CN111871376A - 一种共价有机框架多孔纳米复合材料的制备及应用 - Google Patents

一种共价有机框架多孔纳米复合材料的制备及应用 Download PDF

Info

Publication number
CN111871376A
CN111871376A CN202010546355.6A CN202010546355A CN111871376A CN 111871376 A CN111871376 A CN 111871376A CN 202010546355 A CN202010546355 A CN 202010546355A CN 111871376 A CN111871376 A CN 111871376A
Authority
CN
China
Prior art keywords
covalent organic
organic framework
cof
preparation
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010546355.6A
Other languages
English (en)
Other versions
CN111871376B (zh
Inventor
邱建丁
吴以迪
梁汝萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202010546355.6A priority Critical patent/CN111871376B/zh
Publication of CN111871376A publication Critical patent/CN111871376A/zh
Application granted granted Critical
Publication of CN111871376B publication Critical patent/CN111871376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0285Sulfides of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明公开了一种共价有机框架多孔纳米复合材料的制备及应用,属于环境保护技术领域。先将2,4,6‑三醛基间苯三酚(Tp)和联苯胺(BD)在合适条件下通过席夫碱反应制备共价有机框架(COF‑TpBD),再在COF‑TpBD原位负载三硫化二铟(In2S3)纳米粒子,得到兼具In2S3和COF特性的复合材料(In2S3@COF)。本发明方法制备的In2S3@COF富含大量的S元素,可通过Hg‑S相互作用吸附Hg2+,另一方面COF固有的大比表面积、优良孔径也可以极大提高对Hg2+的吸附容量。电感耦合等离子体质谱测试结果表明,In2S3@COF对Hg2+的吸附性能优异。本发明制备In2S3@COF多孔纳米复合材料的方法简单、结构稳定、成本低廉、环境友好,对水体中Hg2+的吸附和去除效率高,可作为环境废水中Hg2+的高效吸附剂。

Description

一种共价有机框架多孔纳米复合材料的制备及应用
技术领域
本发明涉及一种共价有机框架多孔纳米复合材料的制备及应用,属于环境保护技术领域。
背景技术
随着工业发展,世界各地的水清洁状况日益受到关注。重金属离子从各种来源(包括金属加工,肥料,电镀,废物处理,电池,油漆和燃料燃烧等)排放进入水体,这些元素可随食物链由生物富集,极大的威胁了环境及动植物安全。Hg2+是其中最为常见的一种,它可与蛋白酶进行结合,对人体肾脏造成严重损害(L.H.Zhi,Z.Wei,F.J.Chen,B.D.Wang.3D MoS2Composition Aerogel as Chemosensors and Adsorbents for Colorimetric Detectionand High-Capacity Adsorption of Hg2+,ACS Sustainable Chemistry&Engineering,2016,4(6):3398-3408)。为了人类健康和环境安全,对含Hg2+的废水处理迫在眉睫。传统的去除Hg2+的技术有电解、溶剂萃取、离子交换和膜过滤等,然而,这些方法大多处理时间长、吸附效率低或操作繁琐,不太可能用于实际废水处理(L.J.Ma,S.M.Islam,C.L.Xiao,J.Zhao,H.Liu,M.Yuan,G.Sun,H.Li,S.Ma,M.G.Kanatzidis.Rapid Simultaneous Removalof Toxic Anions[HSeO3]-,[SeO3]2-,and[SeO4]2-,and Metals Hg2+,Cu2+,and Cd2+by MoS4 2-Intercalated Layered Double Hydroxide,Journal of the American ChemicalSociety,2017,139(36):12745-12757)。吸附技术由于简单、经济和高效而得到广泛应用,因此,亟待发展更具成本效益和高效的吸附剂去除废水中的Hg2+。目前常用的去除重金属离子的吸附剂主要包括活性炭、沸石、无机材料和树脂等。
硫通过Hg-S相互作用对Hg2+具有很强的亲和力。因此,硫化物,特别是硫化物纳米粒子(NPs)一直是备受关注的除汞吸附剂(Y.Oh,S.Bag,C.D.Malliakas,M.G.Kanatzidis.Selective Surfaces:High-Surface-Area Zinc Tin SulfideChalcogels,Chemistry of Materials,2011,23(9):2447-2456)。但是,纳米粒子易于发生聚集,导致汞吸附量低和动力学缓慢。共价有机骨架(COFs)是一种结晶性高的多孔聚合物,可将官能团定位在精确的位置,COFs具有良好的孔径,较大的比表面积以及规则的孔结构(X.Feng,X.Ding,D.Jiang.Covalent Organic Frameworks,Chemical Society Reviews,2012,41:6010-6022)。目前,已制备了硫醇或硫醚官能化的COFs材料并应用于吸附Hg2+(Q.Sun,B.Aguila,J.Perman,L.D.Earl,C.W.Abney,Y.Cheng,H.Wei,N.Nguyen,L.Wojtas,S.Ma.Postsynthetically Modified Covalent Organic Frameworks for Efficient andEffective Mercury Removal,Journal of the American Chemical Society,2017,139(7):2786-2793),然而这些制备过程通常需要对COFs进行繁复的后修饰,提高了成本,并且会对COFs晶体结构造成破坏,影响了其吸附性能。由于COFs优异的特性,可将纳米粒子负载在COFs上,一方面可防止纳米粒子聚集,提高纳米粒子性能,另一方面还可保持COFs晶体结构的完整性。然而,尚未见基于COFs负载In2S3纳米粒子用于协同吸附及去除Hg2+的报道。
发明内容
本发明的目的在于提供了一种In2S3@共价有机框架多孔纳米复合材料的制备方法及其在Hg2+去除中的应用,该方法制备In2S3@共价有机框架多孔纳米复合材料具有简单、稳定、价廉、环境友好的特点,且对重金属离子Hg2+具有吸附容量大和效率高的优点。
本发明是这样实现的,
先将2,4,6-三醛基间苯三酚和联苯胺通过席夫碱反应制备共价有机框架,再将In2S3纳米粒子原位负载在共价有机框架中,得到兼具In2S3和共价有机框架特性的In2S3@共价有机框架多孔纳米复合材料。
In2S3@共价有机框架的制备包括以下步骤:
S1,共价有机框架的制备:向50mL派热克斯管中加入315.21mg的2,4,6-三醛基间苯三酚、414.54mg联苯胺、5mL均三甲苯、5mL的1,4-二氧六环和1.5mL醋酸水溶液,将混合物在100%功率下超声处理20min,通过三次冷冻-泵-解冻循环进行脱气,在真空下密封,并在120℃加热3天;取出反应混合物并冷却至室温,通过离心收集黄色沉淀,分别用乙醇、四氢呋喃和N,N-二甲基甲酰胺洗涤几次,然后在60℃下真空干燥12小时,得到共价有机框架(COF-TpBD);
S2,In2S3@共价有机框架的制备:将200mg的COF-TpBD分散在40mL无水正己烷中并超声处理20min,使用注射泵以10μL/min的速度在匀速搅拌下加入0.32mL 1M的In(NO3)3水溶液,将混合物继续搅拌8h后静置过夜,将沉淀物在室温下自然干燥;将得到的干燥沉淀物真空干燥12h,将得到的固体填充到固-气反应装置中,与H2S气体进行固-气反应12h,将所得产物在50℃下真空干燥12h,得到In2S3@共价有机框架(In2S3@COF)。
作为优选,2,4,6-三醛基间苯三酚与联苯胺的物质的量之比为2:3;醋酸水溶液的浓度为6M;H2S气体是通过将10mL甲酸置于装有10g Na2S的锥形烧瓶中反应产生的,使得步骤S2填充到固-气反应装置中的固体与H2S气体进行固-气反应。
本发明制备的In2S3@共价有机框架多孔纳米复合材料在Hg2+去除中的应用:将5mg的In2S3@共价有机框架加入到30mL含不同浓度Hg2+的pH中性水溶液中,搅拌120min,过滤掉沉淀,采用电感耦合等离子体质谱(ICP-MS)测量滤液中剩余的Hg2+含量,计算In2S3@共价有机框架对Hg2+的吸附容量,随着Hg2+浓度的增大,In2S3@共价有机框架对Hg2+吸附容量增加,最大吸附容量高达1095.2mg/g,可用于水中Hg2+的高效吸附和快速去除。
本发明相较于现有技术,其有益效果是:
(1)本发明制备了In2S3纳米粒子负载的共价有机框架多孔纳米复合新材料(In2S3@COF),In2S3@COF兼具In2S3纳米粒子和共价有机框架的特性。
(2)本发明制备In2S3@COF材料的过程简便,无需对COF进行复杂的后修饰,可直接将In2S3纳米粒子原位负载在COF材料上,大大节省了成本并提高了制备效率。
(3)本发明制备的In2S3@COF可通过Hg-S作用以及COF优良的孔径协同吸附Hg2+,使得吸附容量大和吸附速率快,可作为Hg2+的高效吸附剂。
附图说明
图1是In2S3@COF纳米复合材料制备过程示意图。
图2是In2S3@COF纳米复合材料的SEM图。
图3是In2S3@COF纳米复合材料的TEM图。
图4是In2S3@COF纳米复合材料的XRD图。
图5是In2S3@COF纳米复合材料的FT-IR图。
图6是In2S3@COF纳米复合材料对Hg2+的吸附等温线图。
图7是In2S3@COF纳米复合材料对Hg2+的吸附动力学图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此;
实施例1
In2S3纳米粒子负载的共价有机框架复合材料(In2S3@COF)纳米复合材料的制备
共价有机框架(COF-TpBD)的制备:向50mL派热克斯管中加入2,4,6-三醛基间苯三酚(315.21mg,1.5mmol)、联苯胺(414.54mg,2.25mmol)、均三甲苯(5mL)、1,4-二氧六环(5mL)和醋酸水溶液(1.5mL,6M),将混合物超声(100%功率)处理20min,通过三次冷冻-泵-解冻循环进行脱气,在真空下密封,并在120℃下加热3天,取出后将反应混合物冷却至室温,并通过离心收集黄色沉淀,分别用乙醇、四氢呋喃和N,N-二甲基甲酰胺洗涤几次,然后在60℃下真空干燥12h,得到共价有机框架(COF-TpBD);
In2S3@共价有机框架(In2S3@COF)的制备:将COF-TpBD(200mg)分散在无水正己烷(40mL)中并超声处理约20min,使用注射泵以10μL/min的速度在恒定搅拌下加入In(NO3)3水溶液(1M,0.32mL),将混合物继续搅拌8h,将沉淀物在室温下自然干燥;将得到的干燥沉淀物真空干燥12h,将得到的固体填充到固-气反应装置中,与H2S气体进行固-气反应12h,将所得产物在50℃下真空干燥12h,得到In2S3@共价有机框架(In2S3@COF)。图1为In2S3@COF的制备过程示意图。
采用扫描电镜(SEM)与透射电镜(TEM)对材料形貌进行表征,由图2SEM图可见,In2S3@COF纳米复合材料具有明显的三维多孔结构,该结构大大增加了In2S3@COF的活性位点数量。
由图3TEM图可见,在In2S3@COF纳米复合材料表面及孔洞内均匀分布了大量的In2S3纳米粒子,并且这些纳米粒子被限制为较小的颗粒以避免团聚,有利于与水体中的Hg2 +作用,提高吸附容量。
采用X射线衍射(XRD)光谱对In2S3@COF晶体及化学结构进行了表征,从图4可见,在小角度(4.7°)处2θ峰对应反射晶面(100),大角度(27°)对应(001)晶面,表明该COF层与层结构之间具有强的π-π堆积作用,且COF结构的结晶度较好。2θ在27.5°、33.4°、47.9°处的特征峰分别对应于In2S3的(311)、(400)和(440)晶面,表明成功合成了In2S3纳米粒子。
图5为In2S3@COF的红外光谱图(FT-IR),在1620cm-1处的特征吸收峰对应于C=N伸缩振动,表明COF的成功生成。
以上SEM、TEM、XRD和FT-IR表征结果表明,采用本发明方法成功制备了In2S3@COF多孔纳米复合材料。
实施例2
In2S3@COF多孔纳米复合材料用于水体中Hg2+去除
(1)pH和In2S3@COF用量的优化
对水溶液pH值和In2S3@COF多孔纳米复合材料的用量进行了优化。结果表明,在pH3-8范围内,In2S3@COF对Hg2+具有较高的吸附效率,这也表明多孔材料本身及负载了纳米粒子之后具有良好的稳定性,因此,选择水溶液的pH值7为实验反应pH值。当In2S3@COF的用量从1mg/30mL增加到5mg/30mL时,In2S3@COF对Hg2+的吸附率急剧增大,这是由于材料表面积增大和纳米粒子活性吸附位点数量增加所致。当In2S3@COF的用量继续从5mg/30mL增加到8mg/30mL时,In2S3@COF对Hg2+的吸附率几乎不变,因此,选择5mg/30mL为In2S3@COF的最佳用量。
(2)在优化实验条件下,研究了In2S3@COF对Hg2+的吸附容量和去除效率。
将5mg的In2S3@COF加入到30mL含不同浓度Hg2+的水溶液中,用硝酸或氢氧化钠溶液调节溶液的pH值为7.0,搅拌120min,过滤掉沉淀,采用电感耦合等离子体质谱(ICP-MS)测量滤液中剩余的Hg2+含量,计算In2S3@COF对Hg2+的吸附容量,随着Hg2+浓度的增大,In2S3@COF对吸附容量增加,直至达到平衡状态,最大吸附容量高达1095.2mg/g(图6),比现有的Hg2+吸附剂如石墨烯气凝胶的515.0mg/g(Z.Tong,D.Yang,J.Shi,Y.Nan,Y.Sun,Z.Jiang.Three-Dimensional Porous Aerogel Constructed by g-C3N4 and GrapheneOxide Nanosheets with Excellent Visible-Light Photocatalytic Performance,ACSApplied Materials&Interfaces,2015,7(46):25693-25701)、MnCl2纳米粒子的311.0mg/g(M.Arshadi.Manganese Chloride Nanoparticles:A Practical Adsorbent for theSequestration of Hg(II)Ions from Aqueous Solution,Chemical EngineeringJournal,2015,259(1):170-182)、甲基硫功能化的COF的734.0mg/g(N.Huang,L.Zhai,H.Xu,D.Jiang.Stable Covalent Organic Frameworks for Exceptional MercuryRemoval from Aqueous Solutions,Journal of the American Chemical Society,2017,139(6):2428-2434)高,可见本发明方法制备的In2S3@COF对Hg2+具有优越的吸附能力,可用于水中Hg2+的高效去除。
图7为In2S3@COF对Hg2+的吸附动力学图。由图7可见,In2S3@COF对Hg2+的去除率随着吸附时间的延长而增大,在In2S3@COF吸附剂加入到Hg2+溶液(初始浓度为10ppm)中开始,溶液中剩余的游离Hg2+浓度随时间延长而迅速减少,吸附时间为2min时,In2S3@COF吸附剂可以去除80%以上的Hg2+,当吸附时间为30min时,Hg2+几乎被全部去除,表明本发明方法制备的In2S3@COF对Hg2+的吸附速度快。
综上可见,本发明方法制备的In2S3@COF多孔纳米复合材料对Hg2+的吸附容量大且吸附效率高,可用于水中Hg2+的高效吸附及快速去除。

Claims (7)

1.一种共价有机框架多孔纳米复合材料,其特征在于:先将2,4,6-三醛基间苯三酚和联苯胺通过席夫碱反应制备共价有机框架,再将In2S3纳米粒子原位负载在共价有机框架中,得到兼具In2S3和共价有机框架特性的In2S3@共价有机框架多孔纳米复合材料。
2.根据权利要求1所述的一种共价有机框架多孔纳米复合材料,其特征在于:
2,4,6-三醛基间苯三酚与联苯胺的物质的量之比为2:3。
3.一种共价有机框架多孔纳米复合材料的制备方法,其特征在于:
S1,共价有机框架的制备
向50mL派热克斯管中加入315.21mg的2,4,6-三醛基间苯三酚、414.54mg联苯胺、5mL均三甲苯、5mL的1,4-二氧六环和1.5mL醋酸水溶液,将混合物在100%功率下超声处理20min,通过三次冷冻-泵-解冻循环进行脱气,在真空下密封,并在120℃加热3天;取出反应混合物并冷却至室温,通过离心收集黄色沉淀,分别用乙醇、四氢呋喃和N,N-二甲基甲酰胺洗涤几次,然后在60℃下真空干燥12小时,得到共价有机框架;
S2,In2S3@共价有机框架的制备
将200mg的共价有机框架分散在40mL无水正己烷中并超声处理20min,使用注射泵以10μL/min的速度在匀速搅拌下加入0.32mL 1M的In(NO3)3水溶液,将混合物继续搅拌8h后静置过夜,将沉淀物在室温下自然干燥;将得到的干燥沉淀物真空干燥12h,将得到的固体填充到固-气反应装置中,与H2S气体进行固-气反应12h,将所得产物在50℃下真空干燥12h,得到In2S3@共价有机框架。
4.如权利要求2所述一种共价有机框架多孔纳米复合材料的制备方法,其特征在于:
醋酸水溶液的浓度为6M。
5.如权利要求2所述一种共价有机框架多孔纳米复合材料的制备方法,其特征在于:
H2S气体是通过将10mL甲酸置于装有10g Na2S的锥形烧瓶中反应产生的,使得步骤S2填充到固-气反应装置中的固体与H2S气体进行固-气反应。
6.一种共价有机框架多孔纳米复合材料的应用,其特征在于:
In2S3@共价有机框架多孔纳米复合材料能够应用于对Hg2+的高效吸附和去除。
7.如权利要求6所述的一种共价有机框架多孔纳米复合材料的应用,其特征在于:
将5mg的In2S3@共价有机框架加入到30mL含不同浓度Hg2+的pH中性水溶液中,搅拌120min,过滤掉沉淀,采用电感耦合等离子体质谱测量滤液中剩余的Hg2+含量,计算In2S3@共价有机框架对Hg2+的吸附容量,随着Hg2+浓度的增大,In2S3@共价有机框架对Hg2+吸附容量增加,最大吸附容量高达1095.2mg/g,可用于水中Hg2+的高效吸附和快速去除。
CN202010546355.6A 2020-06-15 2020-06-15 一种共价有机框架多孔纳米复合材料的制备及应用 Active CN111871376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010546355.6A CN111871376B (zh) 2020-06-15 2020-06-15 一种共价有机框架多孔纳米复合材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010546355.6A CN111871376B (zh) 2020-06-15 2020-06-15 一种共价有机框架多孔纳米复合材料的制备及应用

Publications (2)

Publication Number Publication Date
CN111871376A true CN111871376A (zh) 2020-11-03
CN111871376B CN111871376B (zh) 2022-09-13

Family

ID=73156692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010546355.6A Active CN111871376B (zh) 2020-06-15 2020-06-15 一种共价有机框架多孔纳米复合材料的制备及应用

Country Status (1)

Country Link
CN (1) CN111871376B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724980A (zh) * 2021-01-26 2021-04-30 中国科学院城市环境研究所 一种共价有机骨架/生物炭复合材料及制备和应用
CN113189162A (zh) * 2021-05-19 2021-07-30 南昌大学 一种基于钙钛矿@共价有机框架复合材料的电化学发光方法
CN113185717A (zh) * 2021-04-26 2021-07-30 南昌大学 一种共价有机框架水凝胶的制备方法及其吸附铀的应用
CN113231100A (zh) * 2021-06-17 2021-08-10 海南大学 共价有机框架海绵复合材料的制备方法及所得产品和在光催化降解抗生素中的应用
CN113441181A (zh) * 2021-06-29 2021-09-28 赵晓丽 一种溴化银/共价有机框架复合光催化剂及其制备方法和应用
CN113634284A (zh) * 2021-09-13 2021-11-12 安徽省池州生态环境监测中心 一种共价有机框架催化剂及其制备方法和应用
CN113736080A (zh) * 2021-10-08 2021-12-03 中国地质大学(北京) 一种多级孔共价有机聚合物材料及其制备方法与应用
CN113842947A (zh) * 2021-11-17 2021-12-28 中国海洋大学 一种搭载金属纳米颗粒的二维金属/cof基光催化复合材料及其合成方法与应用
CN113856763A (zh) * 2021-10-29 2021-12-31 福州大学 一种联苯基共价有机框架载铜材料及其制备方法和光催化制氢气应用
CN114539870A (zh) * 2022-01-06 2022-05-27 内江师范学院 一种基于共价有机框架材料的自愈合涂层及其制备方法
CN114618445A (zh) * 2022-01-26 2022-06-14 青岛理工大学 一种棉花复合阳离子型共价有机骨架材料及作为固相萃取剂的应用
CN115006573A (zh) * 2022-05-26 2022-09-06 苏州因安特新材料科技有限公司 一种多功能的除菌纳米孔cof气凝胶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950430A (zh) * 2004-05-11 2007-04-18 财团法人首尔大学校产学协力财团 包裹半导体纳米颗粒的乙烯基聚合物、包含该聚合物的乙烯基聚合物混合物及其制备方法
CN103934006A (zh) * 2014-05-07 2014-07-23 天津理工大学 一种纳米硫化铟镉-氢氧化铟复合光催化剂的制备方法
CN108262025A (zh) * 2018-02-26 2018-07-10 南昌大学 多孔纳米复合材料的制备方法及其在重金属离子去除中的应用
CN110371932A (zh) * 2018-04-12 2019-10-25 中国科学院化学研究所 一种二维纳米片及其制备方法和用途
CN110639619A (zh) * 2019-10-28 2020-01-03 商丘师范学院 基于金属有机框架原位生长金属硫化物复合催化剂Uio-66/In2S3的制备方法
CN110872381A (zh) * 2018-09-03 2020-03-10 中国科学院大连化学物理研究所 一种腙键连接的共价有机框架材料及制备和应用
CN111151302A (zh) * 2020-01-10 2020-05-15 常州大学 一种共价有机框架材料掺杂棒状硫化镉复合光催化剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950430A (zh) * 2004-05-11 2007-04-18 财团法人首尔大学校产学协力财团 包裹半导体纳米颗粒的乙烯基聚合物、包含该聚合物的乙烯基聚合物混合物及其制备方法
CN103934006A (zh) * 2014-05-07 2014-07-23 天津理工大学 一种纳米硫化铟镉-氢氧化铟复合光催化剂的制备方法
CN108262025A (zh) * 2018-02-26 2018-07-10 南昌大学 多孔纳米复合材料的制备方法及其在重金属离子去除中的应用
CN110371932A (zh) * 2018-04-12 2019-10-25 中国科学院化学研究所 一种二维纳米片及其制备方法和用途
CN110872381A (zh) * 2018-09-03 2020-03-10 中国科学院大连化学物理研究所 一种腙键连接的共价有机框架材料及制备和应用
CN110639619A (zh) * 2019-10-28 2020-01-03 商丘师范学院 基于金属有机框架原位生长金属硫化物复合催化剂Uio-66/In2S3的制备方法
CN111151302A (zh) * 2020-01-10 2020-05-15 常州大学 一种共价有机框架材料掺杂棒状硫化镉复合光催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINFENG LIANG等: "Incorporation of In2S3 Nanoparticles into a Metal-Organic Framework for Ultrafast Removal of Hg from Water", 《INORGANIC CHEMISTRY》 *
LUQIU LI等: "Construction of a novel 2D–2D heterojunction by coupling a covalent organic framework and In2S3 for photocatalytic removal of organic pollutants with high efficiency", 《NEW J. CHEM.》 *
吴以迪: "共价有机框架—无机复合材料的制备及吸附/发光性能研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724980A (zh) * 2021-01-26 2021-04-30 中国科学院城市环境研究所 一种共价有机骨架/生物炭复合材料及制备和应用
CN113185717A (zh) * 2021-04-26 2021-07-30 南昌大学 一种共价有机框架水凝胶的制备方法及其吸附铀的应用
CN113189162A (zh) * 2021-05-19 2021-07-30 南昌大学 一种基于钙钛矿@共价有机框架复合材料的电化学发光方法
CN113189162B (zh) * 2021-05-19 2024-02-09 南昌大学 一种基于钙钛矿@共价有机框架复合材料的电化学发光方法
CN113231100B (zh) * 2021-06-17 2022-05-13 海南大学 共价有机框架海绵复合材料的制备方法及所得产品和在光催化降解抗生素中的应用
CN113231100A (zh) * 2021-06-17 2021-08-10 海南大学 共价有机框架海绵复合材料的制备方法及所得产品和在光催化降解抗生素中的应用
CN113441181A (zh) * 2021-06-29 2021-09-28 赵晓丽 一种溴化银/共价有机框架复合光催化剂及其制备方法和应用
CN113441181B (zh) * 2021-06-29 2022-08-23 广东省科学院生态环境与土壤研究所 一种溴化银/共价有机框架复合光催化剂及其制备方法和应用
CN113634284A (zh) * 2021-09-13 2021-11-12 安徽省池州生态环境监测中心 一种共价有机框架催化剂及其制备方法和应用
CN113634284B (zh) * 2021-09-13 2023-04-21 安徽省池州生态环境监测中心 一种共价有机框架催化剂及其制备方法和应用
CN113736080B (zh) * 2021-10-08 2022-04-26 中国地质大学(北京) 一种多级孔共价有机聚合物材料及其制备方法与应用
CN113736080A (zh) * 2021-10-08 2021-12-03 中国地质大学(北京) 一种多级孔共价有机聚合物材料及其制备方法与应用
CN113856763A (zh) * 2021-10-29 2021-12-31 福州大学 一种联苯基共价有机框架载铜材料及其制备方法和光催化制氢气应用
CN113856763B (zh) * 2021-10-29 2023-02-28 福州大学 一种联苯基共价有机框架载铜材料及其制备方法和光催化制氢气应用
CN113842947A (zh) * 2021-11-17 2021-12-28 中国海洋大学 一种搭载金属纳米颗粒的二维金属/cof基光催化复合材料及其合成方法与应用
CN114539870A (zh) * 2022-01-06 2022-05-27 内江师范学院 一种基于共价有机框架材料的自愈合涂层及其制备方法
CN114618445A (zh) * 2022-01-26 2022-06-14 青岛理工大学 一种棉花复合阳离子型共价有机骨架材料及作为固相萃取剂的应用
CN114618445B (zh) * 2022-01-26 2023-10-24 青岛理工大学 一种棉花复合阳离子型共价有机骨架材料及作为固相萃取剂的应用
CN115006573A (zh) * 2022-05-26 2022-09-06 苏州因安特新材料科技有限公司 一种多功能的除菌纳米孔cof气凝胶及其制备方法
CN115006573B (zh) * 2022-05-26 2023-08-25 苏州因安特新材料科技有限公司 一种多功能的除菌纳米孔cof气凝胶及其制备方法

Also Published As

Publication number Publication date
CN111871376B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN111871376B (zh) 一种共价有机框架多孔纳米复合材料的制备及应用
Dong et al. Mxene/alginate composites for lead and copper ion removal from aqueous solutions
Gao et al. Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution
Irani et al. Removal of Cd (II) and Ni (II) from aqueous solution by PVA/TEOS/TMPTMS hybrid membrane
Kamran et al. Hybrid biochar supported transition metal doped MnO2 composites: Efficient contenders for lithium adsorption and recovery from aqueous solutions
Zhang et al. Analog synthesis of artificial humic substances for efficient removal of mercury
CN111530414A (zh) 一种球磨生物炭载硫化纳米零价铁复合材料及其制备方法和应用
CN108187451B (zh) 一种纳米硫化钼材料湿法脱除气态单质汞的方法
Zhang et al. Polyacrylic acid-functionalized graphene oxide for high-performance adsorption of gallium from aqueous solution
Sun et al. Adsorption behavior and mechanism of U (VI) onto phytic Acid-modified Biochar/MoS2 heterojunction materials
Fiandini et al. Adsorption characteristics of submicron porous carbon particles prepared from rice husk
Zhang et al. Competitive adsorption of cadmium (II) and mercury (II) ions from aqueous solutions by activated carbon from Xanthoceras sorbifolia Bunge hull
Pei et al. Interfacial growth of nitrogen-doped carbon with multi-functional groups on the MoS2 skeleton for efficient Pb (II) removal
Zhou et al. Preparation of amidoxime functionalized titanate nanosheets for efficient extraction of uranium from aqueous solution
Xiao et al. Prussian blue-impregnated waste pomelo peels-derived biochar for enhanced adsorption of NH3
Li et al. One-step generation of S and N co-doped reduced graphene oxide for high-efficiency adsorption towards methylene blue
Wang et al. The superior adsorption capacity of boron-nitrogen co-doping walnut shell biochar powder for Au (III), Pt (IV), and Pd (II)
Cheng et al. Adsorption of Cr (VI) ion on tannic acid/graphene oxide composite aerogel: kinetics, equilibrium, and thermodynamics studies
Guo et al. 3D ZnO modified biochar-based hydrogels for removing U (VI) in aqueous solution
Liao et al. Impact of key geochemical parameters on the highly efficient sequestration of Pb (II) and Cd (II) in water using g-C3N4 nanosheets
Adio et al. Silver nanoparticle-loaded activated carbon as an adsorbent for the removal of mercury from arabian gas-condensate
Kim et al. Adsorption of Co (II) and Mn (II) ions on mesoporous silica SBA15 functionalized with amine groups
Inoue et al. Amino-functional biocarbon with CO2-responsive property for removing copper (II) ions from aqueous solutions
Sun et al. Confined synthesis of g-C3N4 modified porous carbons for efficient removal of Cd ions
Navaei Diva et al. Removal of Cd2+ from aqueous solution by nickel oxide/CNT nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant