CN108796443A - 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法 - Google Patents

一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法 Download PDF

Info

Publication number
CN108796443A
CN108796443A CN201810694421.7A CN201810694421A CN108796443A CN 108796443 A CN108796443 A CN 108796443A CN 201810694421 A CN201810694421 A CN 201810694421A CN 108796443 A CN108796443 A CN 108796443A
Authority
CN
China
Prior art keywords
temperature plasma
die steel
low
hot die
compounding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810694421.7A
Other languages
English (en)
Inventor
孔德军
赵文
王文昌
李佳红
陈海翔
蔡金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201810694421.7A priority Critical patent/CN108796443A/zh
Publication of CN108796443A publication Critical patent/CN108796443A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及热作模具钢的表面改性处理领域,公开了一种热作模具钢表面低温等离子氮化‑阴极离子镀的复合处理方法。该处理方法将扩散和涂层技术相结合,在低温等离子氮化层的基础上沉积AlCrN涂层,从而避免了单一进行氮化处理时氮化层力学性能不高,无法满足模具工作需求的问题,同时也避免了单一进行涂层处理时涂层承载能力低,缺少支撑容易失效的问题。本发明有效地提高了模具的硬度、耐磨性、抗氧化性和热稳定性,使模具能够适用于极端的工况,有利于实际生产应用。

Description

一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法
技术领域
本发明涉及热作模具钢表面改性处理技术领域,特指热作模具钢表面低温等离子氮化-阴极离子镀的表面处理方法,为解决单一物理气相沉积所造成的薄膜失效及单一等离子氮化造成的硬度较低的问题,属于材料表面改性复合处理技术。
背景技术
模具在零件成形过程中占据着举足轻重的地位,是零件成形的重要工艺装备之一。因其工作过程中常常伴随着高温、潮湿、冲击与剧烈摩擦等极端状况,模具材料往往需要具有良好的耐磨性、耐腐蚀性能、高温性能以及耐冷热疲劳等性能。为提高材料表面性能,改善材料表面劣化问题,对材料表面进行改性处理成为了模具生产中的必要步骤。当对模具表面进行氮化处理时,氮化层使材料力学性能得到提高,但是经氮化处理后工件的表面硬度与硬质薄膜相比仍然较低,不能满足日益增长的应用条件的需求。另一方面,当单一地沉积硬质薄膜时,模具使用寿命得以延长、生产效率得以提高、生产制造成本得以降低,但硬质薄膜中常存在孔隙和裂纹等缺陷,为腐蚀性介质腐蚀基体提供了路径,降低了薄膜的耐腐蚀性,且在较高的使用负载情况下,基体金属很容易发生塑性变形,则薄膜的失效是不可避免的。
本发明专利通过低温等离子渗氮技术在热作模具钢基材表面制备一层低温等离子氮化层,再通过阴极离子镀技术在氮化层表面沉积AlCrN涂层,从而制得低温等离子氮化-AlCrN复合涂层。AlCrN涂层表面致密,硬度、热稳定性和耐冲击磨损性等力学性能相较于基体均有提高,涂层中出现少量非晶态的AlN相,有利于试样晶粒尺寸的细化。氮化层为最外层的AlCrN涂层提供强大的支撑作用,消除了涂层/基体界面处应力集中的危险,可以有效避免AlCrN涂层的过早失效。
发明内容
本发明专利所述的低温等离子氮化与阴极离子镀复合处理方法是指在低温等离子氮化的基础上沉积AlCrN涂层。本发明采用如下技术方案实现:首先对基材进行调质处理,在对其进行磨光和机械抛光后,使用丙酮进行超声清洗;采用低温渗氮的方式,在温度为400℃时对基材进行10h的低温等离子渗氮处理,其中,氮气与氢气的体积比例为2:1,氮气流量为35mL·min-1,炉内气压为400-500Pa,基材表面形成一层厚度为10μm的氮化层,涂层与基体间的元素相互扩散形成良好的冶金结合;最后在氮化层上制备AlCrN薄膜时,将高纯Cr靶(99.9%纯度)和高纯AlCr靶(99.9%纯度)对称地安装于样品室左右两侧,样品与阴极靶之间的距离为200mm,由支架固定并以2rpm的速度旋转,通入高纯Ar气,对基体表面进行弧光轰击清洗,其中,设置偏压为-800V,清洗时间为20min,然后通入N2,将N2/Ar气体流量比控制为1:1,进行沉积AlCrN涂层,时间为200min。
本发明的主要特征:本发明专利采用低温等离子氮化-阴极离子镀复合工艺对热作模具钢表面进行改性处理,通过制备AlCrN涂层来提高样品的力学性能,Al元素的添加使样品获得更高的热稳定性和抗氧化性,从而能更好地应对模具工作过程中的极端工况;通过制备低温等离子氮化层为AlCrN涂层提供支撑,消除了涂层/基体界面处的应力集中,避免了AlCrN涂层过早地失效,真正地实现了对热作模具的有效保护。
附图说明
图1低温等离子氮化工作示意图
图2阴极离子镀工作示意图
图3低温等离子氮化层表面形貌
图4低温等离子氮化层断面形貌
图5低温等离子氮化层XRD分析
图6低温等离子氮化层EDS分析
图7低温等离子氮化+AlCrN涂层表面形貌
图8低温等离子氮化+AlCrN涂层断面形貌
图9低温等离子氮化+AlCrN涂层XRD分析
图10低温等离子氮化+AlCrN涂层EDS分析
具体实施方式
(1)对基材进行1080℃油淬和550℃的高温回火处理,并在热处理后,对其进行磨光和机械抛光,用丙酮超声清洗15min,以去掉试样表面油脂和杂物;
(2)在400℃的温度下对基材进行10h的低温等离子氮化,氮气与氢气的体积比例为2:1,氮气流量为35mL·min-1,炉内气压为400-500Pa,渗氮完成后将试样冷却60-100min;
(3)将低温等离子氮化后的样品放置在沉积设备中,高纯Cr靶(99.9%纯度)和高纯AlCr靶(99.9%纯度)对称地安装于样品室左右两侧,样品与阴极靶之间的距离为200mm,由支架固定并以2rpm的速度旋转,在沉积之前,将腔室抽空至4×10-3Pa以下的基础压力,并将样品加热至450℃,打开Cr靶弧源,样品在室内以-800V的高偏置电压在氩等离子体中蚀刻20分钟;
(4)关闭Cr靶,打开AlCr靶,沉积AlCrN涂层,靶材弧电流为75A,将N2/Ar气体流量比控制为1:1,N2压强维持在2Pa,沉积时间为200min;
(5)通过SEM和XRD分析了低温等离子氮化层及低温等离子氮化-阴极离子镀复合涂层的表面-断面形貌和化学元素组成。如图1所示,低温等离子氮化共分为加热处理、渗氮处理和冷却三个阶段;如图2所示,阴极离子镀是一种在低气压气体放电等离子体环境中进行的物理气相沉积技术;如图3、4所示,氮化层表面完整,无孔隙、裂纹等明显缺陷,在断面上存在明显的白亮层(复合层)和由含氮马氏体构成的扩散区,基体与氮化层元素相互扩散,形成良好的冶金结合;如图5、6所示,氮化后,氮化层中出现N元素,且主要以γ’-Fe4N和ε-Fe2-3N两相的形式存在;如图7、8所示,相较于氮化层来讲,低温等离子氮化后沉积的AlCrN涂层更为致密,在断面出现明显的AlCrN层、氮化层和基体的分层;如图9、10所示,低温等离子氮化+AlCrN涂层中Al和Cr的原子数比约为67:33,X射线衍射图谱中出现了非晶相,这有利于试样晶粒尺寸的细化和力学性能的提高。

Claims (8)

1.一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于包含如下步骤:
1)对基材进行调质处理、机械抛光和清洗;
2)在基材上制备等离子氮化层;
3)在氮化层上制备AlCrN薄膜。
2.如权利要求1所述的热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于,所述步骤1)中调质处理方式为1080℃油淬和550℃的高温回火处理。
3.如权利要求1所述的热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于,所述步骤1)中的清洗为使用丙酮进行的超声清洗,清洗时间为15min。
4.如权利要求1所述的热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于,所述步骤2)中氮化方式为低温等离子渗氮,氮化温度为400℃,氮化时间为10h。
5.如权利要求1所述的热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于,所述步骤2)中基材处于N2和H2的混合气氛中,其中,N2和H2的体积比例为2:1,N2流量为35mL·min-1,炉内气压为400-500Pa。
6.如权利要求1所述的热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于,所述步骤2)中基材表面形成一层厚度约为10μm的低温等离子氮化层,涂层与基体间的元素相互扩散形成良好的冶金结合。
7.如权利要求1所述的热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于,所述步骤3)中使用纯度为99.9%的高纯Cr靶和高纯AlCr靶,样品与阴极靶之间的距离为200mm,由支架固定并以2rpm的速度旋转。
8.如权利要求1所述的热作模具钢低温等离子氮化与阴极离子镀复合处理方法,其特征在于,所述步骤3)中通入高纯Ar气,对基体表面进行弧光轰击清洗,其中,设置偏压为-800V,清洗时间为20min,然后通入N2,将N2/Ar气体流量比控制为1:1,进行沉积AlCrN涂层,沉积时间为200min。
CN201810694421.7A 2018-06-29 2018-06-29 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法 Pending CN108796443A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810694421.7A CN108796443A (zh) 2018-06-29 2018-06-29 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810694421.7A CN108796443A (zh) 2018-06-29 2018-06-29 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法

Publications (1)

Publication Number Publication Date
CN108796443A true CN108796443A (zh) 2018-11-13

Family

ID=64072942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810694421.7A Pending CN108796443A (zh) 2018-06-29 2018-06-29 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法

Country Status (1)

Country Link
CN (1) CN108796443A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371217A (zh) * 2018-12-10 2019-02-22 江铃汽车股份有限公司 一种冷冲压模具的表面处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2156912A1 (en) * 2007-05-30 2010-02-24 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
CN103898445A (zh) * 2014-04-18 2014-07-02 常州多晶涂层科技有限公司 一种多层AlCrN切削刀具涂层及其制备方法
CN104911552A (zh) * 2015-06-25 2015-09-16 西安交通大学 一种热挤压模具渗镀复合表面强化方法
CN106011738A (zh) * 2016-06-16 2016-10-12 常州普威特涂层有限公司 一种模具用表面渗镀复合涂层工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2156912A1 (en) * 2007-05-30 2010-02-24 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
CN103898445A (zh) * 2014-04-18 2014-07-02 常州多晶涂层科技有限公司 一种多层AlCrN切削刀具涂层及其制备方法
CN104911552A (zh) * 2015-06-25 2015-09-16 西安交通大学 一种热挤压模具渗镀复合表面强化方法
CN106011738A (zh) * 2016-06-16 2016-10-12 常州普威特涂层有限公司 一种模具用表面渗镀复合涂层工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371217A (zh) * 2018-12-10 2019-02-22 江铃汽车股份有限公司 一种冷冲压模具的表面处理方法

Similar Documents

Publication Publication Date Title
Kim et al. Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings
CN113025953B (zh) 一种高熵合金氮化物复合涂层及其制备方法与应用
CN111074224B (zh) 一种耐腐蚀高熵合金氮化物涂层、其制备方法及应用
CN107653438B (zh) 一种具有真空长效润滑性能碳薄膜的制备方法
EP1598441A1 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
CN111441025B (zh) 一种耐腐蚀高熵合金薄膜、制备方法及其在海水环境下的应用
CN101469402B (zh) 类富勒烯碳膜的制备方法
Kao et al. Structure, mechanical properties and thermal stability of nitrogen-doped TaNbSiZrCr high entropy alloy coatings and their application to glass moulding and micro-drills
Stoiber et al. Plasma-assisted pre-treatment for PACVD TiN coatings on tool steel
CN105734487B (zh) 一种钛合金齿轮表面制备强韧性钼梯度改性层的方法
CN113235051B (zh) 一种纳米双相高熵合金薄膜及其制备方法
JP2009035584A (ja) 摺動部材
CN108796443A (zh) 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法
CN112853281B (zh) 碳基多层薄膜及其制备方法和应用
Kuprin et al. Effect of nitrogen pressure and substrate bias voltage on structure and mechanical properties of vacuum arc deposited VN coatings
CN110578115B (zh) 一种掺杂的硫化物复合薄膜及其制备方法、含有掺杂的硫化物复合薄膜的工件
CN115161607B (zh) 一种稀土掺杂高熵合金氮化物涂层及其制备方法
CN110714182B (zh) 一种氮化渗铬层、其制备方法及应用
CN114645254B (zh) 一种TiAlMoNbW高熵合金氮化物薄膜及其制备工艺
CN114438446B (zh) 一种高熵合金/氮化物纳米复合薄膜、制备方法及应用
CN109252137B (zh) 锆合金表面涂层的制备方法
JP3281173B2 (ja) 高硬度薄膜及びその製造方法
CN114000118B (zh) 一种钛合金表面硬度梯度分布层厚可调的氮化层制备方法
CN1880499A (zh) 采用物理气相沉积法制备二硫化钨固体润滑膜的方法
CN108193181A (zh) TA15合金表面反应磁控溅射制备AlN/AlCrN薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181113

WD01 Invention patent application deemed withdrawn after publication