CN111825311A - 光学玻璃阵列透镜微纳热压成型工艺 - Google Patents
光学玻璃阵列透镜微纳热压成型工艺 Download PDFInfo
- Publication number
- CN111825311A CN111825311A CN201910309977.4A CN201910309977A CN111825311A CN 111825311 A CN111825311 A CN 111825311A CN 201910309977 A CN201910309977 A CN 201910309977A CN 111825311 A CN111825311 A CN 111825311A
- Authority
- CN
- China
- Prior art keywords
- glass
- micro
- mold
- optical glass
- array lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/02—Re-forming glass sheets
- C03B23/023—Re-forming glass sheets by bending
- C03B23/03—Re-forming glass sheets by bending by press-bending between shaping moulds
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/082—Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
- C03B11/086—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
- C03B11/125—Cooling
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/02—Re-forming glass sheets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0012—Arrays characterised by the manufacturing method
- G02B3/0031—Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0042—Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
- G03F7/0043—Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/10—Die base materials
- C03B2215/11—Metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/22—Non-oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/30—Intermediate layers, e.g. graded zone of base/top material
- C03B2215/38—Mixed or graded material layers or zones
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/41—Profiled surfaces
- C03B2215/414—Arrays of products, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/66—Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Surface Treatment Of Glass (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
本发明提供了光学玻璃阵列透镜微纳热压成型工艺,步骤包括:采用微细电火花加工工艺制备微孔阵列模具,所述微孔匹配于光学玻璃阵列透镜,所述模具采用具有导电性能、符合强度、温度要求的硬质金属材料;采用磁控溅射技术在微孔阵列模具表面制备纳米氮化物基梯度复合涂层;预制玻璃坯料并置于微孔阵列模具表面,加热玻璃坯料,采用玻璃模压机在真空条件下热压坯料,在氮气氛围中冷却后脱模取样。采用本发明工艺不仅能够提高制备的光学玻璃阵列透镜表面质量,而且能够降低光学玻璃阵列透镜制造成本和制造难度。
Description
技术领域
本发明涉及玻璃模压成型技术,具体涉及光学玻璃阵列透镜微纳热压成型工艺。
背景技术
微阵列光学玻璃元件因其独特的几何特征和光学性能,已经成为光学成像系统中不可或缺的关键元器件之一,对现代光学技术发展具有举足轻重的意义。随着光学透镜制造技术的发展,对微阵列光学玻璃元件尺寸精度要求越来越高,表面质量要求更加严格,光学独特性能要求也更多样化,实现其低成本、高精度与批量化生产是必然趋势。相比于精密磨削、超精密车削、研磨抛光、光刻技术、离子束加工技术、激光束技术等传统微阵列光学玻璃元件加工方法,微纳热压印成形技术具有低成本、高效率、净成形与环境友好等优点,被认为是光学玻璃微阵列元件加工最行之有效的方法之一,近年来受到了国内外光学制造企业的广泛关注。然而,采用微纳热压印成形技术制造光学玻璃微阵列元件时,其模具与玻璃界面间的高温摩擦-粘黏腐蚀耦合损伤效应严重影响光学玻璃元件的表面质量和光学性能,并导致模具的服役寿命急剧缩短,增加其模具制造成本。
发明内容
针对背景技术中存在的问题,本发明了提供一种光学玻璃阵列透镜微纳热压成型工艺,旨在提高制备的光学玻璃阵列透镜表面质量,降低光学玻璃阵列透镜制造成本和制造难度。
为了实现所述目的,本发明采用如下技术方案。
光学玻璃阵列透镜微纳热压成型工艺,步骤包括:
步骤1:采用微细电火花加工工艺制备微孔阵列模具,所述微孔匹配于光学玻璃阵列透镜,所述模具采用具有导电性能、符合强度、温度要求的硬质金属材料;
步骤2:采用磁控溅射技术在微孔阵列模具表面制备纳米氮化物基梯度复合涂层;
步骤3:预制玻璃坯料并置于微孔阵列模具表面,加热玻璃坯料,采用玻璃模压机在真空条件下热压坯料,在氮气氛围中冷却后脱模取样。
进一步地,步骤2中,所述纳米氮化物基梯度复合涂层为CrxWyN涂层或Crx1Wy1CzN涂层;CrxWyN涂层中,20<x<40,20<y<40,余量为N;Crx1Wy1CzN涂层中,10<x1<20,10<y1<20,10<z1<20、余量为N;作为优选,所述纳米氮化物基梯度复合涂层为Crx1Wy1CzN涂层,10<x1<20,10<y1<20,10<z1<20、余量为N。
作为优选,采用磁控溅射技术在微孔阵列模具表面制备纳米氮化物基梯度复合涂层的步骤包括:启动磁控溅射系统,设定溅射清洗的本底真空为5x10-3Pa,偏压为120V,溅射清洗时间1-2小时;洗靶所用靶功率300W,洗靶时间15min,偏压50V;开启高纯铬靶,在氩气氛围中制备一层厚度为10-20nm的Cr层,在Cr层表面,在氮气和氩气氛围中制备一层厚度为20-40nm的CrN过渡层,其中氩气流量控制为100sccm,氮气流量控制为100sccm,真空度为0.45Pa;开启高纯铬靶和钨靶,在CrN过渡层表面制备一层厚度为100-200nm的CrxWyN层;开启高纯铬靶、钨靶和碳靶,在CrxWyN层表面制备厚度为500-1000nmCrxWyCzN层。
进一步地,步骤3中,热压阶段的压印温度(T压)控制在Tg-Ts之间;作为更优选,热压阶段的压印温度(T压)控制为Tg+50℃至Ts-30℃;其中,Tg是指玻璃转变点温度,Ts是指玻璃软化点温度。
进一步地,步骤3中,热压阶段的压印力(F压)控制在100-500N之间,或者通过施加合适压印力(F压)使位于模具阵列孔内的玻璃坯料径向形变位移控制在10-500微米。
进一步地,步骤3中,热压完成后充入氮气对玻璃与模具进行冷却,同时将施加的压力(本发明在冷却阶段施加的压力称之为保压力,即F保)降为压印力(F压)的1/10至3/10,直至将玻璃与模具冷却至室温,冷却过程中,当玻璃冷却到低于Tg-30℃时撤掉保压力(F保),待玻璃与模具冷却至室温后再脱模取样;
作为优选,所述模具材料选用碳化钨硬质合金、铬钼钢或高速钢。
有益效果:采用本发明光学玻璃阵列透镜微纳热压成型工艺,能够提高制备的光学玻璃阵列透镜表面质量,所制得的光学玻璃阵列透镜凸面粗糙度仅为2-3nm,光学玻璃阵列透镜与微孔阵列模具接触部位的粗糙度为4-5nm;相比于现有微纳热压印成形技术(现有微纳热压印成形技术需采用特定模芯加工模孔,加工过程中所用模芯极其昂贵且损耗量大,模芯高达2-3万元/个),采用本发明工艺无需采用模芯,微孔阵列加工仅需几百元,不仅能够将光学玻璃阵列透镜制造成本降低90%以上,而且能够降低光学玻璃阵列透镜制造难度,所制得的光学玻璃阵列透镜可以不用进行表面加工就能直接使用;采用本发明光学玻璃阵列透镜微纳热压成型工艺还能够极大地减小玻璃元件有效形变接触面积,减小粘着剪切摩擦接触面积,提高模具服役寿命。
附图说明
图1是本发明实施例中热压工序示意图,图中,1-玻璃模压设备的模压头、2-光学玻璃阵列透镜、3-微孔阵列、4-模具本体、5-玻璃坯料;
图2是本发明实施例中纳米氮化物基梯度复合涂层示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,在此指出以下实施例不能理解为对本发明保护范围的限制,本领域普通技术人员根据本发明的内容作出一些简单的替换或调整,均在本发明的保护范围之内。
实施例
光学玻璃阵列透镜微纳热压成型工艺,以制备玻璃L-BAL35阵列透镜为例,步骤包括:
步骤1:采用微细电火花加工工艺制备微孔阵列模具,所述微孔阵列尺寸、轮廓匹配于光学玻璃阵列透镜轮廓,所述模具采用具有导电性能、符合强度、温度要求的硬质金属材料,具体可采用碳化钨硬质合金、铬钼钢或高速钢,本实施例中选用碳化钨硬质合金;加工微孔阵列时,电火花加工工艺参数为:脉冲电压120V、脉冲频率0.2MHz、脉冲宽度500ns;脉冲间隔400ns;本实施例所加工出的玻璃L-BAL35阵列微孔模具尺寸为:微孔直径0.5mm、微孔深度0.8mm;当脉冲电压在100-150V区间调边后,能根据需要加工出直径0.1-0.8mm、深度0.1-1mm的微孔;
步骤2:采用磁控溅射技术在微孔阵列模具表面制备纳米氮化物基梯度复合涂层,具体包括:启动磁控溅射系统,设定溅射清洗的本底真空为5x10-3Pa,偏压为120V,溅射清洗时间2小时(当然,为了进一步提高效率,可以设定溅射清洗时间为1小时);洗靶所用靶功率300W,洗靶时间15min,偏压50V,电机转速2rpm,洗靶时用靶罩遮住,防止溅射到基体上;开启高纯铬靶,在氩气氛围中制备一层厚度为10-20nm的Cr层,在Cr层表面,在氮气和氩气氛围中制备一层厚度为20-40nm的CrN过渡层,其中氩气流量控制为100sccm,氮气流量控制为100sccm,真空度为0.45Pa;开启高纯铬靶和钨靶,在CrN过渡层表面制备一层厚度为100-200nm的Cr25W25N50层;开启高纯铬靶、钨靶和碳靶,在Cr25W25N50层表面制备厚度为500-1000nm Cr15W15C15N55层;制备过程中,通过调节沉积时间来控制涂层的厚度,其中,Cr层沉积时间控制为10-15min,CrN过渡层沉积时间控制为10-15min,Cr25W25N50层沉积时间控制为20-30min,Cr15W15C15N55层沉积时间控制为60-120min,所制得的纳米氮化物基梯度复合涂层微观结构示意图见图2;
步骤3:根据玻璃阵列透镜尺寸计算并称取适量玻璃坯料,将玻璃坯料装入微孔阵列模具(具体是是指将玻璃坯料置于镀有纳米氮化物基梯度复合涂层的微孔阵列模具表面)后加热,当玻璃坯料被加热到527℃至619℃这个温度区间时,采用玻璃精密模压设备进行热压,如图2所示,压印力(F压)控制在100-500N之间,或者通过施加合适压印力(F压)使位于模具微孔内的玻璃坯料径向形变位移控制在10-500微米(采用现有的TOSHIBA's GMP系列玻璃模压机、SZU's PGMM30玻璃模压机均能够控制该径向形变位移量),热压完成后充入氮气对玻璃与模具进行冷却,同时将施加的压力(保压力F保)降为压印力(F压)的1/10至3/10,直至将玻璃与模具冷却至室温,冷却过程中当玻璃冷却到低于Tg-30℃时撤掉保压力(F保),玻璃与模具冷却至室温后再脱模取样。
Claims (9)
1.光学玻璃阵列透镜微纳热压成型工艺,其特征在于步骤包括:
步骤1:采用微细电火花加工工艺制备微孔阵列模具,所述微孔匹配于光学玻璃阵列透镜,所述模具采用具有导电性能、符合强度、温度要求的硬质金属材料;
步骤2:采用磁控溅射技术在微孔阵列模具表面制备纳米氮化物基梯度复合涂层;
步骤3:预制玻璃坯料并入模,加热玻璃坯料,采用玻璃模压机在真空条件下热压坯料,在氮气氛围中冷却后脱模取样。
2.根据权利要求1所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于:所述纳米氮化物基梯度复合涂层为CrxWyN涂层或Crx1Wy1CzN涂层;CrxWyN涂层中,20<x<40,20<y<40,余量为N;Crx1Wy1CzN涂层中,10<x1<20,10<y1<20,10<z1<20、余量为N。
3.根据权利要求1所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于:所述纳米氮化物基梯度复合涂层为Crx1Wy1CzN涂层,10<x1<20,10<y1<20,10<z1<20、余量为N。
4.根据权利要求3所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于采用磁控溅射技术在微孔阵列模具表面制备纳米氮化物基梯度复合涂层的步骤包括:启动磁控溅射系统,设定溅射清洗的本底真空为5x10-3Pa,偏压为120V,溅射清洗时间1-2小时;洗靶所用靶功率300W,洗靶时间15min,偏压50V;开启高纯铬靶,在氩气氛围中制备一层厚度为10-20nm的Cr层,在Cr层表面,在氮气和氩气氛围中制备一层厚度为20-40nm的CrN过渡层,其中氩气流量控制为100sccm,氮气流量控制为100sccm,真空度为0.45Pa;开启高纯铬靶和钨靶,在CrN过渡层表面制备一层厚度为100-200nm的CrxWyN层;开启高纯铬靶、钨靶和碳靶,在CrxWyN层表面制备厚度为500-1000nmCrxWyCzN层。
5.根据权利要求4所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于:热压阶段,压印温度控制在Tg-Ts之间,Tg是指玻璃转变温度,Ts是指玻璃软化点温度。
6.根据权利要求5所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于:热压阶段,压印温度控制为Tg+50℃至Tg-30℃。
7.根据权利要求6所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于:热压阶段的压印力控制在100-500N之间,或者通过施加合适压印力使位于模具阵列微孔内的玻璃坯料径向形变位移控制在10-500微米。
8.根据权利要求7所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于:热压完成后充入氮气对玻璃与模具进行冷却,同时将施加的压力降为压印力的1/10至3/10,直至将玻璃与模具冷却至室温,冷却过程中,当玻璃冷却到低于Tg-30℃时撤掉保压力,待玻璃与模具冷却至室温后再脱模取样。
9.根据权利要求1-8任一项所述的光学玻璃阵列透镜微纳热压成型工艺,其特征在于:微孔阵列模具材料选用碳化钨硬质合金、铬钼钢或高速钢。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910309977.4A CN111825311A (zh) | 2019-04-17 | 2019-04-17 | 光学玻璃阵列透镜微纳热压成型工艺 |
US16/581,735 US11619766B2 (en) | 2019-04-17 | 2019-09-24 | Micro- and nano-hot embossing method for optical glass lens arrays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910309977.4A CN111825311A (zh) | 2019-04-17 | 2019-04-17 | 光学玻璃阵列透镜微纳热压成型工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111825311A true CN111825311A (zh) | 2020-10-27 |
Family
ID=72832295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910309977.4A Pending CN111825311A (zh) | 2019-04-17 | 2019-04-17 | 光学玻璃阵列透镜微纳热压成型工艺 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11619766B2 (zh) |
CN (1) | CN111825311A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112811795A (zh) * | 2021-01-07 | 2021-05-18 | 长春理工大学 | 一种激光加热微纳光子学器件模压加工装置及方法 |
CN114656133A (zh) * | 2022-05-23 | 2022-06-24 | 山东大学 | 一种抗粘减磨超精密模具、加工系统及方法 |
CN115536251A (zh) * | 2022-10-26 | 2022-12-30 | 暨南大学 | 高精度模压的超构表面结构的硫系光学器件及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113696524A (zh) * | 2021-08-11 | 2021-11-26 | 苏州易锐光电科技有限公司 | 一种光学器件的微纳加工方法 |
CN114516188A (zh) * | 2022-02-17 | 2022-05-20 | 深圳睿晟自动化技术有限公司 | 微纳米级光波导镜面热压工艺方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006083008A (ja) * | 2004-09-15 | 2006-03-30 | Ams:Kk | 有機el素子のガラスキャップの製法 |
JP2007182372A (ja) * | 2005-12-29 | 2007-07-19 | Schott Ag | 構造化された表面を有するガラス部材の製造方法 |
US20100265597A1 (en) * | 2009-04-15 | 2010-10-21 | San-Woei Shyu | Rectangular stacked glass lens module with alignment member and manufacturing method thereof |
WO2013027808A1 (ja) * | 2011-08-25 | 2013-02-28 | 旭硝子株式会社 | 光学素子の製造方法及び製造装置 |
CN103160797A (zh) * | 2013-04-09 | 2013-06-19 | 东莞市浩瀚纳米科技有限公司 | 纳米陶瓷涂层、沉积有该涂层的压铸模具及其制备方法 |
CN104862644A (zh) * | 2015-05-22 | 2015-08-26 | 浙江工业大学 | 一种高温耐磨Cr-CrN-CrMoAlN梯度纳米多层薄膜及其制备方法 |
CN206486423U (zh) * | 2017-02-28 | 2017-09-12 | 湖北派瑞斯光学玻璃科技有限公司 | 一种玻璃透镜加热模具 |
CN207619264U (zh) * | 2017-10-11 | 2018-07-17 | 苏州卡利肯新光讯科技有限公司 | 一种玻璃加热成型模具 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450780A3 (en) * | 1990-04-05 | 1992-04-15 | Matsushita Electric Industrial Co., Ltd. | Optical microelement array and its production method |
US7771630B2 (en) * | 2000-02-24 | 2010-08-10 | The Regents Of The University Of California | Precise fabrication of polymer microlens arrays |
WO2002006902A2 (en) * | 2000-07-17 | 2002-01-24 | Board Of Regents, The University Of Texas System | Method and system of automatic fluid dispensing for imprint lithography processes |
US6700708B2 (en) * | 2002-05-30 | 2004-03-02 | Agere Systems, Inc. | Micro-lens array and method of making micro-lens array |
US7143609B2 (en) * | 2002-10-29 | 2006-12-05 | Corning Incorporated | Low-temperature fabrication of glass optical components |
US7883839B2 (en) * | 2005-12-08 | 2011-02-08 | University Of Houston | Method and apparatus for nano-pantography |
US7911701B2 (en) * | 2006-08-30 | 2011-03-22 | Hitachi Maxell, Ltd. | Micro lens array sheet for use in backlight device and molding roll for manufacturing such micro lens array sheet |
US20080309900A1 (en) * | 2007-06-12 | 2008-12-18 | Micron Technology, Inc. | Method of making patterning device, patterning device for making patterned structure, and method of making patterned structure |
US9625819B2 (en) * | 2011-05-27 | 2017-04-18 | The Regents Of The University Of California | Photolithography on shrink film |
US9804607B1 (en) * | 2011-11-16 | 2017-10-31 | Zane Coleman | Fluid transfer systems, devices, components, and methods of manufacture |
CN102707378B (zh) | 2012-06-12 | 2013-09-04 | 华南师范大学 | 一种应用压印技术制作硅酮微纳光学结构的方法 |
SG11201504254YA (en) * | 2012-11-29 | 2015-07-30 | Agency Science Tech & Res | Method of forming a film with a lenticular lens array |
US11791432B2 (en) * | 2013-05-22 | 2023-10-17 | W&Wsens Devices, Inc. | Microstructure enhanced absorption photosensitive devices |
CN104844015A (zh) | 2015-04-27 | 2015-08-19 | 欧阳宣 | 具有微纳结构玻璃制造工艺 |
CN105676321B (zh) * | 2016-03-14 | 2018-01-05 | 淮阴工学院 | 一种微透镜纳米孔混合阵列结构的制备方法 |
FR3051967B1 (fr) * | 2016-05-27 | 2018-05-11 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de realisation de motifs |
CN107561857A (zh) * | 2017-09-20 | 2018-01-09 | 南方科技大学 | 一种基于纳米压印制备光学超构表面的方法 |
FR3084483B1 (fr) * | 2018-07-25 | 2021-10-22 | Commissariat Energie Atomique | Procede de realisation d'une structure presentant au moins un motif courbe |
CN109097743B (zh) * | 2018-09-16 | 2020-03-31 | 烟台大学 | 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法 |
CN111826621A (zh) * | 2019-04-17 | 2020-10-27 | 中国兵器工业第五九研究所 | 玻璃模压模具涂层及其制备方法和应用 |
CN110174818A (zh) * | 2019-06-04 | 2019-08-27 | 武汉华星光电技术有限公司 | 基板的纳米压印制备方法及其基板 |
CN110482852A (zh) * | 2019-08-29 | 2019-11-22 | 中国兵器工业第五九研究所 | 玻璃模压涂层及其制备方法、应用、模具 |
CN112630872A (zh) * | 2020-12-24 | 2021-04-09 | 华中科技大学 | 一种三维微透镜阵列的制备方法 |
-
2019
- 2019-04-17 CN CN201910309977.4A patent/CN111825311A/zh active Pending
- 2019-09-24 US US16/581,735 patent/US11619766B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006083008A (ja) * | 2004-09-15 | 2006-03-30 | Ams:Kk | 有機el素子のガラスキャップの製法 |
JP2007182372A (ja) * | 2005-12-29 | 2007-07-19 | Schott Ag | 構造化された表面を有するガラス部材の製造方法 |
US20100265597A1 (en) * | 2009-04-15 | 2010-10-21 | San-Woei Shyu | Rectangular stacked glass lens module with alignment member and manufacturing method thereof |
WO2013027808A1 (ja) * | 2011-08-25 | 2013-02-28 | 旭硝子株式会社 | 光学素子の製造方法及び製造装置 |
CN103160797A (zh) * | 2013-04-09 | 2013-06-19 | 东莞市浩瀚纳米科技有限公司 | 纳米陶瓷涂层、沉积有该涂层的压铸模具及其制备方法 |
CN104862644A (zh) * | 2015-05-22 | 2015-08-26 | 浙江工业大学 | 一种高温耐磨Cr-CrN-CrMoAlN梯度纳米多层薄膜及其制备方法 |
CN206486423U (zh) * | 2017-02-28 | 2017-09-12 | 湖北派瑞斯光学玻璃科技有限公司 | 一种玻璃透镜加热模具 |
CN207619264U (zh) * | 2017-10-11 | 2018-07-17 | 苏州卡利肯新光讯科技有限公司 | 一种玻璃加热成型模具 |
Non-Patent Citations (2)
Title |
---|
朱荻: "《微机电系统与微细加工技术》", 31 May 2008, 哈尔滨:哈尔滨工程大学出版社 * |
王细洋著: "《现代制造技术》", 31 August 2017, 北京:国防工业出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112811795A (zh) * | 2021-01-07 | 2021-05-18 | 长春理工大学 | 一种激光加热微纳光子学器件模压加工装置及方法 |
CN114656133A (zh) * | 2022-05-23 | 2022-06-24 | 山东大学 | 一种抗粘减磨超精密模具、加工系统及方法 |
CN115536251A (zh) * | 2022-10-26 | 2022-12-30 | 暨南大学 | 高精度模压的超构表面结构的硫系光学器件及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200333511A1 (en) | 2020-10-22 |
US11619766B2 (en) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111825311A (zh) | 光学玻璃阵列透镜微纳热压成型工艺 | |
CN109250895A (zh) | 光学玻璃非球面透镜成型制造方法及其模具 | |
CN114905793B (zh) | 高温模压成型硅模具的方法 | |
CN104193422B (zh) | 一种玻璃模造用碳化硅陶瓷模仁及其制备方法 | |
TW200520930A (en) | Optical disc mold having diamond-like carbonaceous layer and a molding method using the same | |
JPH11157852A (ja) | ガラス光学素子成形用金型の製造方法及びガラス光学素子の成形方法 | |
CN108453963A (zh) | 一种基于光固化树脂的曲面反射镜制备方法及产品 | |
JP3587499B2 (ja) | ガラス成形体の製造方法 | |
JP2002348129A (ja) | ガラス光学素子成型金型の製造方法及びガラス光学素子の成形方法 | |
CN219861046U (zh) | 一种可直接模压红外硫系玻璃非球面透镜衍射面的模具 | |
JP4373257B2 (ja) | 光学素子成形用金型及びその製造方法並びに光学素子 | |
JPH11268920A (ja) | 光学素子成形用成形型およびその製造方法 | |
JP3492005B2 (ja) | ガラス光学素子の成形方法 | |
CN110713389B (zh) | 一种非球面陶瓷模仁的成型方法 | |
CN113526961A (zh) | 一种玻璃模造用碳化硅模具的制造方法及碳化硅模具 | |
JP2004210550A (ja) | モールド成形金型 | |
JPH10231129A (ja) | プレス成形用金型及びこの金型によるガラス成形品 | |
CN116462390A (zh) | 一种可直接模压红外硫系玻璃非球面透镜衍射面的模具及其制备方法 | |
CN104030548A (zh) | 玻璃模造用碳化硅陶瓷模仁及其制备方法 | |
JP3810022B2 (ja) | 光学素子成形用型の製造方法 | |
JP3667198B2 (ja) | 光学素子成型用型の製造方法 | |
CN116835861A (zh) | 一种光学元件成型用的模具及光学元件制法 | |
KR20120102487A (ko) | 정밀 프레스 성형용 글래스 소재의 두께 결정 방법 및 제조 방법과 글래스 광학 소자의 제조 방법 | |
JP2007137723A (ja) | 成形型組 | |
CN117361849A (zh) | 一种用于玻璃透镜成型的石英玻璃模具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |