CN111826621A - 玻璃模压模具涂层及其制备方法和应用 - Google Patents

玻璃模压模具涂层及其制备方法和应用 Download PDF

Info

Publication number
CN111826621A
CN111826621A CN201910309959.6A CN201910309959A CN111826621A CN 111826621 A CN111826621 A CN 111826621A CN 201910309959 A CN201910309959 A CN 201910309959A CN 111826621 A CN111826621 A CN 111826621A
Authority
CN
China
Prior art keywords
coating
glass
target
substrate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910309959.6A
Other languages
English (en)
Inventor
陈强
解志文
龚峰
黄新放
李康森
万元元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
University of Science and Technology Liaoning USTL
No 59 Research Institute of China Ordnance Industry
Original Assignee
Shenzhen University
University of Science and Technology Liaoning USTL
No 59 Research Institute of China Ordnance Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University, University of Science and Technology Liaoning USTL, No 59 Research Institute of China Ordnance Industry filed Critical Shenzhen University
Priority to CN201910309959.6A priority Critical patent/CN111826621A/zh
Priority to US16/581,720 priority patent/US11577980B2/en
Publication of CN111826621A publication Critical patent/CN111826621A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Abstract

本发明属于仅含无机材料的玻璃模具涂层技术领域,具体涉及一种玻璃模压模具涂层。该涂层为CrxWyN(1‑x‑y)涂层,且0.15<x<0.4,0.2≤y<0.45。该涂层具有优异的耐高温、防黏着性能,是一种极具应用前景的模压涂层材料。

Description

玻璃模压模具涂层及其制备方法和应用
技术领域
本发明属于仅含无机材料的玻璃模具涂层技术领域,具体涉及一种玻璃模压模具涂层及其制备方法和应用。
背景技术
随着制造技术的发展,光学元件在国防军事、民用和航空航天中的应用越来越广泛,比如卫星监控系统、红外夜视成像、激光辐射、光纤通信、投影仪、数码相机、监控摄像头等领域都采用了各种各样的光学元件,因此制备高精度、高质量、高性能的光学元件是先进制造领域的重要需求(“光学玻璃精密模压成型设备模具研制”,汪旺,深圳大学硕士学位论文,2017年,第1页,公开日2017年12月31日;“玻璃精密模压成形的研究进展”,龚峰等,光学精密工程,2018年第26卷第6期,第1380-1381页,公开日2018年06月30日)。
近年来,全球的光学元件市场年均增率保持在20%以上,达到了上百亿美元的规模。光学元件的应用极其广泛,几乎涉足了当今人类生活的所有领域,如照相机、变焦镜头、投影仪、红外光角地平仪、光驱、内窥镜、渐进镜片、显微镜等。这些仪器不仅要成像质量好,而且要求小型化、结构简单、适宜各种环境,对光学元件的物理化学性能、口径、加工精度、加工效率、成本等方面提出了更高要求。玻璃精密模压成形技术克服了传统精密磨削、超精密车削、磁流变复合抛光等精密加工技术在成本、加工效率、批量化生产等方面的缺陷以及树脂注塑成型透镜在折射率、热稳定等性能的不足,具有高精度、低成本、高效率、大批量、净成形、无污染等优点(“玻璃精密模压成形的研究进展”,龚峰等,光学精密工程,2018年第26卷第6期,第1380-1381页,公开日2018年06月30日)。
光学玻璃精密热压成型的主要原理是利用光学玻璃在不同温度下具有不同的物理性质。在常温下,玻璃具有硬脆性,而在高温下,玻璃则具有粘弹性或粘性流体的物理特性(如图1所示)。光学玻璃在某一温度区间内会由固态转变为可塑态,转变温度为Tg,称为屈服点,温度继续上升到一定值后,玻璃便会表现出流体的性质,此时温度为Sp,称为软化点。玻璃模压技术就是利用玻璃的这一特性,将光学玻璃加热到转变温度Tg以上合适温度,通过移动上下模具,将模具的形状复制到玻璃预制件上的玻璃透镜制造技术(“光学玻璃精密模压成型设备模具研制”,汪旺,深圳大学硕士学位论文,2017年,第3-4页,公开日2017年12月31日)。
然而,在玻璃制品成型过程中,模具频繁地与高温熔融玻璃接触,承受氧化、热疲劳、动态磨损等作用(“玻璃模具材料的发展和应用”,韦玉屏等,机械设计与制造,2008年第3期,第201页,公开日2008年03月31日;“新玻璃模具材料的开发与应用”,肖明,玻璃与搪瓷,2006年第34卷第2期,第19页,公开日2006年04月30日),这就要求模具材料具有良好的耐热、耐磨、耐腐蚀、抗热冲击、抗氧化、抗热疲劳等性能;同时,还要求模具材料致密、易于加工、导热性好、热膨胀系数小(“浅谈玻璃模具材料的特点以及发展”,陈铭法,模具制造,2011年第11期,第81页,公开日2011年12月31日)。
目前,我国在制备形状复杂的玻璃元件依然采用传统的车削、磨削的方法;这种方法不仅效率低,成本高而且难以控制玻璃元件的精度。而类金刚石(DLC)、碳纳米管等玻璃模压涂层由于无法承受过高的温度,只适用于低熔点光学玻璃的模压制造。
因此,寻找耐高温、防黏着的新型玻璃模具涂层,延长玻璃模具的使用寿命,提高光学玻璃的成型质量已经成为生产上急需解决的关键问题。
发明内容
有鉴于此,本发明的目的在于提供一种玻璃模压模具涂层,该涂层耐高温、防黏着性能优异。
为实现上述目的,本发明的技术方案为:
玻璃模压模具涂层,所述涂层包括CrxWyN(1-x-y)涂层,且0.15<x<0.4,0.2≤y<0.45。
进一步,所述玻璃模压模具涂层包括CrN柱状晶体结构。
进一步,所述CrxWyN(1-x-y)涂层的厚度为1.4-1.8μm。
本发明的目的之二在于保护所述涂层的制备方法,包括以下步骤:
A.在真空、惰性气体的气氛下,对待沉积基体和靶材进行溅射清洗;
B.在惰性气体、真空气氛下,采用Cr靶和W靶在经过步骤A处理的待沉积基体表面沉积涂层。
进一步,所述惰性气体为氩气、氮气或二者混合物。
进一步,所述沉积为等离子增强磁控溅射。
进一步,在步骤A之前,还包括以下步骤:
(1)对待沉积基体进行抛光处理;
(2)将经过抛光处理的待沉积基体在去离子水和/或丙酮和/或乙醇中进行超声清洗。
进一步,步骤A中,工作气氛为氩气,流量为100-180sccm,溅射时真空度为0.2-0.6Pa,基体预热至200-400℃,优选300-400℃,沉积偏压为-30~-100V,基体溅射清洗时间为30-120分钟,优选60-120分钟,靶材溅射清洗时间为1-5分钟,优选2-5分钟。
进一步,步骤B中,工作气氛为氮气,流量为60-120sccm,溅射时真空度为0.2-0.6Pa,基体温度预热至200-400℃,沉积偏压为-30~-70V,沉积时间为60-100分钟,Cr靶功率为2-5kW,W靶功率为4-8kW。
进一步,步骤B中,在基体表面沉积涂层的过程中,使所述基体在磁控溅射系统中随转架台转动。
进一步,所述磁控溅射系统包括真空室、设置于真空室内可转动的转架台以及设置于转架台四周的靶材;所述靶材包括Cr靶和W靶。
本发明的目的之三在于保护所述涂层在制备玻璃模压模具中的应用。
本发明的目的还在于保护一种玻璃模压模具,所述模具包含涂层,所述涂层为CrxWyN(1-x-y)涂层,且0.15<x<0.4,0.2≤y<0.45。
本发明的有益效果在于:
本发明的涂层表面形貌呈现为大小不一团簇,表面存在细小裂纹及孔洞缺陷。断面形貌为柱状结构,涂层与基体结合紧密。
本发明的涂层表现出优异的机械性能,满足玻璃模压涂层硬度的使用标准。
本发明的涂层表面粗糙低,表现出优异的表面光洁度,可用于精密玻璃模压涂层使用。
本发明的涂层能够满足光学玻璃精密模压的使用要求,该涂层模压后玻璃及模具涂层表面无明显变化,玻璃体无变色反应、无气泡产生,模具表面无划痕及玻璃黏着。
本发明的涂层抗熔融玻璃液滴的润湿能力强,不易发生黏着反应。
附图说明
图1为光学玻璃温度-体积曲线,横坐标为温度,纵坐标为体积;
图2为实施例1制得的涂层的SEM表面及断面图,其中,2A为涂层的表面图,2B为涂层的断面图;
图3为实施例1制得的涂层的硬度测试结果;
图4为实施例1制得的涂层的表面粗糙度测试结果;
图5为实施例1制得的涂层的模压后涂层及玻璃表面形貌图;
图6为实施例1制得的涂层的表面元素检测结果图(即能谱图);
图7为实施例1制得的涂层的物相结构检测结果图;
图8为实施例1制得的涂层的高温润湿性能检测结果图。
具体实施方式
所举实施例是为了更好地对本发明的内容进行说明,但并不是本发明的内容仅限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1
玻璃模压模具涂层,其具体制备步骤为:
S1:对待沉积基体进行机械研磨抛光,然后依次在去离子水、丙酮(分析纯)、乙醇(分析纯)中进行超声波震荡清洗,各20分钟,清洗后样品置于烘箱中于80℃下烘干30分钟;
S2:将样品送入真空室,真空室进行预抽真空,基底真空度为5×10-3Pa,并在此过程中对真空室进行加热,加热温度至300℃;
S3.在真空、惰性气体氩气的气氛下,对待沉积基体和靶材进行溅射清洗;工作气氛为氩气,流量为120sccm,溅射时真空度为0.5Pa,基体预热至300℃,沉积偏压为-100V,基体溅射清洗时间为60分钟,靶材清洗时间为5分钟;
S4:采用高纯Cr靶(纯度99.9%)及高纯W靶(纯度99.6%)在待沉积基体表面磁控溅射CrxWyN(1-x-y)涂层,工作气氛为氮气和氩气混合气体,氮气流量为100sccm,氩气流量为100sccm,溅射时真空度为0.4Pa,基体预热至300℃,沉积偏压为-50V,沉积时间为100分钟,Cr靶功率为2.7kW,W靶功率为4kW;在基体表面磁控溅射涂层的过程中,使所述基体在磁控溅射系统中随转架台转动;所述磁控溅射系统包括真空室、设置于真空室内可转动的转台架以及设置于转台架四周的靶材。
性能检测
对实施例1制得的涂层进行涂层表面及断面形貌、硬度、表面粗糙度、模压、涂层表面元素、涂层物相结构、高温润湿性能等性能检测,结果如图2-图8所示;
其中,图2为实施例1所得涂层的SEM表面及断面图,其中,2A为涂层的表面图,2B为涂层的断面图;图3为硬度测试结果;图4为表面粗糙度测试结果;图5为模压测试结果;图6为涂层表面元素检测结果(即能谱图);图7为涂层物相结构检测结果;图8为高温润湿性能检测结果;
其中,涂层表面及断面形貌采用场发射扫描电子显微镜(FESEM)进行观察;
硬度的检测方法为:采用纳米压痕仪进行测试,测试模式为连续刚度法(CSM),其中,为排除基体对测量结果的影响,纳米压痕深度设定为110nm,为保证数据准确可靠,在样品上选择5个不同区域,对得到的硬度及弹性模量取平均值;
表面粗糙度的检测方法为:采用原子力显微镜进行测试,测试样品区域为2×2μm;
模压的检测方法为:利用自行设计的光学非球面玻璃模压成型设备(申请号:CN201710124489.7;公开号:CN106946441A),对BK7光学玻璃进行模压;其中,模压力为0.5kN,模压温度为650℃;对模压后模具涂层及BK7玻璃表面形貌颜色进行观察;
涂层表面元素的检测方法为:利用场发射扫描电子显微镜(FESEM)自带的X射线能谱仪(EDS)对涂层表面元素进行定性分析;
涂层相结构的检测方法为:采用X射线衍射仪(XRD)进行检测,为避免基体因素的影响采用小角衍射的方式对涂层晶体结构进行分析;
高温润湿性能的检测方法为:采用通管滴落法在1000℃的环境温度中进行高温润湿实验,真空度为5×10-3Pa,玻璃材料为BK7光学玻璃。
由图2可知,实施例1制得的涂层表面形貌呈现为大小不一团簇,表面表现为细小裂纹及孔洞缺陷。断面形貌为柱状晶体结构,涂层与基体结合紧密,涂层厚度为1.76μm。
由图3可知,实施例1制得的涂层硬度为12.9GPa。由此证明,本发明的涂层表现出优异的机械性能,满足玻璃模压涂层使用标准。
由图4可知,实施例1制得的涂层表面粗糙度为13.8nm,表现出优异的表面光洁度,可用于精密玻璃模压涂层使用。
由图5可知,实施例1制得的涂层模压后玻璃及模具涂层表面无明显变化,玻璃体无变色反应、无气泡产生,模具表面无划痕及玻璃黏着。由此证明,本发明的涂层能够满足光学玻璃精密模压的使用要求。
由图6可知,实施例1制得的涂层主要组成元素为Cr元素、W元素及N元素。
由图7可知,实施例1制得的涂层主要存在稳定的CrN相,从SEM断面图中可观察到柱状的CrN晶体结构,主要为(111)、(200)、(220)、(311)、(222)取向,且涂层中Cr元素质量含量为35%,W元素的质量含量为20%,N元素质量含量为45%。
由图8可知,实施例1制得的涂层在环境温度为1000度、真空度为5×10-3Pa时,熔融玻璃与涂层的高温接触角为116°及133°,液滴左右两侧出现严重的不对称。由此证明,本发明的涂层抗熔融玻璃液滴的润湿能力强,不易发生黏着反应。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

1.玻璃模压模具涂层,其特征在于,所述涂层为CrxWyN(1-x-y)涂层,且0.15<x<0.4,0.2≤y<0.45。
2.根据权利要求1所述的玻璃模压模具涂层,其特征在于,所述玻璃模压模具涂层包括CrN柱状晶体结构。
3.根据权利要求1或2所述的涂层,其特征在于,所述CrxWyN(1-x-y)涂层的厚度为1.4-1.8μm。
4.权利要求1-3任一项所述涂层的制备方法,其特征在于,包括以下步骤:
A.在真空、惰性气体的气氛下,对待沉积基体和靶材进行溅射清洗;
B.在惰性气体、真空的气氛下,采用Cr靶和W靶在经过步骤A处理的待沉积基体表面沉积涂层。
5.根据权利要求4所述制备方法,其特征在于,步骤A中,工作气氛为氩气,流量为100-180sccm,溅射时真空度为0.2-0.6Pa,基体预热至200-400℃,沉积偏压为-30~-100V,基体溅射清洗时间为30-120分钟,靶材溅射清洗时间为1-5分钟。
6.根据权利要求4或5所述制备方法,其特征在于,步骤B中,工作气氛为氮气,流量为60-120sccm,溅射时真空度为0.2-0.6Pa,基体温度预热至200-400℃,沉积偏压为-30~-70V,沉积时间为60-100分钟,Cr靶功率为2-5kW,W靶功率为4-8kW。
7.根据权利要求4、5或6所述制备方法,其特征在于:步骤B中,在基体表面沉积涂层的过程中,使所述基体在磁控溅射系统中随转架台转动。
8.根据权利要求7所述制备方法,其特征在于:所述磁控溅射系统包括真空室、设置于真空室内可转动的转架台以及设置于转架台四周的靶材;所述靶材包括Cr靶和W靶。
9.权利要求1-3任一项所述涂层在制备玻璃模压模具中的应用。
10.玻璃模压模具,其特征在于,包含涂层,所述涂层为CrxWyN(1-x-y)涂层,且0.15<x<0.4,0.2≤y<0.45。
CN201910309959.6A 2019-04-17 2019-04-17 玻璃模压模具涂层及其制备方法和应用 Pending CN111826621A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910309959.6A CN111826621A (zh) 2019-04-17 2019-04-17 玻璃模压模具涂层及其制备方法和应用
US16/581,720 US11577980B2 (en) 2019-04-17 2019-09-24 Coating on mold for glass molding and a preparation method and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910309959.6A CN111826621A (zh) 2019-04-17 2019-04-17 玻璃模压模具涂层及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111826621A true CN111826621A (zh) 2020-10-27

Family

ID=72833005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910309959.6A Pending CN111826621A (zh) 2019-04-17 2019-04-17 玻璃模压模具涂层及其制备方法和应用

Country Status (2)

Country Link
US (1) US11577980B2 (zh)
CN (1) CN111826621A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825311A (zh) * 2019-04-17 2020-10-27 中国兵器工业第五九研究所 光学玻璃阵列透镜微纳热压成型工艺
CN111826621A (zh) * 2019-04-17 2020-10-27 中国兵器工业第五九研究所 玻璃模压模具涂层及其制备方法和应用
CN112795881A (zh) * 2020-12-08 2021-05-14 中国科学院宁波材料技术与工程研究所 包括防护涂层的制品及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160797A (zh) * 2013-04-09 2013-06-19 东莞市浩瀚纳米科技有限公司 纳米陶瓷涂层、沉积有该涂层的压铸模具及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4382209B2 (ja) * 1999-09-24 2009-12-09 帝国ピストンリング株式会社 硬質皮膜及びそれを被覆した摺動部材並びにその製造方法
JP3838216B2 (ja) * 2003-04-25 2006-10-25 住友金属工業株式会社 オーステナイト系ステンレス鋼
CN100419117C (zh) * 2004-02-02 2008-09-17 株式会社神户制钢所 硬质叠层被膜、其制造方法及成膜装置
JP6015423B2 (ja) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015425B2 (ja) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015426B2 (ja) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015424B2 (ja) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308365B2 (ja) * 2013-06-05 2018-04-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6120250B2 (ja) * 2013-06-05 2017-04-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6120251B2 (ja) * 2013-06-05 2017-04-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308435B2 (ja) * 2013-07-25 2018-04-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308436B2 (ja) * 2013-07-25 2018-04-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6311879B2 (ja) * 2013-08-12 2018-04-18 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6311878B2 (ja) * 2013-08-12 2018-04-18 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6318916B2 (ja) * 2013-08-30 2018-05-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6318915B2 (ja) * 2013-08-30 2018-05-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6355022B2 (ja) * 2013-08-30 2018-07-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6354947B2 (ja) * 2013-08-30 2018-07-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
BR102013031138B1 (pt) * 2013-12-03 2020-10-27 Mahle International Gmbh anel de pistão
CN111826621A (zh) * 2019-04-17 2020-10-27 中国兵器工业第五九研究所 玻璃模压模具涂层及其制备方法和应用
CN111826620A (zh) * 2019-04-17 2020-10-27 中国兵器工业第五九研究所 抑制元素扩散、防黏着的玻璃模压模具梯度涂层
CN110482852A (zh) * 2019-08-29 2019-11-22 中国兵器工业第五九研究所 玻璃模压涂层及其制备方法、应用、模具

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160797A (zh) * 2013-04-09 2013-06-19 东莞市浩瀚纳米科技有限公司 纳米陶瓷涂层、沉积有该涂层的压铸模具及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUNG-I CHEN, ET AL.: "Chemical inertness of Cr-W-N coatings in glass molding", 《THIN SOLID FILMS》 *
张昕等: "膜层厚比对CrNx/TiyCr1-yN多层膜硬度与结合力影响研究", 《航空制造技术》 *

Also Published As

Publication number Publication date
US11577980B2 (en) 2023-02-14
US20200331790A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
CN111826621A (zh) 玻璃模压模具涂层及其制备方法和应用
KR100383750B1 (ko) 수지 성형용 금형 및 수지 성형용 금형에의 경질 피막형성 방법
Zhou et al. Investigation on shape transferability in ultraprecision glass molding press for microgrooves
EP1048427A2 (en) Molding die, sol-gel composition produced using the die, and process for producing sol-gel composition
CN1733444B (zh) 光学元件用成形模具的制造方法,光学元件用成形模具和光学元件
US11339100B2 (en) Graded coating of element diffusion inhibition and adhesion resistance on mold for glass molding
Zhang et al. Study on α-Al2O3 anti-adhesion coating for molds in precision glass molding
Huang et al. Microstructure, wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering
EP1157973A2 (en) Glass mold material for precision glass molding
Khan et al. Mechanically robust antireflective coatings
CN110777335A (zh) 耐温的碳涂层
Li et al. Surface evolution analysis of CrxWyNz coatings on WC mold in glass molding process
Bernhardt et al. Development of a ta‐C diamond‐like carbon (DLC) coating by magnetron sputtering for use in precision glass molding
Jiang et al. A novel and flexible processing for hot embossing of glass microfluidic channels
Shu et al. Fabrication of curved aspheric compound eye microlens array with high surface quality by precision glass molding
Lin et al. Diamond-like carbon films deposited at room temperature on flexible plastics substrates for antireflection coating
WO2017083707A1 (en) Advanced mirrors utilizing polymer-derived mirror substrates
US7722788B2 (en) Mold inserts
CN100999375A (zh) 模造玻璃镜片的模具
JP2010179586A (ja) 型形成用材料、型材、成形型及び光学レンズ素子製造方法
JP3171583B2 (ja) 樹脂成形用金型および樹脂成形用金型への硬質被膜形成方法
KR101529955B1 (ko) 칼코게나이드 기반의 광학계 모듈
Zhu et al. Study of Interfacial Adhesion and Re–Ir Alloy Coating in Chalcogenide Glass Molding
CN113549887B (zh) 一种红外反射复合涂层及其制备方法和应用
JPH0352601B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201027