CN112735945A - 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用 - Google Patents

一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用 Download PDF

Info

Publication number
CN112735945A
CN112735945A CN202110141383.4A CN202110141383A CN112735945A CN 112735945 A CN112735945 A CN 112735945A CN 202110141383 A CN202110141383 A CN 202110141383A CN 112735945 A CN112735945 A CN 112735945A
Authority
CN
China
Prior art keywords
cspbi
inorganic perovskite
thin film
film
stannous chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110141383.4A
Other languages
English (en)
Inventor
董琛
徐冰洁
刘冬梅
刘荣
谭付瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202110141383.4A priority Critical patent/CN112735945A/zh
Publication of CN112735945A publication Critical patent/CN112735945A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用,属于新能源材料技术领域。针对现有技术存在的无法获得高湿环境下相结构稳定CsPbI2Br无机钙钛矿薄膜的问题,本发明提出了一种亚锡离子(Sn2+)和氯离子(Cl)共同掺杂CsPbI2Br无机钙钛矿薄膜的方法,通过在钙钛矿前驱体溶液中加入一定量的SnCl2无机盐,再利用反溶剂旋涂法便可制得晶粒尺寸减小、薄膜应力增强、立方相结构更加稳固的CsPbI2Br无机钙钛矿薄膜。该方法能够在保持CsPbI2Br材料光电性能的基础上,实现其在湿气环境下相结构稳定性的显著改善。该方法操作简单、效果明显,将其应用于无机钙钛矿太阳能电池可以有效提高器件的耐久性。

Description

一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用
技术领域
本发明属于新能源材料技术领域,涉及一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用。
背景技术
目前,有机/无机杂化钙钛矿太阳能电池的最高认证效率已经达到25.5%,十分接近商业化的单晶硅太阳能电池。然而,杂化钙钛矿中的有机组分(如甲胺离子MA+、甲脒离子FA+)易受环境中的温度、湿度以及光照等因素影响而分解,致使器件稳定性存在严重缺陷,极大地限制了其商业化进程。
相比之下,纯无机钙钛矿,特别是将无机Cs+阳离子完全取代有机基团形成的铯铅卤无机钙钛矿体系CsPbX3(CsPbI3,CsPbI2Br,CsPbIBr2,CsPbBr3)在稳定性方面更具优势。由于彻底消除了原有晶格结构中弱键合的有机成分,CsPbX3无机钙钛矿能够从根源上解决杂化钙钛矿稳定性差的难题;同时CsPbX3兼具杂化钙钛矿优异的光电特性,因此在构筑稳定高效钙钛矿电池方面具有更大的竞争力。在CsPbX3无机钙钛矿体系中,纯碘组分CsPbI3具有最窄的带隙值(1.73eV),是制备高效无机钙钛矿电池的理想选择。然而,CsPbI3的容忍因子较小(~0.81),导致其黑色钙钛矿结构在室温下难以稳定存在;CsPbBr3虽然结构稳定性最好,但是过宽的带隙值(2.36eV)导致CsPbBr3器件只能利用400~525nm波长的太阳光,严重制约了电池的光伏性能。相比较,拥有比CsPbBr3更窄带隙(1.91eV)和比CsPbI3更高结构稳定性的混合卤素CsPbI2Br材料更具吸引力。近年来,CsPbI2Br无机钙钛矿电池发展迅速,其最高光电转换效率已经超过18%。但是,CsPbI2Br无机钙钛矿对空气中的水汽极为敏感。具有黑色立方相的CsPbI2Br薄膜暴露在紫外光、氧气以及臭氧等环境中都不会发生相变,而只有空气中的水汽会使CsPbI2Br从黑色立方α相(1.92 eV)转变为黄色δ相(2.85 eV)而失去光学活性,从而影响了器件的光电性能。因此,如何提高CsPbI2Br无机钙钛矿薄膜在高湿度环境中的相结构稳定性成为其光伏应用的关键。
发明内容
本发明的目的是为了克服现有技术存在的无法制得高湿环境下相结构稳定CsPbI2Br无机钙钛矿薄膜的关键问题,提供了一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用,通过在无机钙钛矿前驱体溶液中加入一定量的SnCl2无机盐,利用亚锡离子(Sn2+)和氯离子(Cl)共同掺杂来减小晶粒尺寸、增大薄膜应力,从而显著提高CsPbI2Br薄膜在高湿度环境中相结构稳定性的通用方法。该方法可以在保持CsPbI2Br材料性能的基础上,能使CsPbI2Br薄膜在高湿度环境中仍保持黑色立方相结构,将该方法应用于无机钙钛矿电池可以显著提高器件的长期稳定性。
本发明的目的是通过以下技术方案实现的:
首先配置SnCl2掺杂的CsPbI2Br无机钙钛矿前驱体溶液,然后利用反溶剂旋涂法制备前驱体薄膜,经后退火过程形成无机钙钛矿薄膜。在该过程中,通过改变SnCl2的掺杂量可以有效控制薄膜的晶粒尺寸、调控薄膜应力,达到稳固α-CsPbI2Br钙钛矿立方相的目的。其具体包括以下步骤:
(1)SnCl2掺杂CsPbI2Br无机钙钛矿前驱体溶液的配置:将碘化铯(CsI)、碘化铅(PbI2)和溴化铅(PbBr2)按照1:0.5:0.5的摩尔比溶解到DMSO溶液中,形成浓度为0.6~1.0mol/L的CsPbI2Br溶液,经加热搅拌得到黄色澄清前驱体溶液;然后,将一定量的SnCl2加入上述溶液中,经室温搅拌得到SnCl2掺杂的CsPbI2Br前驱体溶液;
(2)反溶剂旋涂法制备CsPbI2Br无机钙钛矿薄膜:将步骤(1)中所得到的CsPbI2Br前驱体溶液过滤备用;将过滤后的溶液用旋涂仪旋涂在导电衬底上,以3000~4000转/分钟的速度旋转50~60秒,当衬底旋转到特定时间段内,在薄膜中央滴加一定量的反溶剂;最后将沉积好的前驱体薄膜在150~200℃的温度条件下退火5~10分钟后,结晶形成CsPbI2Br薄膜。
作为本发明技术方案的优选,上述步骤(1)中,SnCl2的掺杂量为PbI2和PbBr2总质量的2~20%;加热搅拌是指在50~60℃下搅拌1~2小时。
步骤(2)中,导电衬底为FTO或ITO玻璃;特定时间段是指在开始旋涂后第30~35秒开始滴加反溶剂;反溶剂的滴加量为150~200μL;反溶剂为乙酸乙酯或者异丙醇。
优选地,步骤(2)中,过滤后溶液的旋涂量为100~200μL。
上述制备方法制得的氯化亚锡掺杂的无机钙钛矿薄膜。
上述氯化亚锡掺杂的无机钙钛矿薄膜在制备无机钙钛矿电池中的应用。
具体地,将氯化亚锡掺杂的无机钙钛矿薄膜作为光吸收层,采用刮涂法将导电碳浆料涂在其表面,通过在空气中100~130℃退火20~30分钟制得碳基CsPbI2Br无机钙钛矿电池。
优选地,所述氯化亚锡掺杂的无机钙钛矿薄膜的厚度为180 nm ~320nm,碳电极厚度为10μm ~20μm。
通过上述技术方案,本发明取得了以下有益效果:
(1)本发明提供的方法操作简单、效果明显,适合工业化生产;
(2)本发明提供的方法可以有效解决CsPbI2Br薄膜难以在高湿度环境下稳定存在的问题,制得的CsPbI2Br薄膜可以在相对湿度为80%的空气环境下稳定存在,这对无机钙钛矿电池意义重大;
(3)本发明提供的方法对原有CsPbI2Br材料的结晶性以及光电特性没有任何影响,也就是说该方法可以在保持材料特性的基础上来进一步稳固CsPbI2Br材料的相结构。
附图说明
图1为实施例1−4中不同SnCl2掺杂量所制备CsPbI2Br无机钙钛矿薄膜的表面扫描电镜照片;
图2为实施例1−4中不同SnCl2掺杂量所制备CsPbI2Br无机钙钛矿薄膜的XRD图;
图3为实施例1−4中不同SnCl2掺杂量所制备CsPbI2Br无机钙钛矿薄膜的紫外可见吸收光谱;
图4为以实施例1−4中不同SnCl2掺杂量的CsPbI2Br薄膜为光吸收层所构筑的碳电极基无机钙钛矿电池的光伏性能曲线;
图5为实施例1−4中不同SnCl2掺杂量所制备CsPbI2Br无机钙钛矿薄膜在相对湿度为80%空气环境下的老化照片。
具体实施方式
下面结合附图和具体实施例对本发明进行详细的说明。
实施例1
一种SnCl2掺杂的CsPbI2Br无机钙钛矿薄膜的制备方法,具体过程如下:
将CsI、PbI2和PbBr2按照1:0.5:0.5的摩尔比溶解到1mL DMSO溶液中,形成浓度为0.6摩尔/升的CsPbI2Br溶液,经50℃加热搅拌1小时得到黄色澄清的CsPbI2Br前驱体溶液。该前驱体溶液未添加SnCl2无机盐,即SnCl2的掺杂量为0%。将上述前驱体溶液用0.45μm的微孔滤膜过滤,取100μL溶液旋涂在2cm×2cm的FTO导电玻璃(珠海凯为光电科技有限公司)上,转速设置为3000转/分钟,时间为50秒;在旋涂到第35秒时滴加150μL乙酸乙酯反溶剂于基片中央,旋涂结束后,置于150℃的加热板上退火5分钟形成厚度为280 nm厚的CsPbI2Br薄膜。所得的无机钙钛矿层的扫描电子显微镜照片如附图1a所示,该薄膜的XRD测试结果在附图2中给出,该薄膜的紫外可见吸收光谱在附图3中给出。此外,以上述薄膜为光吸收层,采用刮涂法将导电碳浆料(广州赛迪科技公司 DD-10碳浆料)涂在其表面,通过在空气中120℃退火15分钟制备得到碳电极厚度为15μm的碳基CsPbI2Br无机钙钛矿电池,该电池的光伏性能曲线在附图4中给出。
实施例2
一种SnCl2掺杂的CsPbI2Br无机钙钛矿薄膜的制备方法,具体过程如下:
将CsI、PbI2和PbBr2按照1:0.5:0.5的摩尔比溶解到1mL DMSO溶液中,形成浓度为0.8摩尔/升的CsPbI2Br溶液,经55℃加热搅拌1.5小时得到黄色澄清的CsPbI2Br前驱体溶液。在上述前驱体溶液中加入PbI2和PbBr2总质量2%的SnCl2无机盐,即SnCl2的掺杂量为2%。将上述前驱体溶液用0.45μm的微孔滤膜过滤,取150μL溶液旋涂在2cm×2cm的FTO导电玻璃(珠海凯为光电科技有限公司)上,转速设置为3500转/分钟,时间为55秒;在旋涂到第32秒时滴加180μL乙酸乙酯反溶剂于基片中央,旋涂结束后,置于180℃的加热板上退火8分钟形成厚度为300 nm厚的CsPbI2Br薄膜。所得的无机钙钛矿层的扫描电子显微镜照片如附图1b所示,该薄膜的XRD测试结果在附图2中给出,该薄膜的紫外可见吸收光谱在附图3中给出。另外,以2% SnCl2掺杂的CsPbI2Br薄膜为光吸收层,采用刮涂法将导电碳浆料(广州赛迪科技公司 DD-10碳浆料)涂在其表面,通过在空气中120℃退火20分钟制备得到碳电极厚度为15μm的碳基CsPbI2Br无机钙钛矿电池,该电池的光伏性能曲线在附图4中给出。
实施例3
一种SnCl2掺杂的CsPbI2Br无机钙钛矿薄膜的制备方法,具体过程如下:
将CsI、PbI2和PbBr2按照1:0.5:0.5的摩尔比溶解到1mL DMSO溶液中,形成浓度为0.8摩尔/升的CsPbI2Br溶液,经55℃加热搅拌1.5小时得到黄色澄清的CsPbI2Br前驱体溶液。在上述前驱体溶液中加入PbI2和PbBr2总质量10%的SnCl2无机盐,即SnCl2的掺杂量为10%。将上述前驱体溶液用0.45μm的微孔滤膜过滤,取150μL溶液旋涂在2cm×2cm的FTO导电玻璃(珠海凯为光电科技有限公司)上,转速设置为3500转/分钟,时间为55秒;在旋涂到第32秒时滴加180μL异丙醇反溶剂于基片中央,旋涂结束后,置于180℃的加热板上退火8分钟形成厚度为300 nm厚的CsPbI2Br薄膜。所得的无机钙钛矿层的扫描电子显微镜照片如附图1c所示,该薄膜的XRD测试结果在附图2中给出,该薄膜的紫外可见吸收光谱在附图3中给出。此外,以10% SnCl2掺杂的CsPbI2Br薄膜为光吸收层,采用刮涂法将导电碳浆料(广州赛迪科技公司 DD-10碳浆料)涂在其表面,通过在空气中120℃退火30分钟制备得到碳电极厚度为15 μm的碳基CsPbI2Br无机钙钛矿电池,该电池的光伏性能曲线在附图4中给出。
实施例4
一种SnCl2掺杂的CsPbI2Br无机钙钛矿薄膜的制备方法,具体过程如下:
将CsI、PbI2和PbBr2按照1:0.5:0.5的摩尔比溶解到1mL DMSO溶液中,形成浓度为1摩尔/升的CsPbI2Br溶液,经60℃加热搅拌2小时得到黄色澄清的CsPbI2Br前驱体溶液。在上述前驱体溶液中加入PbI2和PbBr2总质量20%的SnCl2无机盐,即SnCl2的掺杂量为20%。将上述前驱体溶液用0.45μm的微孔滤膜过滤,取200μL溶液旋涂在2cm×2cm的FTO导电玻璃(珠海凯为光电科技有限公司)上,转速设置为3500转/分钟,时间为60秒;在旋涂到第30秒时滴加200μL异丙醇反溶剂于基片中央,旋涂结束后,置于200℃的加热板上退火10分钟形成厚度为320 nm厚的CsPbI2Br薄膜。所得的无机钙钛矿层的扫描电子显微镜照片如附图1d所示,该薄膜的XRD测试结果在附图2中给出,该薄膜的紫外可见吸收光谱在附图3中给出。此外,以上述20% SnCl2掺杂的CsPbI2Br薄膜为光吸收层,采用刮涂法将导电碳浆料(广州赛迪科技公司 DD-10碳浆料)涂在其表面,通过在空气中120℃退火30分钟制备得到碳电极厚度为15μm的碳基CsPbI2Br无机钙钛矿电池,该电池的光伏性能曲线在附图4中给出。
从图1中可以看出,所制备的薄膜均呈现致密均匀的表面形貌。SnCl2的掺杂可以显著减小CsPbI2Br薄膜的晶粒尺寸,并且随着SnCl2掺杂量的增加,薄膜的晶粒尺寸逐渐减小,从而可增大相应薄膜的应力,这能有效稳固CsPbI2Br的立方相结构。从图2的XRD测试结果可以看出,SnCl2的掺杂并没有影响CsPbI2Br的立方相结构,实施例1−4中所制备的样品在衍射角=14.6°,20.8°和29.5°附近均出现了衍射峰,分别对应于CsPbI2Br立方钙钛矿相的(100),(110)和(200)面的特征衍射峰。从图3中的紫外可见吸收光谱图可以看出,SnCl2的掺杂也没有大幅影响CsPbI2Br薄膜的禁带宽度(~1.91eV),这表明SnCl2的掺杂不会影响其光吸收性能。此外,从附图4中给出的实施例1−4所制备碳基无机钙钛矿电池的性能曲线也可以看出,SnCl2的掺杂也没有引起电池性能的大幅变化。未掺杂CsPbI2Br的碳电极基无机钙钛矿电池的效率为10.5%(开路电压为1.15V,电流密度为14.32 mA/cm2,填充因子为63%),而SnCl2掺杂后的CsPbI2Br电池也能维持10%以上的光电转化效率,这表明SnCl2的掺杂所引起的薄膜晶粒尺寸减小、薄膜应力增强并没有影响薄膜、乃至器件的光电性能。此外,为了测试CsPbI2Br无机钙钛矿薄膜在高湿度环境下的相结构稳定性,我们将实施例1−4所获得的薄膜放置于相对湿度为80%的空气环境中进行老化测试,其结果如附图5所示。实施例1中刚制备的未掺杂CsPbI2Br薄膜呈现其立方相的特征棕黑色,当放置在湿气环境中时,该薄膜马上发生变色相变、生成黄色δ相的CsPbI2Br。当采用本发明的方法后,CsPbI2Br薄膜在高湿度环境下的相稳定性得到显著提升,并且随着SnCl2掺杂量的增加,薄膜的立方相结构越来越稳固。实施例4中所制备的20% SnCl2掺杂的CsPbI2Br薄膜在相对湿度为80%的湿气环境中放置45分钟以上,仍保持其立方相的特征棕黑色,这表明SnCl2的掺杂能有效稳固CsPbI2Br薄膜在高湿度环境中的相结构稳定性。因此,SnCl2的掺杂能在保持CsPbI2Br薄膜和器件性能的基础上,实现高湿度条件下立方相结构的稳固。
以上所述是本发明的优选实施方案,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应该视为本发明的保护范围。

Claims (9)

1.一种氯化亚锡掺杂的无机钙钛矿薄膜的制备方法,其特征在于,包括以下步骤:
(1)将碘化铯(CsI)、碘化铅(PbI2)和溴化铅(PbBr2)按照1:0.5:0.5的摩尔比溶解到DMSO溶液中,形成浓度为0.6~1.0mol/L的CsPbI2Br溶液,经加热搅拌得到前驱体溶液;然后,将SnCl2加入上述前驱体溶液中,经室温搅拌得到SnCl2掺杂的CsPbI2Br前驱体溶液;
(2)将步骤(1)中所得到的CsPbI2Br前驱体溶液过滤备用;将过滤后溶液旋涂在导电衬底上,以3000~4000转/分钟的速度旋转50~60秒,当衬底旋转到特定时间段内,在薄膜中央滴加反溶剂;最后将沉积好的前驱体薄膜在150~200℃的温度条件下退火5~10分钟后,结晶形成CsPbI2Br薄膜。
2.根据权利要求1所述氯化亚锡掺杂的无机钙钛矿薄膜的制备方法,其特征在于,SnCl2的掺杂量为PbI2和PbBr2总质量的2~20%。
3. 根据权利要求1所述氯化亚锡掺杂的无机钙钛矿薄膜的制备方法,其特征在于,加热搅拌是指在50~60℃下搅拌1 h ~2 h。
4.根据权利要求1所述氯化亚锡掺杂的无机钙钛矿薄膜的制备方法,其特征在于,特定时间段是指在开始旋涂后第30~35秒开始滴加反溶剂;反溶剂为乙酸乙酯或者异丙醇,反溶剂的滴加量为150~200μL。
5.根据权利要求1所述氯化亚锡掺杂的无机钙钛矿薄膜的制备方法,其特征在于,过滤后溶液的旋涂量为100~200μL。
6.权利要求1至5任一所述的制备方法制得的氯化亚锡掺杂的无机钙钛矿薄膜。
7.权利要求6所述的氯化亚锡掺杂的无机钙钛矿薄膜在制备无机钙钛矿电池中的应用。
8.根据权利要求7所述的应用,其特征在于,将氯化亚锡掺杂的无机钙钛矿薄膜作为光吸收层,采用刮涂法将导电碳浆料涂在其表面,通过在空气中100~130℃退火20~30分钟制得碳电极CsPbI2Br无机钙钛矿电池。
9. 根据权利要求8所述的应用,其特征在于,所述氯化亚锡掺杂的无机钙钛矿薄膜的厚度为180 nm ~320nm,碳电极厚度为10μm ~20μm。
CN202110141383.4A 2021-02-02 2021-02-02 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用 Pending CN112735945A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110141383.4A CN112735945A (zh) 2021-02-02 2021-02-02 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110141383.4A CN112735945A (zh) 2021-02-02 2021-02-02 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN112735945A true CN112735945A (zh) 2021-04-30

Family

ID=75595458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110141383.4A Pending CN112735945A (zh) 2021-02-02 2021-02-02 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN112735945A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278510A1 (en) * 2010-05-12 2011-11-17 National Chung Chen University Tin-Doped Indium Oxide Thin Films And Method For Making Same
CN105514277A (zh) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 一种宽范围光谱吸收的钙钛矿光伏材料及其制备方法
CN109273601A (zh) * 2018-09-06 2019-01-25 华中科技大学 一种钙钛矿太阳能电池及其制备方法
CN109411554A (zh) * 2018-09-10 2019-03-01 暨南大学 一种阴阳离子共掺杂无机钙钛矿薄膜及其制备方法与应用
CN110504370A (zh) * 2019-07-08 2019-11-26 浙江浙能技术研究院有限公司 一种在空气环境中制备铯掺杂混合钙钛矿太阳能电池的方法
CN110556479A (zh) * 2019-09-12 2019-12-10 合肥工业大学 一种二氧化锡基介孔钙钛矿太阳能电池及其制备方法
CN110676385A (zh) * 2019-09-19 2020-01-10 北京化工大学 一种基于多功能界面修饰层的碳基钙钛矿太阳能电池
CN110718632A (zh) * 2019-09-02 2020-01-21 北京大学深圳研究生院 一种制备大面积钙钛矿层的方法和钙钛矿太阳能电池
CN111792851A (zh) * 2020-07-24 2020-10-20 西安电子科技大学 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法
CN113130678A (zh) * 2021-03-12 2021-07-16 郑州大学 一种全无机锡铅二元钙钛矿吸收材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278510A1 (en) * 2010-05-12 2011-11-17 National Chung Chen University Tin-Doped Indium Oxide Thin Films And Method For Making Same
CN105514277A (zh) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 一种宽范围光谱吸收的钙钛矿光伏材料及其制备方法
CN109273601A (zh) * 2018-09-06 2019-01-25 华中科技大学 一种钙钛矿太阳能电池及其制备方法
CN109411554A (zh) * 2018-09-10 2019-03-01 暨南大学 一种阴阳离子共掺杂无机钙钛矿薄膜及其制备方法与应用
CN110504370A (zh) * 2019-07-08 2019-11-26 浙江浙能技术研究院有限公司 一种在空气环境中制备铯掺杂混合钙钛矿太阳能电池的方法
CN110718632A (zh) * 2019-09-02 2020-01-21 北京大学深圳研究生院 一种制备大面积钙钛矿层的方法和钙钛矿太阳能电池
CN110556479A (zh) * 2019-09-12 2019-12-10 合肥工业大学 一种二氧化锡基介孔钙钛矿太阳能电池及其制备方法
CN110676385A (zh) * 2019-09-19 2020-01-10 北京化工大学 一种基于多功能界面修饰层的碳基钙钛矿太阳能电池
CN111792851A (zh) * 2020-07-24 2020-10-20 西安电子科技大学 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法
CN113130678A (zh) * 2021-03-12 2021-07-16 郑州大学 一种全无机锡铅二元钙钛矿吸收材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGNAN LIU ET AL: "Doping and surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals for LEDs", 《MATERIALS LETTERS》 *

Similar Documents

Publication Publication Date Title
US8617642B2 (en) Preparation of thin film for solar cell using paste
CN110246967B (zh) 一种低温制备柔性钙钛矿太阳能电池的方法
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN107620052B (zh) 一种甲脒铯铅碘钙钛矿薄膜的化学气相沉积制备方法及基于其的光伏器件
CN109273601B (zh) 一种钙钛矿太阳能电池及其制备方法
CN108831998B (zh) 一种基于聚电解质无机钙钛矿太阳能电池的制备方法
Wu et al. High efficiency and robust performance of organo lead perovskite solar cells with large grain absorbers prepared in ambient air conditions
CN104183704A (zh) 一种量子点共敏化型钙钛矿太阳能电池的制备方法
CN113035991A (zh) 一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法
CN114284439A (zh) 一种在高湿度环境下制备CsPbI3钙钛矿薄膜及其高效太阳能电池的方法及应用
CN112331557A (zh) 一种无机无铅双钙钛矿薄膜、太阳能电池及其制备方法
JP5288429B2 (ja) チタニア多孔質層の製造方法
CN113193126B (zh) 一种实现无甲胺钙钛矿薄膜表面重构的制备方法及其应用
CN112968134B (zh) 一种熔盐辅助结晶的钙钛矿太阳电池及其制备方法
US11034590B2 (en) BaSnO3 thin flim and low-temperature preparation method therefor
CN112071994B (zh) 一种刮涂法制备大尺寸晶粒钙钛矿薄膜的方法
CN111403606B (zh) 一种掺杂番茄红素的钙钛矿太阳能电池及其制备方法
CN112735945A (zh) 一种氯化亚锡掺杂的无机钙钛矿薄膜、其制备方法及应用
CN108832004B (zh) 一种消除钙钛矿电池滞后现象的界面修饰方法
CN109065738B (zh) 原位合成高结晶度铜掺杂钙钛矿薄膜的方法
CN110085745A (zh) 一种高替代率高效钙钛矿太阳能电池及其制备方法
CN115172612A (zh) 改善柔性钙钛矿太阳能电池柔韧性及机械性能的方法
CN114171685A (zh) 一种Dion-Jacobson相二维钙钛矿太阳能电池及其制备方法
KR20170125784A (ko) BaSnO3 박막 및 이의 저온 제조 방법
CN109802038A (zh) NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210430