CN111826620A - 抑制元素扩散、防黏着的玻璃模压模具梯度涂层 - Google Patents

抑制元素扩散、防黏着的玻璃模压模具梯度涂层 Download PDF

Info

Publication number
CN111826620A
CN111826620A CN201910309244.0A CN201910309244A CN111826620A CN 111826620 A CN111826620 A CN 111826620A CN 201910309244 A CN201910309244 A CN 201910309244A CN 111826620 A CN111826620 A CN 111826620A
Authority
CN
China
Prior art keywords
gradient coating
layer
deposition
glass
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910309244.0A
Other languages
English (en)
Inventor
陈强
解志文
龚峰
黄新放
李康森
万元元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
University of Science and Technology Liaoning USTL
No 59 Research Institute of China Ordnance Industry
Original Assignee
Shenzhen University
University of Science and Technology Liaoning USTL
No 59 Research Institute of China Ordnance Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University, University of Science and Technology Liaoning USTL, No 59 Research Institute of China Ordnance Industry filed Critical Shenzhen University
Priority to CN201910309244.0A priority Critical patent/CN111826620A/zh
Priority to US16/579,807 priority patent/US11339100B2/en
Publication of CN111826620A publication Critical patent/CN111826620A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/31Two or more distinct intermediate layers or zones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/32Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Vapour Deposition (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本发明属于仅含无机材料的玻璃模具涂层技术领域,具体涉及一种抑制元素扩散、防黏着的玻璃模压模具梯度涂层。所述玻璃模压模具梯度涂层,包括与基体粘结Cr结合层、CrN中间过渡层及CrxWyN(1‑x‑y)表面层,且0.15<x<0.4,0.2≤y<0.45。该梯度涂层具有优异的抑制裂纹扩散性能及防黏着性能。

Description

抑制元素扩散、防黏着的玻璃模压模具梯度涂层
技术领域
本发明属于仅含无机材料的玻璃模具涂层技术领域,具体涉及一种抑制元素扩散、防黏着的玻璃模压模具梯度涂层。
背景技术
玻璃精密模压成型是一种高效率、环保的先进光学元件制造技术,近年来得到了飞速发展(“玻璃精密模压成形的研究进展”,龚峰等,光学精密工程,2018年第26卷第6期,第1380页,摘要,公开日2018年06月30日)。光学玻璃模压成型技术利用的是玻璃从熔融态向固态转化中连续可逆的热加工性质,在玻璃的转变温度Tg附近,无氧条件下,对玻璃和模具进行加温加压,一次性将光学玻璃模压成型。由于光学玻璃模压成型法摒弃了传统的粗磨、精磨、抛光以及定心磨边等工序,直接一次成型,大大节省了材料、时间、设备及人力,且能模压出复杂形状的光学元件,尤其是在非球面光学玻璃零件和小型、微型光学元件制造方面,有着广阔的应用前景(“光学玻璃模压成型技术”,王丽荣,科技传播,2012年第7期,第105页,公开日2012年07月23日)。因此,光学玻璃模压成型技术特别适用于批量生产各种具有特殊结构的高精度中小口径透镜,尤其是那些用传统加工手段难以实现的光学玻璃元件,如小口径薄型透镜、高次非球面镜片、微透镜阵列、衍射光学元件和自由曲面光学元件等。由于光学玻璃模压成型技术能够大批量生产精密的非球面或自由曲面光学元件,推进了非球面玻璃光学元件的应用(“精密模压技术于光学玻璃的制造研究”,吴澄,市场周刊:理论研究,2012年第2期,第111页,公开日2012年06月01日)。
模具的使用寿命及表面质量一直限制着玻璃精密模压技术的发展。其主要原因在于,在玻璃制品的成型过程中,模具频繁的与高温的熔融玻璃接触,发生氧化反应、热疲劳、动态磨损、黏着等协同作用(“玻璃模具材料的发展和应用”,韦玉屏等,机械设计与制造,2008年第3期,第201页,公开日2008年03月31日;“新玻璃模具材料的开发与应用”,肖明,玻璃与搪瓷,2006年第34卷第2期,第19页,公开日2006年04月30日)。此外,模具表面质量对玻璃元件的成型质量息息相关。因此,玻璃模压模具需要具备优异的耐高温、抗氧化、抗黏着、抗热疲劳、耐腐蚀、耐磨损性能。
因此,为延长模具的使用寿命,改善光学元件的质量,应采用在模具表面镀膜的方式来提高玻璃模压模具的耐高温、抗氧化、抗黏着、抗热疲劳、耐腐蚀、耐磨损等方面的性能。但是,由于缺少模具涂层的使用,我国所用的加工方式依然以传统的数控切削、磨削、抛光等方法为主,急需寻找一种抑制元素扩散、防黏着的玻璃模压模具涂层。
发明内容
有鉴于此,本发明的目的在于提供一种玻璃模压模具梯度涂层,该梯度涂层在抑制元素扩散方面及防黏着性能方面优异,且成本低廉。
为实现上述目的,本发明的技术方案为:
玻璃模压模具梯度涂层,包括与基体链接的Cr结合层、CrN中间过渡层及表面CrxWyN(1-x-y)层,且0.15<x<0.4,0.2≤y<0.45。
进一步,所述Cr结合层的厚度为50-100nm,CrN中间过渡层厚度为150-300nm,表面CrxWyN(1-x-y)层厚度为1300-1500nm。
进一步,所述梯度涂层在1000℃的高温润湿角为125°。
进一步,所述基体为掺杂8%Co的碳化钨模具,以质量百分比计。
本发明的目的之二在于保护所述玻璃模压模具梯度涂层的制备方法,包括以下步骤:
A.在真空、惰性气体的气氛下,对待沉积基体和靶材进行溅射清洗;
B.在惰性气体、真空气氛下,采用Cr靶和W靶在经过步骤A处理的待沉积基体表面依次沉积Cr结合层、CrN中间过渡层和CrxWyN(1-x-y)层。
进一步,所述惰性气体为氩气、氮气或二者的混合物。
进一步,步骤A中,流量为100-180sccm,溅射时真空度为0.4-0.5Pa,基体预热至200-400℃,优选300-400℃,沉积偏压为-30~-70V,基体溅射清洗时间为30-120分钟,优选60-120分钟,靶材溅射清洗时间为1-5分钟,优选2-5分钟。
进一步,步骤B中,Cr结合层的沉积条件为:真空室基底真空度3×10-3-6×10-3Pa,工作气体为氩气,沉积处理时反应室真空度为0.4-0.5Pa,沉积偏压为-30~-70V,Cr靶功率为3-6kW,沉积温度为300-400℃,沉积时间为2-5分钟。
进一步,步骤B中,CrN中间过渡层的沉积条件为:工作气体为氩气、氮气混合气体,溅射时真空度为0.4-0.5Pa,沉积偏压为-30~-70V,Cr靶功率为3-6kW,沉积温度为300-400℃,沉积时间为20-40分钟。
进一步,步骤B中,CrxWyN(1-x-y)层的沉积条件为:工作气体为氩气、氮气混合气体,溅射时真空度为0.4-0.5Pa,沉积偏压为-30~-70V,Cr靶功率为3-6kW,W靶功率为4-6kW,沉积温度为300-400℃,沉积时间为60-100分钟。
进一步,所述沉积为等离子增强磁控溅射。
进一步,在步骤A之前,还包括以下步骤:
(1)对待沉积基体进行抛光处理;
(2)将经过抛光处理的待沉积基体在去离子水和/或丙酮和/或乙醇中进行超声清洗。
进一步,溅射清洗靶材时,靶材用衬板遮挡。
本发明的目的之三在于保护所述玻璃模压模具梯度涂层在制备玻璃模压模具中的应用。
本发明的目的还在于保护一种玻璃模压模具,所述模具包含玻璃模压模具梯度涂层,所述梯度涂层包括与基体链接的Cr结合层、CrN中间过渡层及表面CrxWyN(1-x-y)层,且0.15<x<0.4,0.2≤y<0.45。
进一步,所述基体为掺杂8%Co的碳化钨模具,以质量百分比计。
本发明的有益效果在于:
本发明的梯度涂层表面形貌呈现为大小不一的菜花状团簇,表面呈现细小裂纹及孔洞等缺陷。通过涂层断面可观察到涂层生长方式为柱状晶体结构;各层之间结合紧密。
本发明的梯度涂层表现出优异的机械性能,满足玻璃模压涂层硬度使用标准。
本发明的涂层表面粗糙低,具有优异的表面质量,满足精密玻璃模压涂层表面质量的使用要求。
本发明的梯度涂层具有优异的耐高温、防黏着特性,该梯度涂层经过热压成型后的玻璃及模具涂层表面无明显变化,玻璃体无变色反应、无气泡产生,表面未出现黏着现象,涂层表面与玻璃接触的部分未发生剥落。
本发明的梯度涂层抗高温及抗黏着性能优异。
本发明的梯度涂层抑制裂纹扩展方面性能优异。
本发明的梯度涂层成本低。
附图说明
图1为本发明的梯度涂层的结构示意图;
图2为实施例1制得的梯度涂层的SEM表面及断面图,其中,2A为涂层的表面图,2B为涂层的断面图;
图3为实施例1制得的梯度涂层的硬度测试结果;
图4为实施例1制得的梯度涂层的表面粗糙度测试结果;
图5为实施例1制得的梯度涂层的模压后梯度涂层及玻璃表面形貌图;
图6为实施例1制得的梯度涂层表面元素检测结果图(即能谱图);
图7为实施例1制得的梯度涂层的物相结构检测结果图;
图8为实施例1制得的梯度涂层的高温润湿性能检测结果图;
图9为梯度涂层的抑制裂纹扩展检测结果图;其中,9A为实施例1制得的梯度涂层的抑制裂纹扩展检测结果图;9B为对比例1制得的梯度涂层的抑制裂纹扩展检测结果图;9C为对比例2制得的涂层的抑制裂纹扩展检测结果图。
具体实施方式
所举实施例是为了更好地对本发明的内容进行说明,但并不是本发明的内容仅限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1
玻璃模压模具梯度涂层,其具体制备步骤为:
(1)镀前处理
对待沉积基体(掺杂8%Co的碳化钨模具,以质量百分比计)进行机械研磨抛光,然后依次在去离子水、丙酮、乙醇溶液中进行超声波震荡清洗,各20min,清洗后样品置于烘箱中于80℃烘干30min;
(2)溅射清洗
将经镀前处理的待沉积基体装入真空室,真空室进行预抽真空,基底真空度为5×10-3Pa,并在此过程中对真空室进行加热,加热温度至300℃。通入高纯氩气(纯度>99.99%,由外包装获知)对基体和靶材进行离子溅射刻蚀清洗,流量为120sccm,溅射时真空度为0.4Pa,沉积偏压为-70V,基体溅射清洗时间为60分钟,靶材溅射清洗时间为5分钟;溅射清洗靶材时,靶材用衬板遮挡;
(3)沉积Cr结合层
采用等离子增强磁控溅射系统,将上述待沉积基体预先沉积Cr结合层;真空室基底真空度5×10-3Pa,工作气体为高纯氩气(纯度>99.99%,由外包装获知),所用靶材为一块高纯Cr靶(纯度>99.9%,由外包装获知),溅射时真空度为0.4Pa,沉积偏压为-30V,Cr靶功率为5kW,沉积温度为300℃,沉积时间为5分钟。
(4)沉积CrN中间过渡层
采用等离子增强磁控溅射系统,将上述沉积Cr结合层基体表面再沉积CrN过渡层;工作气体为高纯氩气(纯度>99.99%,由外包装获知)、高纯氮气(纯度>99.99%,由外包装获知)混合气体,所用靶材为一块高纯Cr靶(纯度>99.9%,由外包装获知),溅射时保持真空度为0.4Pa,沉积偏压为-30V,Cr靶功率为5kW,沉积温度为300℃,沉积时间为20分钟。
(5)沉积CrxWyN(1-x-y)表面层
采用等离子增强磁控溅射系统,将上述沉积Cr结合层及CrN过渡层基体表面再沉积CrxWyN(1-x-y)表面层;工作气体为高纯氩气(纯度>99.99%,由外包装获知)、高纯氮气(纯度>99.99%,由外包装获知)混合气体,所用靶材为一块高纯Cr靶(纯度为99.9%,由外包装获知)和一块高纯W靶(纯度为99.6%,由外包装获知),溅射时保持真空度为0.4Pa,沉积偏压为-30V,Cr靶功率为3kW,W靶功率为4kW,沉积温度为300℃,沉积时间为60分钟。
对比例1
玻璃模压模具梯度涂层,其具体制备步骤为:
(1)镀前处理
对待沉积基体(掺杂8%Co的碳化钨模具,以质量百分比计)进行机械研磨抛光,然后依次在去离子水、丙酮、乙醇溶液中进行超声波震荡清洗,各20min,清洗后样品置于烘箱中于80℃烘干30min;
(2)溅射清洗
将经镀前处理的待沉积基体装入真空室,真空室进行预抽真空,基底真空度为5×10-3Pa,并在此过程中对真空室进行加热,加热温度至300℃。通入高纯氩气(纯度>99.99%,由外包装获知)对基体和靶材进行离子溅射刻蚀清洗,流量为120sccm,溅射时真空度为0.4Pa,沉积偏压为-70V,基体溅射清洗时间为60分钟,靶材溅射清洗时间为5分钟;溅射清洗靶材时,靶材用衬板遮挡;
(3)沉积Cr结合层
采用磁控溅射系统,将上述待沉积基体预先沉积Cr结合层;真空室基底真空度5×10-3Pa,工作气体为高纯氩气(纯度>99.99%,由外包装获知),所用靶材为一块高纯Cr靶(纯度>99.9%,由外包装获知),溅射时真空度为0.4Pa,沉积偏压为-30V,Cr靶功率为5kW,沉积温度为300℃,沉积时间为5分钟。
(4)沉积CrxWyN(1-x-y)表面层
采用磁控溅射系统,将上述沉积Cr结合层基体表面再沉积CrxWyN(1-x-y)表面层;工作气体为高纯氩气(纯度>99.99%,由外包装获知)、高纯氮气(纯度>99.99%,由外包装获知)混合气体,所用靶材为一块高纯Cr靶(纯度为99.9%,由外包装获知)和一块高纯W靶(纯度为99.6%,由外包装获知),溅射时保持真空度为0.4Pa,沉积偏压为-30V,Cr靶功率为3kW,W靶功率为4kW,沉积温度为300℃,沉积时间为60分钟。
对比例2
玻璃模压模具涂层,其具体制备步骤为:
(1)镀前处理
对待沉积基体(掺杂8%Co的碳化钨模具,以质量百分比计)进行机械研磨抛光,然后依次在去离子水、丙酮、乙醇溶液中进行超声波震荡清洗,各20min,清洗后样品置于烘箱中于80℃烘干30min;
(2)溅射清洗
将经镀前处理的待沉积基体装入真空室,真空室进行预抽真空,基底真空度为5×10-3Pa,并在此过程中对真空室进行加热,加热温度至300℃。通入高纯氩气(纯度>99.99%,由外包装获知)对基体和靶材进行离子溅射刻蚀清洗,流量为120sccm,溅射时真空度为0.4Pa,沉积偏压为-70V,基体溅射清洗时间为60分钟,靶材溅射清洗时间为5分钟;溅射清洗靶材时,靶材用衬板遮挡;
(3)沉积CrxWyN(1-x-y)
采用磁控溅射系统,将上述待沉积基体沉积CrxWyN(1-x-y)表面层;工作气体为高纯氩气(纯度>99.99%,由外包装获知)、高纯氮气(纯度>99.99%,由外包装获知)混合气体,所用靶材为一块高纯Cr靶(纯度为99.9%,由外包装获知)和一块高纯W靶(纯度为99.6%,由外包装获知),溅射时保持真空度为0.4Pa,沉积偏压为-30V,Cr靶功率为4kW,W靶功率为4kW,沉积温度为300℃,沉积时间为60分钟。
性能检测
对实施例1制得的涂层进行涂层表面及断面形貌、硬度、表面粗糙度、模压、涂层表面元素、涂层物相结构、高温润湿性能等性能检测,结果如图2-图8所示;
同时,对实施例1和对比例1制得的梯度涂层、对比例2制得的涂层进行抑制裂纹扩展方面性能检测,结果图9所示,其中图9A为实施例1制得的梯度涂层,图9B为对比例1制得的梯度涂层,图9C为对比例2制得的涂层;
其中,图2为实施例1所得梯度涂层的SEM表面及断面图,其中,2A为涂层的表面图,2B为涂层的断面图;图3为硬度测试结果,其中横坐标为压入深度,纵坐标为压入载荷;图4为表面粗糙度测试结果;图5为模压测试结果;图6为梯度涂层表面元素检测结果图(即能谱图);图7为梯度涂层的物相结构检测结果图;图8为高温润湿性能检测结果图;
其中,硬度的检测方法为:采用纳米压痕仪进行测试,测试模式为连续刚度法(CSM),其中,为排除基体对测量结果的影响,纳米压痕深度设定为100nm,为保证数据准确可靠,在样品上选择5个不同区域,对得到的硬度及弹性模量取平均值;
表面粗糙度的检测方法为:采用原子力显微镜进行测试,测试样品区域为2×2μm;
模压的检测方法为:利用自行设计的光学非球面玻璃模压成型设备(申请号:CN201710124489.7;公开号:CN106946441A),对BK7光学玻璃进行模压;其中,模压力为0.5kN,模压温度为650℃;对模压后模具涂层及BK7玻璃表面形貌颜色进行观察;
涂层表面元素的检测方法为:利用场发射扫描电子显微镜(FESEM)自带的X射线能谱仪(EDS)对涂层表面元素进行定性分析;
物相相结构的检测方法为:采用X射线衍射仪(XRD)进行检测,为避免基体因素的影响采用小角衍射的方式对涂层晶体结构进行分析;
高温润湿性能的检测方法为:采用通管滴落法在1000℃下进行高温润湿实验,真空度为5×10-3Pa,玻璃材料BK7光学玻璃;
抑制裂纹扩展性能的检测方法为:使用洛氏硬度仪对待测涂层抑制裂纹扩展的能力进行测试,采用圆锥角120°金刚石压头对涂层施加60N的载荷。对压后涂层表面使用超景深显微镜观察。
由图2可知,实施例1制得的梯度涂层表面形貌呈现为大小不一的菜花状团簇,表面呈现细小裂纹及等缺陷。通过涂层断面可观察到涂层生长方式为柱状晶体结构,Cr层厚度为96nm,CrN层厚度为297nm,CrxWyN(1-x-y)层厚度为1375nm;各层之间结合紧密。
由图3可知,实施例1制得的梯度涂层的硬度为16GPa。由此证明,本发明的梯度涂层表现出优异的机械性能,满足玻璃模压涂层使用标准。
由图4可知,实施例1制得的梯度涂层表面粗糙度为4nm,表现出优异的表面质量,可用于精密玻璃模压涂层使用。
由5可知,实施例1制得的梯度涂层经过热压成型后的玻璃及模具涂层表面无明显变化,玻璃体无变色反应、无气泡产生,表面未出现黏着现象,涂层表面与玻璃接触的部分未发生剥落。由此证明,本发明的梯度涂层具有优异的耐高温、防黏着特性。
由图6可知,实施例1制得的梯度涂层表面主要元素为Cr元素、W元素及N元素。
由图7可知,实施例1制得的梯度涂层表面层具有明显的CrN相,主要晶体取向为(111)、(200)、(220)、(311)、(222)取向,且表面层中Cr元素质量百分含量为35%,W元素的质量百分含量为20%,N元素质量百分含量为45%。
由图8可知,实施例1制得的梯度涂层在环境温度为1000度、真空度为5×10-3Pa时,熔融光学玻璃与梯度涂层表面未发生铺展,熔融玻璃与涂层的高温接触角为125°。由此证明,本发明的梯度涂层抗高温及抗黏着性能优异。
由图9可知,与对比例1的梯度涂层和对比例2的涂层相比,实施例1的梯度涂层的裂纹数量得到了显著降低。由此证明,本发明的梯度涂层对抑制裂纹扩展方面性能得到了显著提高。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

1.玻璃模压模具梯度涂层,其特征在于,包括与基体粘结的Cr结合层、CrN中间过渡层及CrxWyN(1-x-y)表面层,且0.15<x<0.4,0.2≤y<0.45。
2.根据权利要求1所述的玻璃模压模具梯度涂层,其特征在于,所述Cr结合层的厚度为50-100nm,CrN中间过渡层厚度为150-300nm,表面CrxWyN(1-x-y)层厚度为1300-1500nm。
3.根据权利要求1或2所述的玻璃模压模具梯度涂层,其特征在于,所述梯度涂层在1000℃的高温润湿角为125°。
4.权利要求1-3任一项所述玻璃模压模具梯度涂层的制备方法,其特征在于,包括以下步骤:
A.在真空、惰性气体的气氛下,对待沉积基体和靶材进行溅射清洗;
B.在惰性气体、真空气氛下,采用Cr靶和W靶在经过步骤A处理的待沉积基体表面依次沉积Cr结合层、CrN中间过渡层和CrxWyN(1-x-y)层。
5.根据权利要求4所述制备方法,其特征在于,所述惰性气体为氩气、氮气或二者的混合物。
6.根据权利要求4或5所述制备方法,其特征在于,步骤A中,流量为100-180sccm,溅射时真空度为0.4-0.5Pa,基体预热至200-400℃,沉积偏压为-30~-70V,基体溅射清洗时间为30-120分钟,靶材溅射清洗时间为1-5分钟。
7.根据权利要求4或5所述制备方法,其特征在于,步骤B中,Cr结合层的沉积条件为:真空室基底真空度3×10-3~6×10-3Pa,工作气体为氩气,沉积处理时反应室真空度为0.4-0.5Pa,沉积偏压为-30~-70V,Cr靶功率为3-6kW,沉积温度为300-400℃,沉积时间为2-5分钟。
8.根据权利要求4、5或6所述制备方法,其特征在于:步骤B中,CrN中间过渡层的沉积条件为:工作气体为氩气、氮气混合气体,溅射时真空度为0.4-0.5Pa,沉积偏压为-30~-70V,Cr靶功率为3-6kW,沉积温度为300-400℃,沉积时间为20-40分钟。
9.权利要求1-3任一项所述玻璃模压模具梯度涂层在制备玻璃模压模具中的应用。
10.玻璃模压模具,其特征在于,包含玻璃模压模具梯度涂层,所述梯度涂层包括与基体粘结的Cr结合层、CrN中间过渡层及CrxWyN(1-x-y)表面层,且0.15<x<0.4,0.2≤y<0.45。
CN201910309244.0A 2019-04-17 2019-04-17 抑制元素扩散、防黏着的玻璃模压模具梯度涂层 Pending CN111826620A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910309244.0A CN111826620A (zh) 2019-04-17 2019-04-17 抑制元素扩散、防黏着的玻璃模压模具梯度涂层
US16/579,807 US11339100B2 (en) 2019-04-17 2019-09-23 Graded coating of element diffusion inhibition and adhesion resistance on mold for glass molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910309244.0A CN111826620A (zh) 2019-04-17 2019-04-17 抑制元素扩散、防黏着的玻璃模压模具梯度涂层

Publications (1)

Publication Number Publication Date
CN111826620A true CN111826620A (zh) 2020-10-27

Family

ID=72833008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910309244.0A Pending CN111826620A (zh) 2019-04-17 2019-04-17 抑制元素扩散、防黏着的玻璃模压模具梯度涂层

Country Status (2)

Country Link
US (1) US11339100B2 (zh)
CN (1) CN111826620A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113628982A (zh) * 2021-08-06 2021-11-09 纳狮新材料有限公司 封装模具及其制备方法
CN115321836A (zh) * 2022-06-29 2022-11-11 张敏 一种防反射坚硬玻璃及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826621A (zh) * 2019-04-17 2020-10-27 中国兵器工业第五九研究所 玻璃模压模具涂层及其制备方法和应用
CN115074677B (zh) * 2022-05-16 2023-06-23 清华大学 CrWZrN多层梯度结构涂层及其制备方法
CN115044866B (zh) * 2022-05-16 2024-04-26 烟台大学 多层梯度结构涂层及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160797A (zh) * 2013-04-09 2013-06-19 东莞市浩瀚纳米科技有限公司 纳米陶瓷涂层、沉积有该涂层的压铸模具及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121038A2 (en) * 2004-06-07 2005-12-22 Colorado School Of Mines Coating for glass molding dies and forming tools
JP5077251B2 (ja) * 2009-01-20 2012-11-21 コニカミノルタアドバンストレイヤー株式会社 金型、金型の製造方法、ガラスゴブの製造方法及びガラス成形体の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160797A (zh) * 2013-04-09 2013-06-19 东莞市浩瀚纳米科技有限公司 纳米陶瓷涂层、沉积有该涂层的压铸模具及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUNG-I CHEN, ET AL.: "Chemical inertness of Cr-W-N coatings in glass molding", 《THIN SOLID FILMS》 *
张昕等: "膜层厚比对CrNx/TiyCr1-yN多层膜硬度与结合力影响研究", 《航空制造技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113628982A (zh) * 2021-08-06 2021-11-09 纳狮新材料有限公司 封装模具及其制备方法
CN115321836A (zh) * 2022-06-29 2022-11-11 张敏 一种防反射坚硬玻璃及其制备方法

Also Published As

Publication number Publication date
US20200331798A1 (en) 2020-10-22
US11339100B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN111826620A (zh) 抑制元素扩散、防黏着的玻璃模压模具梯度涂层
CN111621752B (zh) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN110106483B (zh) 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用
CN109402564B (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN108977775B (zh) 一种TiAlSiN涂层刀具制备工艺
Huang et al. Microstructure, wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering
CN108385085B (zh) 一种低应力cvd金刚石复合涂层及其制备方法
CN109397549A (zh) 金刚石涂层氮化硅陶瓷整体刀具及其制备方法与刀具在石墨中的应用
CN100523273C (zh) 一种纳米叠层TiN膜的制备方法
CN110578122A (zh) 一种AlTiN/AlTiSiN多层纳米复合涂层的制备工艺
CN110482852A (zh) 玻璃模压涂层及其制备方法、应用、模具
CN111826621A (zh) 玻璃模压模具涂层及其制备方法和应用
CN107012424B (zh) 一种TiZrB2硬质涂层及其制备方法和应用
JP7360202B2 (ja) ダイヤモンドコーティング窒化ケイ素セラミック全体ツールの製造方法
CN113529033A (zh) 一种防护涂层的制备方法及制备得到的防护涂层
CN106119796A (zh) 一种非晶金刚石涂层的制备方法
KR101429645B1 (ko) 경질 코팅층 및 그 제조방법
Hishamuddin et al. Reverse Engineering of Dicing Blade to Prolong its Lifetime
CN115287599B (zh) 一种高耐磨CoFeTaB/MgCuY非晶/非晶多层膜及其制备方法
Wei et al. Effects of processing variables on tantalum nitride by reactive-ion-assisted magnetron sputtering deposition
CN109666889A (zh) 一种硬质合表面的TiA1N镀层
CN108796443A (zh) 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法
Ueng et al. Improved productivity on diamond-like carbon coating optical disk stamper
CN113549887B (zh) 一种红外反射复合涂层及其制备方法和应用
Tischler et al. Nanoindentation test for DLC coating analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination