料的合成及制备导电油墨的方法

Publications (2)

Publication Number Publication Date
CN111889694A CN111889694A (zh) 2020-11-06
CN111889694B true CN111889694B (zh) 2023-10-03

Family

ID=73207607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010512812.XA Active CN111889694B (zh) 2020-06-08 2020-06-08 一种一维银纳米材料的合成及制备导电油墨的方法

Country Status (1)

Country Link
CN (1) CN111889694B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909570B (zh) * 2020-06-19 2022-10-21 世大新材料(深圳)有限公司 一种银纳米线油墨的合成方法及柔性导电薄膜的制备方法
CN113106782B (zh) * 2021-03-26 2022-05-24 华南理工大学 一种负载银纳米线的柔性导电纸及其制备方法与应用
CN114058216B (zh) * 2021-11-23 2023-04-11 东华大学 可丝网印刷银纳米线/石墨烯导电油墨及其制法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103600089A (zh) * 2013-12-03 2014-02-26 燕山大学 不同形貌的一维银纳米结构材料的合成方法
CN105478793A (zh) * 2015-12-09 2016-04-13 中国科学院深圳先进技术研究院 一种银纳米线及其制备方法
CN109807349A (zh) * 2019-03-05 2019-05-28 华南理工大学 一种纳米银线及其制备方法
CN110128883A (zh) * 2019-05-22 2019-08-16 南京银纳新材料科技有限公司 超低雾度银纳米线薄膜的导电墨水及其制备方法和应用
JP2019147983A (ja) * 2018-02-27 2019-09-05 公立大学法人 滋賀県立大学 銀ナノワイヤ合成用有機保護剤並びに銀ナノワイヤおよびその製造方法
CN110653379A (zh) * 2018-06-28 2020-01-07 宁波山功新材料科技有限公司 一种可降解金属纳米线的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908178B2 (en) * 2014-10-28 2018-03-06 Kookmin University Industry Academy Cooperation Foundation Method for preparing ultrathin silver nanowires, and transparent conductive electrode film product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103600089A (zh) * 2013-12-03 2014-02-26 燕山大学 不同形貌的一维银纳米结构材料的合成方法
CN105478793A (zh) * 2015-12-09 2016-04-13 中国科学院深圳先进技术研究院 一种银纳米线及其制备方法
JP2019147983A (ja) * 2018-02-27 2019-09-05 公立大学法人 滋賀県立大学 銀ナノワイヤ合成用有機保護剤並びに銀ナノワイヤおよびその製造方法
CN110653379A (zh) * 2018-06-28 2020-01-07 宁波山功新材料科技有限公司 一种可降解金属纳米线的制备方法
CN109807349A (zh) * 2019-03-05 2019-05-28 华南理工大学 一种纳米银线及其制备方法
CN110128883A (zh) * 2019-05-22 2019-08-16 南京银纳新材料科技有限公司 超低雾度银纳米线薄膜的导电墨水及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
侯成敏等.基于乙基纤维素导电银浆的制备与电子纸性能研究.《功能材料》.2019,第50卷(第11期),第11014-11018页. *
基于乙基纤维素导电银浆的制备与电子纸性能研究;侯成敏等;《功能材料》;20191130;第50卷(第11期);第11014-11018页 *
纳米银线基水性导电油墨的制备与性能;迟聪聪等;《陕西科技大学学报》;20191213;第37卷(第6期);第125-130页 *
迟聪聪等.纳米银线基水性导电油墨的制备与性能.《陕西科技大学学报》.2019,第37卷(第6期),第125-130页. *
雷国伟 ; 陈微微 ; 闫国栋 ; 李宇 ; 魏葳 ; .银纳米线批量合成及透明导电薄膜的工艺探索.陕西煤炭.2020,(第S1期),第76-80页. *

Also Published As

Publication number Publication date
CN111889694A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN111889694B (zh) 一种一维银纳米材料的合成及制备导电油墨的方法
CN104959622B (zh) 一种不同长径比的铜纳米线的合成方法
CN111515385B (zh) 一种铜-镍核壳型纳米粉体和导电薄膜及其制备方法和应用
CN105537622A (zh) 一种制备银纳米线的方法
CN114029499B (zh) 一种超长纳米银线材料的制备方法
CN109954888B (zh) 一种三角片形状的单质铜纳米片及其制备方法
CN109365830A (zh) 一种高振实类球形超细银粉的制备方法
CN101195170A (zh) 超细铜粉的制备方法
CN111822696B (zh) 一种用于导电油墨的单分散纳米铜颗粒及其制备方法和用途
CN106345997A (zh) 一种形貌均一的超细银纳米线及其制备方法
JP2005281781A (ja) 銅ナノ粒子の製造方法
CN106102333B (zh) 一种柔性导电线路室温焊接方法
CN109676150B (zh) 一种调控纳米银线长度的方法
CN110026567A (zh) 银铜纳米颗粒及其制备方法和应用
CN103638974B (zh) 一种以石墨烯纳米片为骨架的催化剂及其制备方法和应用
CN113649558B (zh) 一种纳米银线及其制备方法
CN113369493A (zh) 一种恒温条件下同一反应体系制备多维形貌纳米银的方法
CN111807333B (zh) 一种三维硒化亚铜纳米晶超晶格的制备方法
CN104672991B (zh) 一种铜导电墨水的制备方法
Liu et al. Shape-selective separation of copper nanowires and copper-based nanoparticles by a ligand exchange strategy
CN112530625A (zh) 一种甲壳素晶须基导电材料及其制备方法和水性导电墨水及其应用
CN111618315A (zh) 一种铜纳米线的制备方法
Tang et al. Study on the mechanism of forming silver nanoparticles on micron-scale flake silver powder
CN113956721B (zh) 一种采用光子烧结技术制备Cu/Cu6Sn5导电油墨的方法
CN115007873B (zh) 一种超细铜纳米线的制备方法及其所得铜纳米线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230901

Address after: Room 103, No. 10, Jiuling Road, Yonghe Economic Zone, Luogang District, Guangzhou, Guangdong 510000

Applicant after: GUANGZHOU TOP COLOR PRINTING MATERIALS CO.,LTD.

Address before: 710048 Shaanxi province Xi'an Beilin District Jinhua Road No. 5

Applicant before: XI'AN University OF TECHNOLOGY

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant