CN111708248B - 波长转换元件及其制造方法、光源装置、投影仪 - Google Patents

波长转换元件及其制造方法、光源装置、投影仪 Download PDF

Info

Publication number
CN111708248B
CN111708248B CN202010180748.XA CN202010180748A CN111708248B CN 111708248 B CN111708248 B CN 111708248B CN 202010180748 A CN202010180748 A CN 202010180748A CN 111708248 B CN111708248 B CN 111708248B
Authority
CN
China
Prior art keywords
phosphor
light
binder
phosphor particles
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010180748.XA
Other languages
English (en)
Other versions
CN111708248A (zh
Inventor
桥爪俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN111708248A publication Critical patent/CN111708248A/zh
Application granted granted Critical
Publication of CN111708248B publication Critical patent/CN111708248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Optical Filters (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供波长转换元件及其制造方法、光源装置、投影仪,能够抑制荧光的扩展。波长转换元件具有:荧光体层,其具有多个荧光体粒子、和使多个荧光体粒子中的彼此相邻的一方的荧光体粒子与另一方的荧光体粒子结合的粘合剂;以及基板,在该基板设置有荧光体层,粘合剂含有玻璃,粘合剂使一方的荧光体粒子的表面的一部分与另一方的荧光体粒子的表面的一部分结合。

Description

波长转换元件及其制造方法、光源装置、投影仪
技术领域
本发明涉及波长转换元件、光源装置、投影仪和波长转换元件的制造方法。
背景技术
以往,已知有如下的波长转换元件,该波长转换元件射出由所入射的激励光激励出且波长比激励光的波长长的荧光。作为这样的波长转换元件,已知具有基材、形成于基材的表面的反射层、和形成在反射层上的荧光体层的发光元件(例如,参照专利文献1)。
在专利文献1所记载的发光元件中,荧光体层具有多个荧光体粒子、和使多个荧光体粒子结合的粘合剂。
粘合剂例如包含水玻璃等无机材料的交联体。粘合剂使彼此相邻的一方的荧光体粒子与另一方的荧光体粒子结合,并且使荧光体粒子与反射层的表面结合。荧光体粒子是吸收从外部照射的激励光而发出荧光的粒子状荧光体。荧光体粒子中例如包含YAG类材料的荧光物质。而且,在专利文献1中示出了将具有上述发光元件的光源装置应用于投影仪的例子。
专利文献1:日本特开2015-197474号公报
在专利文献1所记载的荧光体层中,多个荧光体粒子被封入到粘合剂内。换言之,粘合剂以覆盖荧光体粒子的整个表面的方式存在于荧光体粒子的周围。因此,从荧光体粒子射出的荧光入射到粘合剂内,在粘合剂内传播并从荧光体层射出。从荧光体层射出的荧光从光源装置射出,并入射到构成光学系统的反射型液晶面板。
但是,当在荧光体层中荧光在粘合剂内传播时,荧光体层的表面上的荧光的射出区域大于激励光的入射区域。而且,当荧光的射出区域较大时,在光学系统中荧光相对于液晶面板的入射效率有可能下降。即,当荧光体粒子的整个表面被粘合剂覆盖时,从荧光体层被入射荧光的光学系统中的荧光的利用效率有可能下降。
因此,期望能够抑制荧光扩展的波长转换元件的结构。
发明内容
本发明的第1方式的波长转换元件的特征在于,具有:荧光体层,其具有多个荧光体粒子、和使所述多个荧光体粒子中的彼此相邻的一方的荧光体粒子与另一方的荧光体粒子结合的粘合剂;以及基板,在该基板设置有所述荧光体层,所述粘合剂含有玻璃,所述粘合剂使所述一方的荧光体粒子的表面的一部分与所述另一方的荧光体粒子的表面的一部分结合。
在上述第1方式中,优选的是,所述粘合剂的体积相对于将所述多个荧光体粒子的体积合计与所述粘合剂的体积合计进行合计而得的体积的比例大于0vol%并且为10vol%以下。
本发明的第2方式的光源装置的特征在于,具有:上述波长转换元件;以及光源,其向所述波长转换元件射出激励光。
本发明的第3方式的波长转换元件的制造方法的特征在于,具有:调制工序,调制出将荧光体粒子与含有玻璃的粘合剂混合而得的混合物;涂敷工序,将所述混合物涂敷于基板;以及烧制工序,对所述混合物进行烧制,所述烧制工序中的所述混合物的烧制温度比所述玻璃的软化点高100℃以上。
本发明的第4方式的波长转换元件的制造方法的特征在于,具有:调制工序,调制出将荧光体粒子与含有玻璃的粘合剂混合而得的混合物;涂敷工序,将所述混合物涂敷于基板;以及烧制工序,对所述混合物进行烧制,所述烧制工序中的所述玻璃的粘度为106dPa·s以下的值。
本发明的第5方式的波长转换元件的特征在于,该波长转换元件是通过上述波长转换元件的制造方法而制造出的。
本发明的第6方式的光源装置的特征在于,具有:上述波长转换元件;以及光源,其向所述波长转换元件射出激励光。
本发明的第7方式的投影仪的特征在于,具有:上述光源装置;光调制装置,其根据图像信息对从所述光源装置射出的光进行调制;以及投射光学装置,其投射由所述光调制装置调制后的光。
附图说明
图1是示出一个实施方式中的投影仪的结构的示意图。
图2是示出一个实施方式中的光源装置的结构的示意图。
图3是从激励光的入射侧观察到的一个实施方式中的波长转换元件的俯视图。
图4是示出一个实施方式中的波长转换元件的截面的示意图。
图5是示出一个实施方式中的基于粘合剂的荧光体粒子的结合状态的示意图。
图6是示出一个实施方式中的相对于结合部面积的光学系统中的明亮度和光的扩展的曲线图。
图7是示出一个实施方式中的玻璃含有率与光学系统效率的关系的曲线图。
图8是示出一个实施方式中的玻璃含有率为30vol%、烧制温度为1000℃的荧光体层的图像。
图9是示出一个实施方式中的玻璃含有率为20vol%、烧制温度为1000℃的荧光体层的图像。
图10是示出一个实施方式中的玻璃含有率为10vol%、烧制温度为1000℃的荧光体层的图像。
图11是示出一个实施方式中的玻璃含有率为5vol%、烧制温度为1000℃的荧光体层的图像。
图12是示出一个实施方式中的玻璃含有率为3vol%、烧制温度为1000℃的荧光体层的图像。
图13是示出一个实施方式中的波长转换元件的制造方法的流程图。
图14是示出一个实施方式中的烧制温度与玻璃的粘度的关系的曲线图。
图15是示出一个实施方式中的玻璃含有率为5vol%、烧制温度为750℃的荧光体层的图像。
图16是示出一个实施方式中的玻璃含有率为5vol%、烧制温度为800℃的荧光体层的图像。
图17是示出一个实施方式中的玻璃含有率为5vol%、烧制温度为850℃的荧光体层的图像。
图18是示出一个实施方式中的玻璃含有率为5vol%、烧制温度为900℃的荧光体层的图像。
图19是示出一个实施方式中的玻璃含有率为5vol%、烧制温度为950℃的荧光体层的图像。
标号说明
1:投影仪;343(343B、343G、343R):光调制装置;36:投射光学装置;4:光源装置;411:光源;51:波长转换元件;52:基板;54:荧光体层;BN:粘合剂;BP(BP1、BP2):结合部;C1、C2:中心;PR(PR1、PR2):荧光体粒子;S1:糊剂调制工序S1(调制工序);S2:荧光体混合工序(调制工序);S4:涂敷工序S4;S6:烧制工序;VL:假想线。
具体实施方式
以下,基于附图对本发明的一个实施方式进行说明。
[投影仪的概略结构]
图1是示出本实施方式的投影仪1的结构的示意图。
本实施方式的投影仪1将对从后述的光源装置4射出的光进行调制而形成与图像信息对应的图像的图像光放大投射到屏幕等被投射面上。如图1所示,投影仪1具有构成外装的外装壳体2、以及配置于外装壳体2内的光源装置4和光学装置30。另外,之后详细叙述光源装置4和光学装置30的结构。除此以外,虽然省略图示,但是,投影仪1还具有对投影仪1的动作进行控制的控制装置、向电子部件供给电力的电源装置和对冷却对象进行冷却的冷却装置。
[外装壳体的结构]
外装壳体2分别具有未图示的顶面部和底面部、以及正面部21、背面部22、左侧面部23和右侧面部24,并形成为大致长方体形状。
正面部21具有使后述的投射光学装置36的一部分露出的开口部211,由投射光学装置36投射的图像通过开口部211。此外,正面部21具有排气口212,该排气口212将对投影仪1内的冷却对象进行冷却后的冷却气体排出到外装壳体2的外部。并且,右侧面部24具有将外装壳体2外的气体作为冷却气体导入到内部的导入口241。
[光学装置的结构]
光学装置30具有均匀化装置31、颜色分离装置32、中继装置33、图像形成装置34、光学部件用壳体35和投射光学装置36。
均匀化装置31使从光源装置4射出的光均匀化。利用均匀化装置31均匀化后的光经由颜色分离装置32和中继装置33对图像形成装置34的后述的光调制装置343的调制区域进行照明。均匀化装置31具有2个透镜阵列311、312、偏振转换元件313和重叠透镜314。
颜色分离装置32将从均匀化装置31入射的光分离成红、绿和蓝的各色光。颜色分离装置32具有2个分色镜321、322以及使由分色镜321分离出的蓝色光反射的反射镜323。
中继装置33设置在比蓝色光的光路和绿色光的光路长的红色光的光路上,抑制红色光的损耗。中继装置33具有入射侧透镜331、中继透镜333和反射镜332、334。
另外,在本实施方式中,在红色光的光路上设置有中继装置33,但是,不限于此,例如也可以构成为将光路比其他色光的光路长的色光设为蓝色光,在蓝色光的光路上设置中继装置33。
图像形成装置34对所入射的红、绿和蓝的各色光进行调制,对调制后的各色光进行合成来形成由投射光学装置36投射的图像光。图像形成装置34具有与入射的色光对应地设置的3个场透镜341、3个入射侧偏振片342、3个光调制装置343和3个射出侧偏振片344、以及1个颜色合成装置345。
光调制装置343根据图像信息对从光源装置4射出的光进行调制。光调制装置343包含对红色光进行调制的光调制装置343R、对绿色光进行调制的光调制装置343G和对蓝色光进行调制的光调制装置343B。在本实施方式中,光调制装置343由透射型液晶面板构成,通过入射侧偏振片342、光调制装置343和射出侧偏振片344构成液晶光阀。
颜色合成装置345对由光调制装置343B、343G、343R调制后的各色光进行合成来形成上述图像光。在本实施方式中,颜色合成装置345由十字分色棱镜构成,但不限于此,例如还能够由多个分色镜构成。
光学部件用壳体35分别将上述的均匀化装置31、颜色分离装置32、中继装置33和图像形成装置34收纳于内部。另外,对光学装置30设定作为设计上的光轴的照明光轴Ax,光学部件用壳体35在照明光轴Ax上的规定位置保持均匀化装置31、颜色分离装置32、中继装置33和图像形成装置34。光源装置4和投射光学装置36配置于照明光轴Ax上的规定位置。
投射光学装置36将从图像形成装置34入射的图像光放大投射到被投射面上。即,投射光学装置36投射由光调制装置343B、343G、343R调制后的光。投射光学装置36例如构成为在筒状的镜筒内收纳有多个透镜的成组透镜。
[光源装置的结构]
图2是示出光源装置4的结构的示意图。
光源装置4向均匀化装置31射出对光调制装置343进行照明的照明光LT。如图2所示,光源装置4具有光源用壳体CA以及分别收纳在光源用壳体CA内的光源部41、无焦光学元件42、第1相位差元件43、均束器光学元件44、偏振分离元件45、第1聚光元件46、第2相位差元件47、第2聚光元件48、扩散反射装置49和波长转换装置5。
光源用壳体CA为尘埃等不易侵入内部的密闭壳体。
光源部41、无焦光学元件42、第1相位差元件43、均束器光学元件44、偏振分离元件45、第2相位差元件47、第2聚光元件48和扩散反射装置49配置在照明光轴Ax1上,该照明光轴Ax1设定在光源装置4中。
波长转换装置5、第1聚光元件46和偏振分离元件45配置在照明光轴Ax2上,该照明光轴Ax2设定在光源装置4中,并且与照明光轴Ax1垂直。照明光轴Ax2在图1所示的透镜阵列311的位置处与照明光轴Ax一致。换言之,照明光轴Ax2设定在照明光轴Ax的延长线上。
[光源部的结构]
光源部41具有射出光的光源411和准直透镜414。
光源411具有分别作为发光元件的多个固体光源412和支承部件413。
固体光源412是射出作为激励光的s偏振的蓝色光L1s的半导体激光器。蓝色光L1s例如是峰值波长为440nm的激光。
支承部件413支承分别呈阵列状地配置在与照明光轴Ax1垂直的平面中的多个固体光源412。支承部件413是具有导热性的金属制部件。
从固体光源412射出的蓝色光L1s被准直透镜414转换为平行光束,并入射到无焦光学元件42。
另外,在本实施方式中,光源411是射出作为偏振方向相同的线偏振光的s偏振的蓝色光L1s的结构。但是,不限于此,光源411也可以构成为射出作为偏振方向不同的线偏振光的蓝色光。该情况下,可以省略第1相位差元件43。
[无焦光学元件的结构]
无焦光学元件42对从光源部41入射的蓝色光L1s的光束直径进行调整后使其入射到第1相位差元件43。无焦光学元件42由对所入射的光进行会聚的透镜421和使由透镜421会聚后的光束平行化的透镜422构成。
[第1相位差元件的结构]
第1相位差元件43设置在无焦光学元件42与均束器光学元件44之间,更具体而言,设置在透镜422与构成均束器光学元件44的多透镜阵列441之间的光路上。第1相位差元件43设置成能够沿着蓝色光L1s所入射的面内、即与照明光轴Ax1垂直的平面旋转。第1相位差元件43由相对于蓝色光L1s的波长446nm的1/2波长板构成。第1相位差元件43的光学轴与入射到第1相位差元件43的蓝色光L1s的偏振轴交叉。另外,第1相位差元件43的光学轴也可以为第1相位差元件43的快轴和慢轴中的任意一个。
蓝色光L1s为相干的s偏振光。蓝色光L1s原本为s偏振光,但由于蓝色光L1s的偏振轴与第1相位差元件43的光学轴交叉,所以蓝色光L1s透过第1相位差元件43,由此,s偏振光的一部分被转换为p偏振光。因此,透过第1相位差元件43的蓝色光成为原本的作为s偏振光的蓝色光L1s与作为p偏振光的蓝色光L2p以规定的比例混合存在的光。
另外,光源装置4也可以具有使第1相位差元件43旋转的电机。
[均束器光学元件的结构]
均束器光学元件44使蓝色光L1s、L2p的照度分布均匀化。均束器光学元件44由一对多透镜阵列441、442构成。
[偏振分离元件的结构]
通过均束器光学元件44的蓝色光L1s、L2p入射到偏振分离元件45。
偏振分离元件45是棱镜型的偏振分束器,对所入射的光所包含的s偏振成分和p偏振成分进行分离。具体而言,偏振分离元件45使s偏振成分反射,使p偏振成分透过。此外,偏振分离元件45具有无论是s偏振成分和p偏振成分中的哪个偏振成分都使规定波长以上的光透过的颜色分离特性。因此,s偏振的蓝色光L1s被偏振分离元件45反射,入射到第1聚光元件46。另一方面,p偏振的蓝色光L2p透过偏振分离元件45,入射到第2相位差元件47。
[第1聚光元件的结构]
第1聚光元件46将被偏振分离元件45反射的蓝色光L1s会聚到波长转换元件5。此外,第1聚光元件46使从波长转换装置5入射的荧光YL平行化。在图2的例子中,第1聚光元件46由2个透镜461、462构成,但是,构成第1聚光元件46的透镜的数量是任意的。
[波长转换装置的结构]
波长转换装置5将通过被入射光而激励出、且波长与所入射的光的波长不同的光射出到第1聚光元件46。换言之,波长转换装置5对所入射的光的波长进行转换。
在本实施方式中,波长转换装置5具有:波长转换元件51,其与作为激励光的蓝色光L1s的入射对应地射出具有比蓝色光L1s的波长长的波长的荧光YL;以及旋转部RT,其使波长转换元件51以与作为规定的旋转轴的照明光轴Ax2平行的旋转轴Rx为中心进行旋转。另外,波长转换元件51的旋转轴Rx是沿着作为激励光的蓝色光L1s的入射方向的旋转轴。
这些中的波长转换元件51是向蓝色光L1s的入射侧射出荧光YL的反射型波长转换元件。另外,荧光YL例如是峰值波长为500~700nm的光。即,荧光YL包含绿色光成分和红色光成分。
之后详细叙述这样的波长转换元件51的结构。
从波长转换装置5射出的荧光YL在沿着照明光轴Ax2通过第1聚光元件46之后,入射到偏振分离元件45。然后,荧光YL沿着照明光轴Ax2通过偏振分离元件45。
[第2相位差元件和第2聚光元件的结构]
第2相位差元件47配置在偏振分离元件45与第2聚光元件48之间。第2相位差元件47为1/4波长板,通过偏振分离元件45的p偏振的蓝色光L2p在通过第2相位差元件47转换为圆偏振的蓝色光L2c之后,入射到第2聚光元件48。
[第2聚光元件的结构]
第2聚光元件48将从第2相位差元件47入射的蓝色光L2c会聚至扩散反射装置49。此外,第2聚光元件48使从扩散反射装置49入射的蓝色光L2c平行化。另外,构成第2聚光元件48的透镜的数量能够适当变更。
[扩散反射装置的结构]
扩散反射装置49以与从波长转换装置5射出的荧光YL相同的扩散角,使从第2聚光元件48入射的蓝色光L2c朝向偏振分离元件45扩散反射。作为扩散反射装置49的结构,能够例示具有使所入射的蓝色光L2c进行兰伯特反射的反射板、以及使反射板以与照明光轴Ax1平行的旋转轴为中心旋转的旋转装置的结构。在光源装置4中,通过使用这样的扩散反射装置49使蓝色光L2c扩散反射,能够获得具有均匀的照度分布的蓝色光。
如图2所示,被扩散反射装置49扩散反射后的蓝色光L2c在通过第2聚光元件48之后,再次入射到第2相位差元件47。蓝色光L2c在被扩散反射装置49反射时,被转换为旋转方向为相反方向的圆偏振光。因此,从第2聚光元件48入射到第2相位差元件47的蓝色光L2c被第2相位差元件47转换为s偏振的蓝色光L2s,而不是从偏振分离元件45入射到第2相位差元件47的p偏振的蓝色光L2c。然后,s偏振的蓝色光L2s被偏振分离元件45反射,并与荧光YL一起沿着照明光轴Ax2入射到上述的均匀化装置31。
[波长转换元件的结构]
图3是从激励光的入射侧观察到的波长转换元件51的俯视图。图4是示意性示出波长转换元件51的截面的图。
波长转换元件51是向激励光的入射侧射出具有与激励光的波长不同波长的光即荧光的反射型波长转换元件。如图3和图4所示,波长转换元件51具有基板52、散热片53和荧光体层54。另外,波长转换元件51通过后述的制造方法来制造。
另外,在以下的说明和图中,将入射到荧光体层54的蓝色光L1s记作激励荧光体层54所包含的荧光体粒子的激励光。此外,设激励光入射到荧光体层54的入射方向为+Z方向、与+Z方向相反的方向为-Z方向。
[基板的结构]
基板52除了是保持散热片53和荧光体层54的保持部件以外,也是使从荧光体层54传递的热散出的散热部件。如图3所示,基板52利用包含例如氧化铝、氧化锌中的至少任意一个的金属材料,从-Z方向观察时形成为圆板状。基板52借助旋转部RT,以旋转轴Rx为中心与散热片53和荧光体层54一起旋转。
如图4所示,基板52具有作为-Z方向的面的第1面521和作为+Z方向的面的第2面522。
第1面521是与荧光体层54相对的相对面。
第2面522是与第1面521相反的一侧的面。在第2面522上粘接有散热片53,在荧光体层54中产生的热经由基板52传递至散热片53,所传递的热被传递至整个散热片53。散热片53通过增大与周围气体的接触面积,提高了传递至基板52的热的散热效率。散热片53例如由铝、石墨等构成。
基板52是以低温对亚微米级的氧化铝粉末进行烧制从而在内部包含体积比为20%左右的微小气孔的烧结体,使从荧光体层54入射的光反射到荧光体层54侧。
[荧光体层的结构]
荧光体层54相对于基板52设置在作为激励光的入射侧的-Z方向上。荧光体层54将所入射的激励光转换为荧光并射出。换言之,荧光体层54对所入射的激励光进行波长转换,生成波长比激励光的波长长的光即荧光并射出。如图3所示,荧光体层54在从-Z方向观察时形成为以波长转换元件51的旋转轴Rx为中心的圆环状。
如图4所示,荧光体层54具有:第1面541,其为-Z方向的面;以及第2面542,其为+Z方向的面,并且是与第1面541相反的一侧的面。第1面541是入射激励光的入射面,并且是射出荧光的射出面。第2面542是与基板52相对的相对面。
图5是示出利用粘合剂BN结合的荧光体粒子PR(PR1、PR2)的示意图。
荧光体层54具有如下结构:包含多个荧光体粒子和含有玻璃的粘合剂,利用粘合剂将多个荧光体粒子相互结合起来。例如,如图5所示,相邻的2个荧光体粒子PR(PR1、PR2)的各个表面的一部分利用粘合剂BN结合而被相互接合起来。
荧光体粒子PR是含有荧光体材料和作为发光中心的活化剂的粒子。作为活化剂,例如可举出Ce、Eu、Pr、Cr、Gd和Ga。作为荧光体材料,可采用YAG荧光体材料。但是,不限于此,对于荧光体材料,也可以替代YAG荧光体材料,采用用Lu、Gd或Ga对YAG荧光体中的Y进行置换后的荧光体材料,还可以采用KSF荧光体材料或SCASN荧光体材料等。并且,荧光体材料也可以是多个荧光体材料的混合物。
作为粘合剂,在本实施方式中,使用了硼硅酸玻璃,但是也可以为磷酸盐类玻璃。
另外,在荧光体层54的内部设置有微小的空隙。通过包含这样的空隙,抑制了荧光体层54内部的荧光扩展,通过在较小的范围内取出来自荧光体层54的荧光,能够提高光学系统的聚光效率。
以下,设在荧光体粒子PR中与粘合剂BN结合的结合部为结合部BP。例如,设荧光体粒子PR1中的与粘合剂BN结合的结合部为结合部BP(BP1)、荧光体粒子PR2中的与粘合剂BN结合的结合部为结合部BP(BP2)。
[荧光体粒子中的结合部面积与光学系统中的明亮度的关系]
在本实施方式中,结合部BP的面积被设定为荧光体粒子PR的表面积的10%以下的值,以提高透过光学装置30的光的明亮度,光学装置30是入射有包含从荧光体层54射出的荧光在内的照明光的光学系统。详细来说,结合部BP的面积被设定为荧光体粒子PR的表面积的3%以上、5%以下的范围内的值。该值基于以下的实验结果。
图6是示出相对于结合部BP的面积占据荧光体粒子PR的表面积的比例的、光学装置30的光学系统中的明亮度和光的扩展的曲线图。
发明人进行了如下实验:使结合部BP的面积相对于荧光体粒子PR的表面积的比例发生变化,测量从荧光体层54射出的光的扩展和光学装置30的光学系统中的明亮度。另外,这里所说的光学系统中的明亮度表示可会聚至光调制装置343的光量。此外,光的扩展是荧光体层54的第1面541上的、荧光的射出区域的面积相对于激励光的入射区域的面积的比例。在以下的说明中,将结合部BP的面积相对于荧光体粒子PR的表面积的比例简称作面积比例。
如在图6中通过点划线所示,面积比例越大,从荧光体层54射出的光的扩展越大。即,结合部BP的面积越大,从荧光体层54射出的光的扩展越大。
如在图6中通过实线所示,可知并不是面积比例越小,光学系统中的明亮度越高,光学系统中的明亮度存在最大值(最高值)。
详细来说,在面积比例为10%以下的范围内,光学系统中的明亮度在伴随面积比例增大而升高之后降低。而且,可知在面积比例位于3%以上、5%以下的范围内时,示出光学系统中的明亮度的最大值。
另一方面,在面积比例超过10%的范围内,光学系统中的明亮度比面积比例为0%时下降,且面积比例越大,光学系统中的明亮度越下降。
即,可知光学系统中的明亮度在面积比例为10%以下时,比面积比例为0%时高,在面积比例处于3%以上、5%以下的范围内时,光学系统中的明亮度为最大。
认为像这样存在光学系统中的明亮度升高时的面积比例的范围基于以下的理由。
荧光体粒子PR的折射率为大约1.8。与此相对,构成粘合剂BN的硼硅酸玻璃的折射率为大约1.5。
由此,在荧光体粒子PR的内部生成而入射到结合部BP的荧光从结合部BP起在粘合剂BN中传递,并进入相邻的荧光体粒子PR内。
另一方面,由于在荧光体层54的内部设置有空隙,所以荧光体粒子PR的外表面上的除了结合部BP以外的区域与空气接触。因此,依照菲涅耳公式,在荧光体粒子PR的内部生成而入射到荧光体粒子PR的外表面的除了结合部BP以外的区域的荧光折射,大部分向荧光体粒子PR的外部射出,一部分在内部反射或者在荧光体粒子PR的内部被全反射。
在面积比例较大的情况下,入射到结合部BP的荧光的光量增加。即,在面积比例较大的情况下,经由结合部BP在粘合剂BN中传递的荧光的光量增加。该情况下,由于荧光体粒子PR的折射率与粘合剂BN的折射率之差较小,且荧光体粒子PR与粘合剂BN的界面上的折射较小,因此,荧光容易扩展至周边的荧光体粒子PR。因此,荧光作为较大扩展的光源从荧光体层54的第1面541向外部射出。由此,使从荧光体层54射出的荧光难以会聚至作为光学系统的光学装置30的光调制装置343。即,该情况下,光学系统中的明亮度下降。
在面积比例较小的情况下,在荧光体粒子PR的内部生成的荧光容易入射到荧光体粒子PR的外表面上的除了结合部BP以外的区域、即、与空气的界面。因此,在荧光体粒子PR与空气的界面上被折射而从荧光体粒子PR射出的荧光的光量和被全反射的荧光的光量增加,因此,可抑制荧光扩散至周边的大范围的荧光体粒子PR,荧光作为较小扩展的光源从荧光体层54的第1面541向外部射出。这样的荧光容易会聚至光调制装置343。即,该情况下,光学系统中的明亮度提高。
另一方面,在面积比例例如为如1%以下的值的非常小的值的情况下,荧光容易被封闭至荧光体粒子PR的内部。该情况下,容易反复进行荧光在与空气接触的界面上的反射,荧光的光路长度增大。这样,荧光多次通过荧光体粒子PR内,由此容易产生自吸收。自吸收是指由于荧光体的发光波长与荧光体的吸收波长部分重叠而使得荧光体吸收荧光而发热的现象。当产生这样的自吸收时,从荧光体层54射出的荧光的光量减少,进而,光学系统中的明亮度下降。
另一方面,当在荧光体粒子PR中的与空气接触的界面上的反射和折射的频度提高时,从荧光体层54的外部照射的激励光容易在荧光体粒子PR的表面或荧光体粒子PR的内部被反射。在不转换为荧光的情况下放射到荧光体层54外部的激励光的光量增大。即,容易产生激励光的反向散射(后向散射)。该情况下,转换为荧光的激励光的光量减小,由此,从荧光体层54射出的荧光的光量减小,进而,光学系统中的明亮度可能下降。
基于这样的考察可知,为了提高光学系统中的明亮度,面积比例优选为10%以下的值,更优选为3%以上、5%以下的值。
[荧光体粒子中的与粘合剂结合的结合部的大小]
在本实施方式中,为了使结合部BP的面积相对于荧光体粒子PR的表面积的比例成为10%以下,以结合部BP的大小成为以下大小的方式制作了荧光体层54。另外,在以下的说明中,如图5所示,设与假想线VL垂直并且相互垂直的两个轴为X轴和Y轴,该假想线VL连接利用粘合剂BN结合的荧光体粒子PR1、PR2的各中心C1、C2。
在本实施方式中,结合部BP1在Y轴上的尺寸为荧光体粒子PR1的直径D1的1/4以下,虽然省略了图示,但结合部BP1在X轴上的尺寸为荧光体粒子PR1的直径D1的1/4以下。换言之,结合部BP1在Y轴上的尺寸为荧光体粒子PR1在Y轴上的大小的1/4以下,虽然省略了图示,但结合部BP1在X轴上的尺寸为荧光体粒子PR1在X轴上的大小的1/4以下。
同样,结合部BP2在Y轴上的尺寸为荧光体粒子PR2的直径D2的1/4以下,虽然省略了图示,但结合部BP2在X轴上的尺寸为荧光体粒子PR2的直径D2的1/4以下。换言之,结合部BP2在Y轴上的尺寸为荧光体粒子PR2在Y轴上的大小的1/4以下,虽然省略了图示,但结合部BP2在X轴上的尺寸为荧光体粒子PR2在X轴上的大小的1/4以下。
这样,结合部BP的尺寸为上述的大小,由此,上述比例成为10%以下的值,能够提高光学系统中的明亮度。
[通过计算获得的结合部的大小]
能够提高光学系统中的明亮度的上述面积比例也能够根据基于荧光体粒子PR的直径的计算结果得到支持。
在将荧光体层54所包含的荧光体粒子PR假设为球状的情况下,半径R的荧光体粒子PR的表面积为4π·R2
另一方面,在紧密地排列有粒径大体一致的球形的荧光体粒子PR的情况下,每单位体积的荧光体粒子PR的填充率一般为60~75%。该情况下,与1个荧光体粒子PR接触的其他荧光体粒子PR的数量为8~12。
在将与1个荧光体粒子PR接触的其他荧光体粒子PR的数量假设为8、粘合剂BN假设为厚度t且半径r的圆柱的情况下,结合部BP的总面积为8π·r2。另外,粘合剂BN的厚度为沿着图5所示的假想线VL的尺寸。此外,粘合剂BN的厚度优选为荧光体粒子PR的1/10以下。
由此,上述面积比例为8π·r2/(4π·R2)。即,上述面积比例为2r2/R2
在根据上述的实验结果将荧光体粒子PR的半径R假设为12μm、结合部BP的面积占据荧光体粒子PR的表面积的比例假设为5%(=0.05)的情况下,结合部BP的半径r为大约1.89μm。即,使荧光体粒子PR中的结合部BP的形状为圆的情况下的结合部BP的半径r为大约2μm,结合部BP的直径为大约4μm。此外,如果将与1个荧光体粒子PR接触的其他荧光体粒子PR的数量假设为12,则结合部BP的半径r为大约3μm,结合部BP的直径为大约6μm。因此,结合部BP的半径r为大约2~3μm,结合部BP的直径为大约4~6μm。
通过这样的计算求出的结合部BP的直径为基于上述假设的荧光体粒子PR的直径24μm的1/4以下的值。换言之,结合部BP在X轴和Y轴上的尺寸为荧光体粒子PR的直径的1/4以下的值。
如上所述,通过使结合部BP的尺寸相对于荧光体粒子PR的直径形成为上述的大小,能够使上述面积比例成为10%以下,进而能够提高光学系统中的明亮度。
结合部BP的大小之后将详述,能够通过调整制造荧光体层54时的温度来实现。在叙述波长转换元件51的制造方法时对该内容进行说明。
[荧光体层中的玻璃含有率]
图7是示出荧光体层54的玻璃含有率与光学系统效率的关系的曲线图。
另外,玻璃含有率通过荧光体层54中的粘合剂BN的体积比例(vol%)表示。具体而言,玻璃含有率为“100*玻璃的体积/(玻璃的体积+荧光体粒子的体积)”,不包含空隙的体积。
即,这里所说的玻璃含有率不是制作后的波长转换元件51的实际测量值,而是后述的波长转换元件51的制造工序中的糊剂调制工序S1和荧光体混合工序S2(参照图13)中的、基于粘合剂BN和荧光体粒子PR的投入量的体积比例的值。
另一方面,光学系统效率是“在从荧光体层54射出并透过作为光学系统的光学装置30之后从投射光学装置36射出的光的光量/照射到荧光体层54的激励光的光量”。因此,光学系统效率也可以是波长转换效率,该波长转换效率不通过“从荧光体层54射出并入射到光学装置30的光的光量/照射到荧光体层54的激励光的光量”来表示,而通过“从荧光体层54射出的光的光量/照射到荧光体层54的激励光的光量”来表示。
即,光学系统效率是包含聚光率的效率,可以换称作投影仪1的光学装置30中的光利用效率。
如图7所示,在本实施方式的荧光体层54中,在玻璃含有率大于0vol%并且为10vol%以下的范围内,与玻璃含有率为0vol%时相比,光学系统效率提高。而且,当玻璃含有率为10vol%时,光学系统效率成为与玻璃含有率为0vol%时大致相同的值。
当玻璃含有率超过10vol%时,与玻璃含有率为0vol%时相比,光学系统效率下降。认为该情况是因为,如上所述,在荧光体粒子PR与粘合剂BN的界面处,由于荧光进行反射和折射而引起的损耗下降,另一方面,荧光在荧光体层54中扩展,从荧光体层54射出荧光时的光的扩展增大,可在作为光学系统的光学装置30中利用的光量下降,表示为测量值之差。此外,认为在0~10%之间示出峰值是因为,当粘合剂BN极少时,在荧光体粒子PR与空隙(空气)的界面上,激励光多次反复进行反射和折射,由此,该激励光在对荧光体进行激励之前,从荧光体层54放出。
图8是利用SEM(Scanning Electron Microscope:扫描型电子显微镜)观察玻璃含有率为30vol%、荧光体层的烧制温度为1000℃的荧光体层时的图像。以下,将利用SEM观察的图像简称作SEM图像。
图9是玻璃含有率为20vol%、荧光体层的烧制温度为1000℃的荧光体层的SEM图像。图10是玻璃含有率为10vol%、荧光体层的烧制温度为1000℃的荧光体层的SEM图像。图11是玻璃含有率为5vol%、荧光体层的烧制温度为1000℃的荧光体层的SEM图像。图12是玻璃含有率为3vol%、荧光体层的烧制温度为1000℃的荧光体层的SEM图像。
在玻璃含有率为30vol%和20vol%的荧光体层中,如图8和图9所示,全部荧光体粒子PR的表面被粘合剂BN大致完全覆盖。特别是,在图8所示的玻璃含有率为30vol%的荧光体层中,各荧光体粒子PR被埋没于粘合剂BN中。这样,当荧光体粒子PR被硼硅酸玻璃的粘合剂BN覆盖时,如上所述,通过荧光体粒子PR生成的荧光容易在粘合剂BN中传播,从荧光体层射出的光的扩展增大,光学系统效率下降。
与此相对,在玻璃含有率为10vol%、5vol%和3vol%的荧光体层中,如图10~图12所示,粘合剂BN设置在相邻的荧光体粒子PR之间,荧光体粒子PR未被粘合剂BN完全覆盖。特别是,在玻璃含有率为5vol%和3vol%的荧光体层中,如图11和图12所示,粘合剂BN仅设置在相邻的荧光体粒子PR之间,荧光体粒子PR的表面大致被露出。
这样,利用粘合剂BN将相邻的荧光体粒子PR在表面的一部分处结合,使其他部分露出,由此,从荧光体层射出的光的扩展减小,能够提高光学系统效率。
因此,通过使玻璃含有率为大于0vol%并且10vol%以下的范围内的值,与玻璃含有率为0vol%时和玻璃含有率大于10vol%的情况相比,可构成能够提高光学系统效率的荧光体层。
[波长转换元件的制造方法]
图13是示出波长转换元件51的制造方法的流程图。
对包含上述的荧光体层54的波长转换元件51的制造方法进行说明。
如图13所示,波长转换元件51的制造方法包含依次实施的糊剂调制工序S1、荧光体混合工序S2、印刷版制作工序S3、涂敷工序S4、干燥工序S5、烧制工序S6和冷却工序S7。即,以下所示的波长转换元件51的制造方法包含本发明的制造方法。
糊剂调制工序S1和荧光体混合工序S2相当于调制工序。
糊剂调制工序S1是将在烧制后成为粘合剂BN的粘合剂构成物、乙基纤维素等树脂和使粘合剂构成物和树脂溶解的溶剂混合起来从而调制出玻璃糊剂的工序。另外,树脂用于对糊剂施加粘性。此外,作为粘合剂构成物,例如,可举出将包含60%以上的二氧化硅的硼硅酸玻璃压碎至直径1μm以下的粘合剂构成物。
荧光体混合工序S2是对在所调制的玻璃糊剂中混合YAG荧光体而得的混合糊剂进行调制的工序。将YAG荧光体与作为粘合剂构成物的硼硅酸玻璃的比例设为体积比为98:2~92:8的范围内的比例。另外,该范围是包含98:2和92:8的范围。更优选地,将YAG荧光体与硼硅酸玻璃的比例设为体积比为97:3~95:5的范围内的比例。该范围是包含97:3和95:5的范围。通过以这样的方式调整YAG荧光体与硼硅酸玻璃的比例,能够将玻璃含有率设定为上述范围内的值。
在印刷版制作工序S3中,以脱模印刷为圆形的形状的方式制作印刷版。
在涂敷工序S4中,使用所制作的印刷版在圆板形状的反射板上以厚度80μm印刷涂敷在荧光体混合工序S2中调制出的混合糊剂。反射板是在内部设置有反射用微小气孔的基板52。
在干燥工序S5中,以100℃左右对所涂敷的混合糊剂进行短时间干燥。
在烧制工序S6中,通过烧制炉使干燥后的混合糊剂按照10℃/分钟的比例升温至1000℃并进行短时间烧制。当在烧制工序S6中对混合糊剂进行烧制时,混合糊剂所包含的树脂和溶剂大致全部蒸发。另外,之后将详细叙述烧制工序S6中的烧制温度。
在冷却工序S7中,对所烧制的混合糊剂进行冷却。
通过包含以上的各工序S1~S7的制造方法,可制造具有上述面积比例和玻璃含有率大于0%并且为10%以下的荧光体层54的波长转换元件51。
[烧制工序中的烧制温度与玻璃粘度的关系]
图14是示出烧制温度与玻璃粘度的关系的曲线图。
如图14所示,玻璃的粘度伴随温度提高而下降,基于玻璃粘性的力伴随粘度减小而减弱。而且,当设玻璃由于自重而显著开始软化变形的温度且使得粘度为大约107.6dPa·s的温度的软化点为700℃时,通过使上述烧制工序S6的烧制温度成为软化点+100℃即800℃以上,玻璃的粘度为106dPa·s(=106P)以下。
以下示出以各烧制温度对玻璃含有率为5vol%的混合糊剂进行烧制而制作成的荧光体层的SEM图像。
即,图15是示出玻璃含有率为5vol%并且以750℃烧制而制作成的荧光体层的SEM图像。图16是示出玻璃含有率为5vol%并且以800℃烧制而制作成的荧光体层的SEM图像。图17是示出玻璃含有率为5vol%并且以850℃烧制而制作成的荧光体层的SEM图像。图18是示出玻璃含有率为5vol%并且以900℃烧制而制作成的荧光体层的SEM图像。图19是示出玻璃含有率为5vol%并且以950℃烧制而制作成的荧光体层的SEM图像。
另外,如上所述,图11示出玻璃含有率为5vol%并且以1000℃烧制而制作成的荧光体层的SEM图像。
在以接近玻璃的软化点的750℃烧制而成的荧光体层中,如图15所示,相对于荧光体粒子PR的直径的结合部BP的大小与上述相同。即,相对于荧光体粒子PR的直径的结合部BP的大小为荧光体粒子PR的直径的1/4以下。但是,除了粘合剂BN为粒状以外,表面也不平滑,因此,入射到粘合剂BN的荧光和激励光容易散射。当荧光和激励光的散射增加时,荧光的光路长度增大,当荧光的光路长度增加时,如上所述,由于荧光体粒子PR引起的自吸收的发生频度增加,且激励光不对荧光体粒子PR进行激励而从荧光体层54向外部反射,由此,荧光的光量减小。因此,在以750℃烧制而成的荧光体层中,从荧光体层射出的荧光的光量减小,上述的光学系统效率容易下降。
与此相对,在以800℃烧制而成的荧光体层中,如图16所示,相对于荧光体粒子PR的直径的结合部BP的大小与上述相同。即,相对于荧光体粒子PR的直径的结合部BP的大小为荧光体粒子PR的直径的1/4以下。但是,以800℃烧制而成的荧光体层中的结合部BP的大小小于以750℃烧制而成的荧光体层中的结合部BP的大小。除此以外,由于烧制温度相比软化点高100℃,且粘度足够低,因此,粘合剂BN的表面变得平滑,入射到粘合剂BN的荧光难以散射。此外,如图14所示,在烧制温度为800℃的情况下,玻璃的粘度为106dPa·s(=106P)以下,由于粘度足够低,因此粘合剂BN的表面变得平滑,入射到粘合剂BN的荧光难以散射。因此,相对于以750℃烧制而成的荧光体层,可抑制由于荧光体粒子PR引起的自吸收的产生,从而可抑制荧光的光量下降。
关于这样的情况,在图17~图19所示的以850℃、900℃和950℃烧制而成的荧光体层以及图11所示的以1000℃烧制而成的荧光体层中,也可以说同样如此。即,伴随烧制温度升高,玻璃的粘度下降,因此,除了结合部BP的大小减小以外,连接被结合的荧光体粒子PR之间的方向上的尺寸、即粘合剂BN的厚度也减小。并且,荧光体层中的粘合剂BN的表面变得更加平滑,可进一步抑制荧光的散射。认为在以超过1000℃的温度烧制而成的荧光体层中也同样如此。
特别是,当烧制温度为900℃以下时,粘度为105dPa·s以下,玻璃的流动性提高,粘合剂BN成为流线型而与相邻的荧光体粒子PR粘接,成为在光学上和热传导上均优选的状态。并且,根据图11可知,当烧制温度为1000℃时,粘度为104dPa·s,成为基于大致完全的流动性的粘接状态。
另一方面,当使上述烧制工序S6中的烧制温度成为1100℃以上时,作为荧光体的活化剂的Ce离子氧化而失活。因此,基于制造工序的方面而言,烧制工序S6中的烧制温度更优选为800℃以上、1100℃以下(比软化点高100℃以上、400℃以下)。如果其中的、烧制工序S6中的烧制温度为900℃以上、1100℃以下(比软化点高200℃以上、400℃以下),则能够适当地实现105dPa·s以下的粘度。并且,更优选烧制工序S6中的烧制温度为950℃以上、1050℃以下(比软化点高250℃以上、350℃以下)。该烧制温度为实现粘度104dPa·s的温度,荧光体层的发光效率更高,包含光学装置30的上述光学系统效率高。
[实施方式的效果]
根据以上所说明的本实施方式的投影仪1和波长转换元件51的制造工序,能够实现以下效果。
投影仪1具有:光源装置4;光调制装置343(343B、343G、343R),其根据图像信息对从光源装置4射出的光进行调制;以及投射光学装置36,其投射由光调制装置343调制后的光。光源装置4具有:光源411,其射出激励光;以及波长转换元件51,其对激励光进行波长转换,生成具有比激励光的波长长的波长的荧光。波长转换元件51具有:荧光体层54,其具有多个荧光体粒子PR、和使多个荧光体粒子PR中的彼此相邻的一方的荧光体粒子PR1与彼此相邻的另一方的荧光体粒子PR2结合的粘合剂BN;以及基板52,在该基板52设置有荧光体层54。粘合剂BN含有玻璃,粘合剂BN使一方的荧光体粒子PR1的表面的一部分与另一方的荧光体粒子PR2的表面的一部分结合。
根据这样的结构,粘合剂BN不与荧光体粒子PR的整个表面接合,而仅与荧光体粒子PR中的表面的一部分接合。因此,能够减小在荧光体粒子PR的表面上与粘合剂BN接合的结合部BP的面积。换言之,能够增大在荧光体粒子PR的表面上与空隙(空气)接触的区域的面积。由此,由于能够使在粘合剂BN中传播的荧光的光量下降,所以能够减小从荧光体层54以及波长转换元件51射出的光的扩展。因此,能够提高作为光学系统的光学装置30中的明亮度,能够提高上述光学系统效率。
在制作荧光体层54时,粘合剂BN的体积相对于将荧光体粒子PR的体积合计与粘合剂BN的体积合计进行合计而得的体积的比例大于0vol%并且为10vol%以下。即,在制作荧光体层54时被调制的混合糊剂中的玻璃含有率大于0vol%并且为10vol%以下。
根据这样的结构,如上所述,能够减小在荧光体粒子PR的表面中与粘合剂BN接合的结合部BP的面积。由此,能够减小在粘合剂BN内传播的荧光的光量,能够减小从荧光体层54以及波长转换元件51射出的荧光的扩展。因此,能够提高作为光学系统的光学装置30中的明亮度,能够提高上述光学系统效率。
波长转换元件51的制造方法包含:作为调制工序的糊剂调制工序S1和荧光体混合工序S2,调制出将含有玻璃的粘合剂BN与荧光体粒子PR混合而得的混合物即混合糊剂;涂敷工序S4,将混合糊剂涂敷于基板52;以及烧制工序S6,对混合糊剂进行烧制。而且,烧制工序S6中的混合糊剂的烧制温度比粘合剂BN所包含的玻璃的软化点高100℃以上。另外,在上述的例子中,作为玻璃,可以使用硼硅酸玻璃。
根据这样的制造方法,通过使混合糊剂的烧制温度比玻璃的软化点高100℃以上,可制造具有结合部BP的面积相对于荧光体粒子PR的表面积的比例为10%以下、且结合部BP在X轴和Y轴上的尺寸为荧光体粒子PR的直径的1/4以下的荧光体层54的波长转换元件51。因此,除了能够抑制入射到粘合剂BN的荧光的散射以外,还能够抑制由于荧光体粒子PR引起的自吸收的产生,能够制造抑制了荧光的光量下降的波长转换元件51。而且,光源装置4具有这样的波长转换元件51,由此,可构成能够提高光学装置30中的光利用效率即光学系统效率的光源装置4。
波长转换元件51的制造方法包含:作为调制工序的糊剂调制工序S1和荧光体混合工序S2,调制出将含有玻璃的粘合剂BN与荧光体粒子PR混合而得的混合物即混合糊剂;涂敷工序S4,将混合糊剂涂敷于基板52;以及烧制工序S6,对混合糊剂进行烧制。而且,烧制工序S6中的玻璃的粘度为106dPa·s以下。另外,在上述的例子中,作为玻璃,使用了硼硅酸玻璃。
根据这样的制造方法,与使烧制工序S6中的混合糊剂的烧制温度为比玻璃的软化点高100℃以上的温度的情况同样,通过使玻璃的粘度成为106dPa·s以下,能够制造具有结合部BP的面积相对于荧光体粒子PR的表面积的比例为10%以下、结合部BP在X轴和Y轴上的尺寸为荧光体粒子PR的直径的1/4以下的荧光体层54的波长转换元件51。因此,除了能够抑制入射到粘合剂BN的荧光的散射以外,还能够抑制由于荧光体粒子PR引起的自吸收的产生,此外,能够防止激励光的反射,因此,可制造抑制了荧光的光量下降的波长转换元件51。而且,光源装置4具有这样的波长转换元件51,由此,可构成能够提高光学装置30中的光利用效率即光学系统效率的光源装置4。
[实施方式的变形]
本发明不限于上述实施方式,能够达成本发明目的的范围内的变形、改良等都包含在本发明中。
在上述实施方式中,在荧光体粒子PR的表面上与粘合剂BN相结合的结合部BP在X轴上的尺寸为荧光体粒子PR的直径的1/4以下,结合部BP在Y轴上的尺寸为荧光体粒子PR的直径的1/4以下。但是,不限于此,只要结合部BP的面积相对于荧光体粒子PR的表面积的比例为10%以下的值(优选为3%以上、5%以下的值),则结合部BP的大小不限于上述值。
此外,只要结合部BP在X轴上的尺寸和Y轴上的尺寸分别为荧光体粒子PR的直径的1/4以下,则结合部BP的面积相对于荧光体粒子PR的表面积的比例也可以不为10%以下的值(不优选为3%以上、5%以下的值)。
并且,X轴和Y轴中的、一个轴上的结合部B1、B2的尺寸也可以超过荧光体粒子PR的直径的1/4。
在上述实施方式中,荧光体层54的玻璃含有率大于0vol%并且为10vol%以下。即,粘合剂BN的体积相对于将荧光体粒子PR的体积合计与粘合剂BN的体积合计进行合计而得的体积的比例大于0vol%并且为10vol%以下。但是,不限于此,在判断为光学系统效率足够高的范围内,该体积的比例也可以超过10vol%。另外,如上所述,该体积的比例为制作荧光体层54时的值。
在上述实施方式中,波长转换元件51的制造方法包含糊剂调制工序S1、荧光体混合工序S2、印刷版制作工序S3、涂敷工序S4、干燥工序S5、烧制工序S6和冷却工序S7。但是,不限于此,也可以不具有这些工序S1~S7中的任意一个工序。例如,也可以不具有干燥工序S5。此外,也可以同时实施糊剂调制工序S1和荧光体混合工序S2。
在上述实施方式中,烧制工序S6中的玻璃的粘度为106dPa·s以下的值。换言之,以使玻璃的粘度成为106dPa·s以下的值的方式,使烧制温度比玻璃的软化点高100℃以上。但是,不限于此,只要玻璃的粘度成为106dPa·s以下的值,则烧制温度也可以不比作为粘合剂BN的玻璃的软化点高100℃以上。另一方面,只要烧制温度比玻璃的软化点高100℃以上,则在烧制工序S6中,作为粘合剂BN的玻璃的粘度也可以不为106dPa·s以下。即,在烧制工序S6中,只要满足烧制温度比玻璃的软化点高100℃以上、和玻璃的粘度为106dPa·s以下中的至少任意一个即可。
在上述实施方式中,例示了荧光体层54相对于基板52位于激励光的入射侧并向激励光的入射侧射出荧光的反射型波长转换元件51。但是,不限于此,也可以将本发明应用于沿着激励光的入射方向射出荧光的透射型波长转换元件。在采用透射型波长转换元件的情况下,作为基板,优选使用蓝宝石。
此外,也可以在荧光体层54与基板52之间设置有使从荧光体层54射出的光反射的电介质多层膜。
在上述实施方式中,波长转换元件51构成为借助旋转部RT旋转。但是,不限于此,波长转换元件也可以构成为不旋转。换言之,波长转换装置也可以不具有使波长转换元件旋转的旋转部RT。该情况下,荧光体层54可以不形成为从激励光的入射侧观察时的环状,例如,也可以形成为圆形或多边形。此外,也可以是,无论在旋转的情况还是不旋转的情况下,荧光体层54的形状都为从激励光的入射侧观察时的圆形或多边形。
在上述实施方式中,投影仪1具有3个光调制装置343(343B、343G、343R)。但是,不限于此,还能够将本发明应用于具有2个以下或者4个以上的光调制装置的投影仪。
在上述实施方式中,投影仪1具有光调制装置343,该光调制装置343具有光入射面和光射出面不同的透射型液晶面板。但是,不限于此,光调制装置也可以构成为具有光入射面和光射出面相同的反射型液晶面板。此外,只要是能够对入射光束进行调制而形成与图像信息对应的图像的光调制装置,则可以采用液晶以外的光调制装置,例如利用了微镜器件、例如DMD(Digital Micromirror Device:数字微镜装置)等的光调制装置等。
在上述实施方式中,列举了将光源装置4应用于投影仪1的例子。但是,不限于此,本发明的光源装置例如也可以用于照明设备和汽车等的头灯等。此外,本发明的光源装置不限定于光源装置4的结构,只要是具有波长转换元件、和射出入射到波长转换元件的光的光源的结构,则构成光源装置的其他部件能够适当变更。本发明的投影仪也同样如此。

Claims (7)

1.一种波长转换元件,其特征在于,具有:
荧光体层,其具有多个荧光体粒子、和使所述多个荧光体粒子中的彼此相邻的一方的荧光体粒子与另一方的荧光体粒子结合的粘合剂;以及
基板,在该基板设置有所述荧光体层,
所述粘合剂含有玻璃,
所述粘合剂使所述一方的荧光体粒子的表面的一部分与所述另一方的荧光体粒子的表面的一部分结合,
设与假想线垂直并且相互垂直的两个轴为X轴、Y轴,所述假想线连接利用所述粘合剂结合的所述荧光体粒子的各中心,
所述荧光体粒子中的与所述粘合剂结合的结合部在所述X轴和所述Y轴上的尺寸为所述荧光体粒子的直径的1/4以下的值,
所述粘合剂的体积相对于将所述多个荧光体粒子的体积合计与所述粘合剂的体积合计进行合计而得的体积的比例大于0vol%并且为10vol%以下,
所述荧光体层具有所述荧光体粒子的除所述结合部以外的区域的外表面与空气接触的空隙。
2.一种光源装置,其特征在于,具有:
权利要求1所述的波长转换元件;以及
光源,其向所述波长转换元件射出激励光。
3.一种波长转换元件的制造方法,其特征在于,具有:
调制工序,调制出将荧光体粒子与含有玻璃的粘合剂混合而得的混合物;
涂敷工序,将所述混合物涂敷于基板;以及
烧制工序,对所述混合物进行烧制而形成荧光体层,
设与假想线垂直并且相互垂直的两个轴为X轴、Y轴,所述假想线连接利用所述粘合剂结合的所述荧光体粒子的各中心,
所述荧光体粒子中的与所述粘合剂结合的结合部在所述X轴和所述Y轴上的尺寸为所述荧光体粒子的直径的1/4以下的值,
所述混合物中的所述粘合剂的体积相对于将所述荧光体粒子的体积合计与所述粘合剂的体积合计进行合计而得的体积的比例大于0vol%并且为10vol%以下,
所述烧制工序中的所述混合物的烧制温度为比所述玻璃的软化点高200℃的温度以上、且比所述玻璃的软化点高400℃的温度以下的范围内的值,
在所述荧光体层,形成所述荧光体粒子的除所述结合部以外的区域的外表面与空气接触的空隙。
4.一种波长转换元件的制造方法,其特征在于,具有:
调制工序,调制出将荧光体粒子与含有玻璃的粘合剂混合而得的混合物;
涂敷工序,将所述混合物涂敷于基板;以及
烧制工序,对所述混合物进行烧制而形成荧光体层,
设与假想线垂直并且相互垂直的两个轴为X轴、Y轴,所述假想线连接利用所述粘合剂结合的所述荧光体粒子的各中心,
所述荧光体粒子中的与所述粘合剂结合的结合部在所述X轴和所述Y轴上的尺寸为所述荧光体粒子的直径的1/4以下的值,
所述混合物中的所述粘合剂的体积相对于将所述荧光体粒子的体积合计与所述粘合剂的体积合计进行合计而得的体积的比例大于0vol%并且为10vol%以下,
所述烧制工序中的所述玻璃的粘度为105dPa・s以下的值,
在所述荧光体层,形成所述荧光体粒子的除所述结合部以外的区域的外表面与空气接触的空隙。
5.一种波长转换元件,其特征在于,该波长转换元件是通过权利要求3或4所述的波长转换元件的制造方法而制造出的。
6.一种光源装置,其特征在于,具有:
权利要求5所述的波长转换元件;以及
光源,其向所述波长转换元件射出激励光。
7.一种投影仪,其特征在于,具有:
权利要求2或6所述的光源装置;
光调制装置,其根据图像信息对从所述光源装置射出的光进行调制;以及
投射光学装置,其投射由所述光调制装置调制后的光。
CN202010180748.XA 2019-03-18 2020-03-16 波长转换元件及其制造方法、光源装置、投影仪 Active CN111708248B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019050088A JP6922939B2 (ja) 2019-03-18 2019-03-18 波長変換素子、光源装置、プロジェクター、及び波長変換素子の製造方法
JP2019-050088 2019-03-18

Publications (2)

Publication Number Publication Date
CN111708248A CN111708248A (zh) 2020-09-25
CN111708248B true CN111708248B (zh) 2022-04-19

Family

ID=72514973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010180748.XA Active CN111708248B (zh) 2019-03-18 2020-03-16 波长转换元件及其制造方法、光源装置、投影仪

Country Status (3)

Country Link
US (1) US11172176B2 (zh)
JP (1) JP6922939B2 (zh)
CN (1) CN111708248B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261375B2 (en) 2019-05-22 2022-03-01 General Electric Company Method to enhance phosphor robustness and dispersability and resulting phosphors
CN115698199A (zh) 2020-04-14 2023-02-03 通用电气公司 具有窄带发射磷光体材料的油墨组合物和膜
JP2022039095A (ja) 2020-08-27 2022-03-10 セイコーエプソン株式会社 蛍光体粒子、波長変換素子、光源装置、蛍光体粒子の製造方法、波長変換素子の製造方法、及びプロジェクター
WO2024084935A1 (ja) * 2022-10-20 2024-04-25 京セラ株式会社 照明装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015359A (ja) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd 波長変換部材の製造方法、波長変換部材及び発光デバイス
JP2014207436A (ja) * 2013-03-18 2014-10-30 日本碍子株式会社 波長変換体
WO2018154868A1 (ja) * 2017-02-27 2018-08-30 パナソニックIpマネジメント株式会社 波長変換部材
CN108603956A (zh) * 2016-03-10 2018-09-28 松下知识产权经营株式会社 发光装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009456A1 (de) 2010-02-26 2011-09-01 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung
JP2012185402A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp 発光素子とその製造方法、光源装置、およびプロジェクター
JP6357835B2 (ja) 2014-03-31 2018-07-18 ソニー株式会社 発光素子、光源装置およびプロジェクタ
JPWO2016063930A1 (ja) * 2014-10-24 2017-08-03 デンカ株式会社 波長変換体、それを用いた発光装置及び波長変換体の製造方法
WO2016125611A1 (ja) * 2015-02-03 2016-08-11 日本電気硝子株式会社 波長変換部材及びそれを用いた発光デバイス
JP6775176B2 (ja) * 2015-03-13 2020-10-28 パナソニックIpマネジメント株式会社 蛍光体ホイール及びそれを用いた光源装置並びに光投影装置
US10145541B2 (en) * 2015-06-12 2018-12-04 Materion Corporation Optical converter colour wheel
JP6740616B2 (ja) 2015-09-15 2020-08-19 日本電気硝子株式会社 波長変換部材及び発光デバイス
US10663121B2 (en) * 2016-03-30 2020-05-26 Sony Corporation Light-emitting device, light source unit, and projection display apparatus
WO2018074132A1 (ja) * 2016-10-21 2018-04-26 日本電気硝子株式会社 波長変換部材、発光デバイス及び波長変換部材の製造方法
CN107665799A (zh) * 2017-03-07 2018-02-06 锐晶分析仪器科技(天津)有限公司 一种用于透射电子显微镜的荧光屏的制作方法
JP7142205B2 (ja) * 2017-08-08 2022-09-27 パナソニックIpマネジメント株式会社 蛍光板、光源装置、及び投写型映像表示装置
US10802385B2 (en) 2017-08-08 2020-10-13 Panasonic Intellectual Property Management Co., Ltd. Phosphor plate, light source apparatus, and projection display apparatus
CN109782516B (zh) * 2017-11-15 2021-10-22 中强光电股份有限公司 投影机及波长转换元件
KR102149988B1 (ko) * 2018-09-07 2020-08-31 대주전자재료 주식회사 파장 변환 부재 제조용 적층체 및 파장 변환 부재의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015359A (ja) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd 波長変換部材の製造方法、波長変換部材及び発光デバイス
JP2014207436A (ja) * 2013-03-18 2014-10-30 日本碍子株式会社 波長変換体
CN108603956A (zh) * 2016-03-10 2018-09-28 松下知识产权经营株式会社 发光装置
WO2018154868A1 (ja) * 2017-02-27 2018-08-30 パナソニックIpマネジメント株式会社 波長変換部材

Also Published As

Publication number Publication date
JP2020154032A (ja) 2020-09-24
US20200304764A1 (en) 2020-09-24
CN111708248A (zh) 2020-09-25
JP6922939B2 (ja) 2021-08-18
US11172176B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
CN111708248B (zh) 波长转换元件及其制造方法、光源装置、投影仪
US8894241B2 (en) Light source device and image display device
JP7238506B2 (ja) 波長変換素子、光源装置及びプロジェクター
US20170168379A1 (en) Wavelength conversion element, illumination device, projector, and method of manufacturing wavelength conversion element
JP7279436B2 (ja) 波長変換素子、光源装置、プロジェクター、及び波長変換素子の製造方法
US10539862B2 (en) Wavelength conversion element, wavelength converter, light source apparatus, and projector
JP7107319B2 (ja) 光源装置および投射型表示装置
US10248014B2 (en) Wavelength conversion device, light source device, and projector
JP2016099558A (ja) 波長変換素子、光源装置、プロジェクターおよび波長変換素子の製造方法
JP6919434B2 (ja) 波長変換素子、光源装置およびプロジェクター
JP2019032506A (ja) 蛍光板、光源装置、及び投写型映像表示装置
JP2022174143A (ja) 蛍光板、光源装置、及び投写型映像表示装置
US11868034B2 (en) Phosphor particle, wavelength conversion element, light source device, method of manufacturing phosphor particle, method of manufacturing wavelength conversion element, and projector
JP2020106740A (ja) 光源装置及びプロジェクター
JP2020154031A (ja) 波長変換素子、光源装置、プロジェクター、及び波長変換素子の製造方法
JP7022355B2 (ja) 波長変換素子、光源装置およびプロジェクター
JP7228010B2 (ja) 固体光源装置
JP2020101576A (ja) 光源装置及びプロジェクター
JP2020112757A (ja) 光源装置及びプロジェクター
JP2019105783A (ja) 波長変換装置、光源装置、及びプロジェクター
JP2020071295A (ja) 波長変換素子、光源装置及びプロジェクター
JP2022150713A (ja) 光源装置及びプロジェクター
JP2020079857A (ja) 波長変換素子、照明装置及びプロジェクター

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant