CN111792851A - 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法 - Google Patents

高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法 Download PDF

Info

Publication number
CN111792851A
CN111792851A CN202010724494.3A CN202010724494A CN111792851A CN 111792851 A CN111792851 A CN 111792851A CN 202010724494 A CN202010724494 A CN 202010724494A CN 111792851 A CN111792851 A CN 111792851A
Authority
CN
China
Prior art keywords
perovskite
cspbi
film
thin film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010724494.3A
Other languages
English (en)
Inventor
柴文明
朱卫东
张春福
陈大正
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010724494.3A priority Critical patent/CN111792851A/zh
Publication of CN111792851A publication Critical patent/CN111792851A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法,包括处理FTO导电玻璃衬底材料,在FTO导电玻璃衬底上制备TiO2层;配制反溶剂,将碘化铯、碘化铅、溴化铅加入有机溶剂中配制钙钛矿前驱体溶液;将钙钛矿前驱体溶液涂覆到FTO/TiO2衬底上获得CsPbI2Br钙钛矿前驱体薄膜;将反溶剂溴化甲胺溶液涂敷在钙钛矿前驱体薄膜上;退火,形成全无机CsPbI2Br钙钛矿薄膜。该方法制备的CsPbI2Br薄膜提高了薄膜的结晶性和改善了形貌,进一步提升了薄膜的稳定性。

Description

高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法
技术领域
本发明属于钙钛矿光伏器件领域,特别涉及一种高稳定的全无机CsPbI2Br钙钛矿薄膜的制备方法。
背景技术
钙钛矿太阳能电池(PSC)在过去十年中取得了从3.8%到25.2%的一系列效率突破,这归功于其出色的光电性能、高吸收系数、理想的直接带隙和可调带隙。有机-无机杂化钙钛矿材料由于易于挥发的有机成分而存在固有不稳定性,并且有机分子可能在热和潮湿的环境中被挥发,例如CH3NH3PbI3可能分解为碘化铅(PbI2)和CH3NH3I。因此,由于有机阳离子被铯(Cs)取代,具有超高稳定性的全无机钙钛矿被认为是PSC实现商业化的有前途的替代方法。
全无机CsPbX3(X=I,Br,Cl)钙钛矿最近因其出色的热稳定性而受到越来越多的关注。为了平衡稳定性和带隙的需求,研究了混合卤化无机钙钛矿材料。其中,CsPbI2Br具有相对合理的带隙约为1.91eV,并且比α-CsPbI3具有更好的相稳定性,在半透明和叠层光伏应用中表现出巨大的潜力。最近,刘生忠等人报道了在CsPbI2Br钙钛矿薄膜中添加CaCl2以提高结晶度和抑制缺陷密度之后的最高记录效率为16.79%。尽管到目前为止,CsPbI2Br仍已达到较高的效率,但在高湿度的环境空气中仍不稳定,α相易于转变为无光伏特性的δ相。
因此,改善薄膜形貌及结晶性和提高钙钛矿薄膜的相稳定性,减少薄膜的非辐射复合缺陷,对实现钙钛矿光伏器件的商业化,显得极其重要。
发明内容
针对上述钙CsPbI2Br钛矿薄膜在湿度较高的环境中的稳定性较差的问题,本发明提出通过在钙钛矿前驱体薄膜表面产生卤素交换,形成稳定的CsPbI2-xBr1+x(0<x<1)富溴层,覆盖了易于分解的α-CsPbI2Br,改善了薄膜的结晶性和形貌,减少了表面的应力缺陷,从而提升了CsPbI2Br钙钛矿薄膜的相稳定性。
为达到上述目的,本发明是通过下述方案来实现的。
本发明的一种高稳定性的全无机CsPbI2Br钙钛矿薄膜制备方法,包括以下步骤:
步骤1,清洗FTO导电玻璃衬底材料,然后用N2干燥,并用紫外臭氧处理;
步骤2,将TiO2溶胶涂敷在FTO导电玻璃衬底上旋转,然后在空气中退火;自然冷却至室温后,获得致密的TiO2层;
步骤3,将溴化甲胺溶于有机溶剂A,配制成摩尔浓度为0.05-0.2mol/L溶液作为反溶剂;
步骤4,按照摩尔比2:1:1将碘化铯、碘化铅、溴化铅加入有机溶剂B中搅拌,配制为摩尔浓度0.6-1.25mol/L的钙钛矿前驱体溶液;
步骤5,将钙钛矿前驱体溶液涂覆到FTO/TiO2衬底上,以不同的速度旋转,以获得CsPbI2Br钙钛矿前驱体薄膜;
步骤6,在旋涂CsPbI2Br钙钛矿前驱体薄膜的过程中,将溴化甲胺溶液涂敷在钙钛矿前驱体薄膜上,发生卤素交换反应;
步骤7,对钙钛矿薄膜进行退火,将前驱体薄膜中的碘化甲胺挥发掉,在其表面形成全无机CsPbI2Br钙钛矿薄膜。
优选的,所述有机溶剂A为为甲醇、异丙醇、甲苯、氯苯中的一种或多种混合溶液。
优选的,所述有机溶剂B为二甲基亚砜DMSO、二甲基甲酰胺DMF、γ-丁内酯中的一种或多种混合溶液。
优选的,所述步骤4中,在室温条件下,利用磁力搅拌器至少搅拌12h。
优选的,所述步骤5中,将钙钛矿前驱体溶液旋涂在FTO/TiO2衬底上,先以1500-2000rpm旋转20-30s,接着以4000-5000rpm旋转60-120s,制备的CsPbI2Br钙钛矿前驱体薄膜厚度为400-600nm。
优选的,所述步骤5中,在旋涂钙钛矿薄膜前,利用紫外臭氧处理衬底表面5-15min。
优选的,所述步骤6中,在旋涂CsPbI2Br钙钛矿前驱体薄膜过程结束前30s时,将溴化甲胺溶液滴在旋转的FTO/TiO2衬底中心。
所述步骤7)中,在钙钛矿前驱体薄膜退火前,先50℃预热3-10min,退火温度为150-250℃。
本发明的有益效果如下:
本发明选取了在高温下易于挥发的有机卤盐溴化甲胺(MABr)作前驱体,用不溶解钙钛矿材料、易于挥发的溶剂(如甲醇等)作反溶剂;然后将含有MABr的甲醇溶液旋涂在CsPbI2Br薄膜上,MABr在溶剂中电离成MA+和Br-,在前驱体薄膜中I-与MA+结合成碘化甲胺(MAI)在高温退火过程中先于MABr被挥发,在表面形成更加稳定的CsPbI2-xBr1+x(0<x<1)富溴层,覆盖了不稳定的α-CsPbI2Br薄膜,同时反溶剂提高了薄膜的结晶性和改善了形貌,进一步提升了薄膜的稳定性。相应的电池可以在相对湿度为40-60%的环境中,连续工作5h,电流不会产生衰减;在同样湿度、温度为85℃的环境中,连续工作5h,电流产生了微弱的衰减。相比较于传统的方法,该方法制备的CsPbI2Br薄膜表现出了优异的稳定性,具有广阔的应用前景。
附图说明
图1为本发明制备稳定的CsPbI2Br钙钛矿薄膜的流程示意图;
图2(a)、(b)分别为基于传统的方法和添加MABr制备CsPbI2Br钙钛矿薄膜的扫描电子显微镜(SEM)照片;
图3(a)-(f)为在相对湿度为40-60%的环境中,室温(图3(a)-(c))和85℃(图3(d)-(f))条件下,CsPbI2Br钙钛矿薄膜连续工作5h的电流-时间关系。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
如图1所示,本发明的一种具有高稳定性的全无机CsPbI2Br钙钛矿薄膜,选择涂敷了TiO2的FTO导电玻璃衬底,其具体步骤如下:
步骤1,依次用去离子水、丙酮和乙醇清洗衬底材料硬质透明FTO导电玻璃或耐高温柔性衬底(2×2.5cm2),然后用N2干燥,并用紫外臭氧处理15min;
步骤2,将TiO2溶胶涂敷在FTO导电玻璃衬底上以3000rpm的速度旋转30s,然后在500℃的空气中退火60min;自然冷却至室温后,获得致密的TiO2层(~60nm);
步骤3,将溴化甲胺溶于有机溶剂A(甲醇、异丙醇、甲苯、氯苯中的一种或多种混合溶液),配成摩尔浓度为0.05-0.2mol/L溶液作为反溶剂;
步骤4,按照摩尔比2:1:1将碘化铯、碘化铅、溴化铅加入有机溶剂B(二甲基亚砜(DMSO)、二甲基甲酰胺(DMF)、γ-丁内酯中的一种或多种混合溶液)中,在室温条件下,利用磁力搅拌器至少搅拌12h,使溶质充分溶解,配制为摩尔浓度0.6-1.25mol/L透亮澄清的钙钛矿前驱体溶液;
步骤5,将钙钛矿前驱体溶液涂覆到FTO/TiO2衬底上,在沉积CsPbI2Br钙钛矿薄膜前,利用紫外臭氧处理5-15min,除掉衬底表面的有机杂质;然后先以1500-2000rpm旋转20-30s,接着以4000-5000rpm旋转60-120s,制备的CsPbI2Br钙钛矿前驱体薄膜厚度为400-600nm;
步骤6,,在旋涂CsPbI2Br钙钛矿前驱体薄膜的过程结束前30s时,将溴化甲胺溶液滴在旋转的FTO/TiO2衬底中心钙钛矿前驱体薄膜上,发生卤素交换反应;
步骤7,对步骤6反应薄膜的50℃预热3-10min,将部分DMSO和反溶剂挥发掉。对钙钛矿薄膜进行退火,退火温度为150-250℃,退火时间为20min;介于MABr和MAI的熔点之间,保证将引入的MA+全部挥发掉,而不会形成有机-无机杂化钙钛矿,其表面形成全无机CsPbI2Br钙钛矿薄膜。
下面通过具体实施例来进一步说明本发明实施过程。
实施例1
1)依次用去离子水、丙酮和乙醇清洗FTO导电玻璃衬底(2×2.5cm2),然后用N2干燥,并用紫外臭氧处理15min;
2)将TiO2溶胶涂敷在FTO导电玻璃衬底上以3000rpm的速度旋转30s,然后在500℃的空气中退火60min;自然冷却至室温后,获得致密的TiO2层(~60nm);
3)将溴化甲胺溶于有机溶剂A甲醇和异丙醇,配成摩尔浓度为0.1mol/L溶液作为反溶剂;
4)按照摩尔比为1:1:2将277mg PbI2、222mg PbBr2和312mg CsI完全溶解在DMSO中,在室温下搅拌12h,配制为摩尔浓度1.2mol/L的CsPbI2Br前驱体溶液;
5)然后将前驱体溶液涂覆到FTO/TiO2衬底上,在沉积CsPbI2Br钙钛矿薄膜前,利用紫外臭氧处理10min;以1500rpm的速度旋转30s,然后以5000rpm的速度旋转120s,以获得厚度为400nm的CsPbI2Br前驱体薄膜;
6)在旋涂步骤中,在整个旋涂过程结束前30s,将20μL含0.1mol/L的MABr的甲醇溶液滴在旋转衬底的中心;
7)将制备的前体薄膜在50℃下预热5min,然后150℃退火20min,表面形成全无机CsPbI2Br钙钛矿薄膜。
实施例2
1)依次用去离子水、丙酮和乙醇清洗FTO导电玻璃衬底(2×2.5cm2),然后用N2干燥,并用紫外臭氧处理15min;
2)将TiO2溶胶涂敷在FTO导电玻璃衬底上以3000rpm的速度旋转30s,然后在500℃的空气中退火60min;自然冷却至室温后,获得致密的TiO2层(~60nm);
3)将溴化甲胺溶于有机溶剂A甲苯,配成摩尔浓度为0.05mol/L溶液作为反溶剂;
4)按照摩尔比为1:1:2将277mg PbI2、222mg PbBr2和312mg CsI完全溶解在DMF中,在室温下搅拌12h,配制成摩尔浓度为1.25mol/L的CsPbI2Br前驱体溶液;
5)然后将前驱体溶液涂覆到FTO/TiO2衬底上,在沉积CsPbI2Br钙钛矿薄膜前,利用紫外臭氧处理15min;以1800rpm的速度旋转20s,然后以4000rpm的速度旋转80s,以获得厚度为600nm的CsPbI2Br前驱体薄膜;
6)在旋涂步骤中,在整个旋涂过程结束前30s,将20μL含0.05mol/L的MABr的甲醇溶液滴在旋转衬底的中心;
7)将制备的前体薄膜在50℃下预热3min,然后250℃退火20min,表面形成全无机CsPbI2Br钙钛矿薄膜。
实施例3
1)依次用去离子水、丙酮和乙醇清洗FTO导电玻璃衬底(2×2.5cm2),然后用N2干燥,并用紫外臭氧处理15min。
2)将TiO2溶胶涂敷在FTO导电玻璃衬底上以3000rpm的速度旋转30s,然后在500℃的空气中退火60min。自然冷却至室温后,获得致密的TiO2层(~60nm);
3)将溴化甲胺溶于有机溶剂A氯苯,配成摩尔浓度为0.2mol/L溶液作为反溶剂;
4)按照摩尔比1:1:2将277mg PbI2、222mg PbBr2和312mg CsI完全溶解在DMSO中,在室温下搅拌12h,配制为摩尔浓度0.6mol/L的CsPbI2Br前驱体溶液;
5)然后将前驱体溶液涂覆到FTO/TiO2衬底上,在沉积CsPbI2Br钙钛矿薄膜前,利用紫外臭氧处理5min;以2000rpm的速度旋转20s,然后以4500rpm的速度旋转60s,以获得厚度为500nm的CsPbI2Br前驱体薄膜;
6)在旋涂步骤中,在整个旋涂过程结束前30s,将40μL含0.2mol/L的MABr的甲醇溶液滴在旋转衬底的中心。
7)将制备的前体薄膜在50℃下预热10min,然后200℃退火20min,表面形成全无机CsPbI2Br钙钛矿薄膜。
从以上实施例可以看出,利用在高温条件下MAI比MABr更容易挥发,通过在CsPbI2Br钙钛矿前驱体薄膜中进行卤素交换,在薄膜退火过程中挥发掉MA+和I-,在表面形成更加稳定的CsPbI2-xBr1+x(0<x<1)富溴层,覆盖住了相稳定性较差的CsPbI2Br钙钛矿薄膜。如图2(a)、(b)对比所示,反溶剂改善了薄膜的结晶性和形貌,最终提高了薄膜的稳定性。本发明制备过程简单有效,效果明显。如图3(a)-(f)所示,采用本发明方法制备的薄膜用于制备钙钛矿电池,可以在相对湿度40-60%的环境中,室温和85℃高温条件下,连续工作5h,电流只产生了微弱的衰减。
本发明方法利用卤素交换提升CsPbI2Br钙钛矿薄膜的稳定性,同时兼顾了制备工艺难度和成本的要求,提高了钙钛矿薄膜的结晶性和改善了薄膜的形貌,减少了薄膜的非辐射复合缺陷,进一步提升了器件性能。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (9)

1.一种高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,包括以下步骤:
步骤1,清洗FTO导电玻璃衬底材料,N2干燥,并用紫外臭氧处理;
步骤2,将TiO2溶胶涂敷在FTO导电玻璃衬底上旋转,然后在空气中退火;自然冷却至室温后,获得致密的TiO2层;
步骤3,将溴化甲胺溶于有机溶剂A,配制成摩尔浓度为0.05-0.2mol/L溶液作为反溶剂;
步骤4,按照摩尔比2:1:1将碘化铯、碘化铅、溴化铅加入有机溶剂B中搅拌,配制为摩尔浓度0.6-1.25mol/L的钙钛矿前驱体溶液;
步骤5,将钙钛矿前驱体溶液涂覆到FTO/TiO2衬底上,以不同的速度旋转,以获得CsPbI2Br钙钛矿前驱体薄膜;
步骤6,在旋涂CsPbI2Br钙钛矿前驱体薄膜的过程中,将溴化甲胺溶液涂敷在钙钛矿前驱体薄膜上,发生卤素交换反应;
步骤7,对钙钛矿薄膜进行退火,将前驱体薄膜中的碘化甲胺挥发掉,在其表面形成全无机CsPbI2Br钙钛矿薄膜。
2.根据权利要求1所述的高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,所述有机溶剂A为甲醇、异丙醇、甲苯、氯苯中的一种或多种混合溶液。
3.根据权利要求1所述的高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,所述有机溶剂B为二甲基亚砜DMSO、二甲基甲酰胺DMF、γ-丁内酯中的一种或多种混合溶液。
4.根据权利要求1所述的高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,所述步骤4中,在室温条件下,利用磁力搅拌器至少搅拌12h。
5.根据权利要求1所述的高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,所述步骤5中,将钙钛矿前驱体溶液旋涂在FTO/TiO2衬底上,先以1500-2000rpm旋转20-30s,接着以4000-5000rpm旋转60-120s,制备的CsPbI2Br钙钛矿前驱体薄膜厚度为400-600nm。
6.根据权利要求1所述的高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,所述步骤5中,在旋涂钙钛矿薄膜前,利用紫外臭氧处理衬底表面5-15min。
7.根据权利要求1所述的高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,所述步骤6中,在旋涂CsPbI2Br钙钛矿前驱体薄膜过程结束前30s时,将溴化甲胺溶液滴在旋转的FTO/TiO2衬底中心。
8.根据权利要求1所述的高稳定性的全无机CsPbI2Br钙钛矿薄膜的制备方法,其特征在于,所述步骤7中,在钙钛矿前驱体薄膜退火前,先50℃预热3-10min,退火温度为150-250℃。
9.一种基于权利要求1-8任一项所述方法制备的CsPbI2Br钙钛矿前驱体薄膜。
CN202010724494.3A 2020-07-24 2020-07-24 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法 Pending CN111792851A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010724494.3A CN111792851A (zh) 2020-07-24 2020-07-24 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010724494.3A CN111792851A (zh) 2020-07-24 2020-07-24 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法

Publications (1)

Publication Number Publication Date
CN111792851A true CN111792851A (zh) 2020-10-20

Family

ID=73544438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010724494.3A Pending CN111792851A (zh) 2020-07-24 2020-07-24 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法

Country Status (1)

Country Link
CN (1) CN111792851A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112735945A (zh) * 2021-02-02 2021-04-30 河南大学 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用
CN113991045A (zh) * 2021-10-11 2022-01-28 苏州大学 一种纯蓝光钙钛矿发光层及其制备方法、发光二极管
CN114031310A (zh) * 2021-11-08 2022-02-11 太原理工大学 一种二维钙钛矿衬底调控生长梯度相变型全无机钙钛矿薄膜的方法
CN114560500A (zh) * 2022-02-18 2022-05-31 河北工业大学 一种非铅钙钛矿材料及其制备方法和应用
CN115148904A (zh) * 2022-05-23 2022-10-04 苏州大学 一种透明稳定的全无机金属卤素钙钛矿光电探测器及其制备方法与应用
CN115287742A (zh) * 2022-07-11 2022-11-04 中国计量大学 一种室温合成红光发射钙钛矿单晶的方法及其产品
CN115286259A (zh) * 2022-07-22 2022-11-04 中国计量大学 一种提高全无机钙钛矿室温相稳定性的方法
CN115959836A (zh) * 2022-12-28 2023-04-14 吉林大学 一种无机钙钛矿薄膜及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087896A1 (fr) * 2000-05-15 2001-11-22 Japan Science And Technology Corporation Procede destine a former un film mince a partir d'un compose de perovskite lamellaire inorganique/d'ammonium organique
CN105870341A (zh) * 2016-04-20 2016-08-17 西安交通大学 一种提高钙钛矿晶体生长质量的方法及太阳能电池器件
CN109904322A (zh) * 2019-03-08 2019-06-18 中国科学院青岛生物能源与过程研究所 一种制备全无机钙钛矿薄膜的方法
CN110323521A (zh) * 2019-06-17 2019-10-11 北京大学 一种钙钛矿半导体的光电化学池
CN110504370A (zh) * 2019-07-08 2019-11-26 浙江浙能技术研究院有限公司 一种在空气环境中制备铯掺杂混合钙钛矿太阳能电池的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087896A1 (fr) * 2000-05-15 2001-11-22 Japan Science And Technology Corporation Procede destine a former un film mince a partir d'un compose de perovskite lamellaire inorganique/d'ammonium organique
CN105870341A (zh) * 2016-04-20 2016-08-17 西安交通大学 一种提高钙钛矿晶体生长质量的方法及太阳能电池器件
CN109904322A (zh) * 2019-03-08 2019-06-18 中国科学院青岛生物能源与过程研究所 一种制备全无机钙钛矿薄膜的方法
CN110323521A (zh) * 2019-06-17 2019-10-11 北京大学 一种钙钛矿半导体的光电化学池
CN110504370A (zh) * 2019-07-08 2019-11-26 浙江浙能技术研究院有限公司 一种在空气环境中制备铯掺杂混合钙钛矿太阳能电池的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAIYUAN WANG ET AL.: "A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15%", 《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》 *
QINGSHAN MA ET AL.: "Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation", 《ADVANCED ENERGY MATERIALS》 *
WEIHAI ZHANG ET AL.: "Seed-Assisted Growth for Low-Temperature-Processed All-Inorganic CsPbIBr2 Solar Cells with Efficiency over 10%", 《SMALL》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112735945A (zh) * 2021-02-02 2021-04-30 河南大学 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用
CN113991045A (zh) * 2021-10-11 2022-01-28 苏州大学 一种纯蓝光钙钛矿发光层及其制备方法、发光二极管
CN113991045B (zh) * 2021-10-11 2024-02-02 苏州大学 一种纯蓝光钙钛矿发光层及其制备方法、发光二极管
CN114031310A (zh) * 2021-11-08 2022-02-11 太原理工大学 一种二维钙钛矿衬底调控生长梯度相变型全无机钙钛矿薄膜的方法
CN114031310B (zh) * 2021-11-08 2023-09-19 太原理工大学 一种二维钙钛矿衬底调控生长梯度相变型全无机钙钛矿薄膜的方法
CN114560500A (zh) * 2022-02-18 2022-05-31 河北工业大学 一种非铅钙钛矿材料及其制备方法和应用
CN114560500B (zh) * 2022-02-18 2024-04-09 河北工业大学 一种非铅钙钛矿材料及其制备方法和应用
CN115148904A (zh) * 2022-05-23 2022-10-04 苏州大学 一种透明稳定的全无机金属卤素钙钛矿光电探测器及其制备方法与应用
CN115148904B (zh) * 2022-05-23 2024-03-19 苏州大学 一种透明稳定的全无机金属卤素钙钛矿光电探测器及其制备方法与应用
CN115287742B (zh) * 2022-07-11 2023-12-26 中国计量大学 一种室温合成红光发射钙钛矿单晶的方法及其产品
CN115287742A (zh) * 2022-07-11 2022-11-04 中国计量大学 一种室温合成红光发射钙钛矿单晶的方法及其产品
CN115286259A (zh) * 2022-07-22 2022-11-04 中国计量大学 一种提高全无机钙钛矿室温相稳定性的方法
CN115959836A (zh) * 2022-12-28 2023-04-14 吉林大学 一种无机钙钛矿薄膜及其制备方法、应用

Similar Documents

Publication Publication Date Title
CN111792851A (zh) 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法
Singh et al. Sulfate‐assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali‐doped TiO2 electron‐transporting layers
Murugadoss et al. An efficient electron transport material of tin oxide for planar structure perovskite solar cells
Su et al. Performance enhancement of perovskite solar cells using trimesic acid additive in the two-step solution method
CN106384785B (zh) 一种锡掺杂甲基铵基碘化铅钙钛矿太阳能电池
CN111952456B (zh) 一种高效稳定的钙钛矿太阳能电池及其制备方法和应用
CN109148644A (zh) 基于梯度退火与反溶剂协同效应制备无机钙钛矿电池的方法及制备的无机钙钛矿电池
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN107240643A (zh) 溴元素掺杂甲胺铅碘钙钛矿太阳能电池及其制作方法
Liu et al. An effective TiO2 blocking layer for hole-conductor-free perovskite solar cells based on carbon counter electrode
CN111952455B (zh) 一种离子液体型有机大体积胺分子盐制备低维锡基钙钛矿薄膜及其太阳能电池和应用
CN114284439A (zh) 一种在高湿度环境下制备CsPbI3钙钛矿薄膜及其高效太阳能电池的方法及应用
CN117998953A (zh) 钙钛矿前驱体溶液、钙钛矿薄膜的制备方法及太阳电池
CN109775749B (zh) 一种Sn-Pb合金无机钙钛矿薄膜及其在太阳能电池中的应用
Peng et al. N, N‑dimethylformamide vapor effect on microstructural and optical properties of CH3NH3PbI3 film during solvent annealing
CN111048422A (zh) 一种高效铯铅碘溴无机钙钛矿薄膜的制备方法及基于其的太阳能电池
CN106252516A (zh) 一种平面倒置半透明有机/无机杂化钙钛矿太阳电池器件及制备方法
CN114188485A (zh) 一种基于茚添加剂的锡基钙钛矿太阳能电池及其制备方法
WO2024098538A1 (zh) 通过在钙钛矿体相掺杂磺酰基分子制备太阳能电池的方法
CN115188899B (zh) 高湿度空气中一步法印刷制备钙钛矿太阳能电池的方法
CN110459686A (zh) 一种提高钙钛矿薄膜晶粒尺寸的制备方法
CN108470836A (zh) 一种钙钛矿薄膜的制备方法及太阳能电池
Pothiklang et al. Synthesis of perovskite film by using lead nitrate as precursor for perovskite solar cell applications
CN115101681A (zh) 一种锡基钙钛矿电池的制备方法
CN110246969B (zh) 一种吡啶修饰氧化锡致密层的钙钛矿太阳能电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination