CN111682205A - 一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用 - Google Patents

一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用 Download PDF

Info

Publication number
CN111682205A
CN111682205A CN202010482322.XA CN202010482322A CN111682205A CN 111682205 A CN111682205 A CN 111682205A CN 202010482322 A CN202010482322 A CN 202010482322A CN 111682205 A CN111682205 A CN 111682205A
Authority
CN
China
Prior art keywords
porous carbon
bubble
carbon material
preparing
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010482322.XA
Other languages
English (en)
Inventor
柳伟
冯文婷
崔永朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202010482322.XA priority Critical patent/CN111682205A/zh
Publication of CN111682205A publication Critical patent/CN111682205A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种双盐晶模板辅助法制备刚柔并济的类“气泡垫”状多孔碳纳米材料的方法。该方法是将海藻酸钠作为前驱体,分别与碳酸氢钠,氯化铵,以及碳酸氢钠和氯化铵的混合物按照一定的比例配制混合水溶液。然后将该溶液进行冷冻干燥,获得一种类海绵状白色固体混合物。将该混合物置于管式炉中,在150‑300 oC下保温一定时间进行预碳化,然后继续升温到600‑900 oC进行碳化。将碳化后的材料用大量的去离子水进行清洗,就得到了刚柔并济的类“气泡垫”状多孔碳纳米材料。该材料的纳米结构类似于生活中常见的“气泡垫”,具有较好的结构稳定性。并且其较高的比表面积、发达的孔隙结构以及丰富的表面官能团,使其作为钾离子电池以及钾离子混合电容器电极材料时,表现出了优异的电化学性能。

Description

一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及 其储钾应用
技术领域
本发明属于电化学能源储存材料领域,提供了一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法,以及在钾离子电池和钾离子混合电容器电极材料中的应用。
背景技术
大规模电化学储能装置一直是现代社会发展的关注点之一,在众多电化学储能器件中,锂离子储能体系由于其优异的储能机制和较高的电化学性能,被认为是大规模储能的主要装置之一。但是,由于全球锂资源稀缺且分布严重不均,导致了锂离子储能体系在大规模储能中的广泛应用受到限制。钾资源由于其在地壳中含量高、价格低廉、资源分布广泛、且化学性质与锂相近而受到广泛关注。钾离子储能体系(包括钾离子电池、钾离子混合电容器等储能器件)具有与锂离子相似的储能机制,且具有与锂离子(Li/Li+,-3.04 V)相近的氧化还原电位(K/K+,-2.93 V)。因此,从大规模储能的角度来看,钾离子储能体系具有广阔的发展前景。
然而,与发展较好的锂离子储能体系相比,钾离子储能仍处于起步阶段。其高性能的储钾材料仍然是发展钾离子储能的关键。多孔碳纳米材料是目前锂离子储能体系中的主导材料之一。因此,构建具有较高比表面积和丰富孔隙结构的多孔碳纳米材料有望成为高性能储钾电极材料。但仍然存在的问题是,由于钾离子半径尺寸较大,当钾离子嵌入到碳材料层间时,往往造成电极材料严重的体积膨胀和结构坍塌。从而导致了电极材料较差的倍率性能和循环寿命。由此可以认为,对于多孔碳电极材料来说,长期和严重的体积膨胀仍然是高性能钾离子储能器件的一个很大挑战。为了解决这个问题,本专利设计了一种刚柔并济的类似“气泡垫”结构的多孔碳纳米材料,该材料既具有一定的刚性来保证电极的结构稳定性,还具有足够的弹性以缓冲电极的体积变化。
该类“气泡垫”状多孔碳材料是在碳酸氢钠和氯化铵双盐晶模板的辅助下制备的。由于碳酸氢钠和氯化铵两种盐在水中的溶解度不同,氯化铵的溶解度远远高于碳酸氢钠的溶解度。因此所配制的混合溶液在冷冻干燥的过程中,水被逐渐冻结成冰晶;当溶液浓度达到碳酸氢钠的饱和浓度时,碳酸氢钠优先成核长大;进一步冻结,碳酸氢钠几乎被完全结晶成较大晶粒时,氯化铵开始在碳酸氢钠晶体表面成核然后长大,同时海藻酸钠混合在两种盐晶模板之中。在该冻结成的混合物中,碳酸氢钠作为“种子”,氯化铵作为“种子发泡剂”,在碳化过程中两种盐晶进行分解产生大量的气体起到化学发泡作用,从而制得“气泡垫”状多孔碳。同时,碳酸氢钠盐晶能够在碳材料基体上引入大量的CO3 2-基团,CO3 2-基团在钾离子储存过程中能够促进K2CO3·1.5H2O的形成,从而保证了SEI膜的稳定性;氯化铵盐晶能够引入大量的含N官能团,这些表面官能团可以为钾离子提供活性位点,还可以提高碳材料的导电性从而降低钾离子的反应动力学。将该碳纳米材料作为钾离子电池和钾离子混合电容器电极材料进行电化学性能测试,均表现出了卓越的储钾性能。
发明内容
本发明所要解决的技术问题是提供一种制备刚柔并济的类“气泡垫”状碳纳米材料的方法。该方法是基于不同盐晶在水中的溶解度不同,从而形成“种子发泡剂包裹种子”的模板体系,在该模板体系的辅助下,碳化过程两种盐晶分解产生大量的气泡,从而获得了类“气泡垫”结构的碳纳米材料。这种类“气泡垫”状结构的碳纳米材料作为钾离子储能体系的电极材料时具有较好的电化学性能。
为了解决上述的技术问题,本发明采用的技术方案是:
取一定量的海藻酸钠溶解到水溶液中,按照一定的配比分别加入单盐晶模板或双盐晶模板。充分溶解之后,在冷冻干燥装置中对混合物进行干燥。干燥后的混合物经过预碳化、碳化、清洗、干燥等程序得到类“气泡垫”状碳纳米材料。
与现有技术相比,本发明的有益效果体现在:
(1)盐晶模板辅助法合成路线可实现碳纳米材料的绿色低成本合成。从应用前景来看,为制备碳纳米材料极大的缩减了工艺过程,具有成本低、方法简单、可大批量生产的优势;
(2) 双盐晶模板制备获得的多孔碳材料拥有较高的比表面积、发达的孔隙率以及刚柔并济的纳米结构,能够实现较高且稳定的储钾性能;
(3) 碳酸氢钠盐晶能够在碳基体上引入大量的CO3 2-基团,CO3 2-基团在钾离子储存过程中能够促进K2CO3·1.5H2O的形成,保证了SEI膜的稳定性,有利于提高钾离子储能器件的循环寿命;
(4) 氯化铵盐晶能够在碳基体上引入大量的含N官能团,含N官能团能够改善碳基体的导电性,降低电极材料的反应内阻,有利于提高材料的储钾性能。
附图说明
图1为实施例1得到的多孔碳纳米材料的扫描电镜(SEM)照片。
图2为实施例2得到的多孔碳纳米材料的扫描电镜(SEM)照片。
图3为实施例3得到的多孔碳纳米材料的扫描电镜(SEM)照片。
图4为本发明实施例1~3制备的多孔碳纳米材料作为钾离子电池负极材料时,在0.05-10 A g-1电流密度下的倍率性能。
图5为本发明实施例1~3制备的多孔碳纳米材料作为钾离子电池负极材料时,在5A g-1电流密度下的循环性能。
图6为基于本发明实施例3制备的多孔碳纳米材料所组装的钾离子混合电容器器件的能量-功率密度图。
具体实施方式
现参考以下具体实施例对本发明做出说明,但并非仅限于实施例。
实施例1
称量2 g海藻酸钠溶于200 mL去离子水中,然后在溶液中加入10 g NaHCO3盐晶模板剂充分溶解。将混合溶液进行冷冻干燥,干燥后的白色固体混合物在氮气气氛下以5 oC min-1的速度升温至200 oC保温1 h进行预碳化,然后继续升温至800 oC保温1h进行碳化。碳化后样品用去离子水清洗,放置到烘箱中干燥后得到多孔碳纳米材料。由图1的SEM图片所示,在NaHCO3盐晶模板辅助下制备的多孔碳纳米材料呈网络状碳骨架结构。
实施例2
本实施例的方法与实施例1基本相同,不同之处为:将NaHCO3盐晶模板换为NH4Cl盐晶模板,NH4Cl的用量为2 g。由图2的SEM图片所示,在NH4Cl盐晶模板辅助下制备的多孔碳纳米材料呈片状结构,且表面很多孔洞。
实施例3
本实施例的方法与实施例1基本相同,不同之处为:将NaHCO3盐晶模板换为NaHCO3和NH4Cl混合的双盐晶模板,NaHCO3的用量为10 g,NH4Cl的用量为2 g。由图3的SEM图片所示,在NaHCO3和NH4Cl双盐晶模板辅助下制备的多孔碳纳米材料呈类“气泡垫”状纳米结构。
应用例1
将实施例1~3得到的多孔碳材料与导电乙炔黑、粘结剂(聚偏氟乙烯,PVDF)以70:15:15的质量比混合后,加入至1-甲基-2-吡咯烷酮(NMP)中充分研磨配成浆料,浆料均匀涂敷在铜箔上制成电极片。在充满氩气的手套箱中组装成钾离子电池,使用蓝电测试系统对电池进行电化学性能测试。测试结果如图4~图5所示。
从图4可以看出,实施例3相比实施例1、2具有优异的倍率性能,尤其是在大倍率5Ag-1下,实施例3的比容量约为200mAh g-1,比实施例1、2高出~50 mAh g-1。图5是实施例1~3在5Ag-1电流密度下的循环稳定性能测试,结果表明,实施例3在大电流密度下可较好的保持容量不衰减,验证了类气泡垫结构的稳定性。
应用例2
将实施例3得到的多孔碳材料与导电乙炔黑、粘结剂(聚偏氟乙烯,PVDF)以70:15:15的质量比混合后,加入至1-甲基-2-吡咯烷酮(NMP)中充分研磨配成浆料,浆料均匀涂敷在铜箔上制成电极片。在充满氩气的手套箱中将电极片组装成钾半电池,然后用蓝电测试系统进行预嵌钾。将预嵌钾的电极片作为负极,未预嵌钾的电极片作为正极,按照正负极活性材料质量比为1:1组装钾离子混合电容器。使用Gamry 1000电化学工作站对器件进行电化学性能测试,测试结果如图6所示。
从图6中可以看出,类气泡垫状多孔碳材料组装的器件最高能量密度可达到110WhKg-1,甚至在功率密度达到21000W Kg-1时,能量密度还可以达到29 Wh Kg-1,表明其具有良好的商用价值。

Claims (6)

1.一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用,其特征在于包含如下的步骤:
(a) 混合:将海藻酸钠分别与碳酸氢钠、氯化铵、以及碳酸氢钠和氯化铵的混合物按照一定的比例配制成混合水溶液,然后将水溶液进行冷冻干燥,获得类似海绵状的白色固体混合物;
(b) 碳化:将海绵状白色固体混合物放入管式炉中,在惰性气氛下以一定的升温速率升温至合适的温度进行预碳化,然后继续升温至合适的温度保温一定时间进行碳化;
(c) 清洗:将煅烧后的样品用大量的去离子水进行清洗,在烘箱中干燥之后得到类“气泡垫”状多孔碳纳米材料。
2.根据权利要求1所述的双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法,其特征在于:在步骤a中,海藻酸钠与碳酸氢钠的配比可以控制在:1:1~1:10,海藻酸钠与氯化铵的配比可以控制在:1:0.2~1:2,海藻酸钠与碳酸氢钠和氯化铵混合物的配比可以控制在:1:1:1~1:10:1。
3.根据权利要求1所述的双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法,其特征在于:在步骤b中,预碳化温度为150~300 oC,碳化温度为600-900 oC,升温速率为1~10 oCmin-1,保温时间为1~6 h。
4.根据权利要求1-3所述的双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法,其特征在于:碳酸氢钠作为模板可以引入大量的CO3 2-基团,氯化铵作为模板可以引入大量的含N官能团。
5.根据权利要求1-3所述的双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法,其特征在于:海藻酸钠与碳酸氢钠和氯化铵混合物作为模板时配制溶液,制备的多孔碳纳米材料具有类似生活中常用的“气泡垫”结构,其气泡大小在600-1000 nm范围内。
6.根据权利要求1-5所述的双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用,其特征在于:该类“气泡垫”状多孔碳纳米材料可用于钾离子电池和钾离子混合电容器的电极材料,并表现出了优异的储钾性能。
CN202010482322.XA 2020-05-30 2020-05-30 一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用 Pending CN111682205A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010482322.XA CN111682205A (zh) 2020-05-30 2020-05-30 一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010482322.XA CN111682205A (zh) 2020-05-30 2020-05-30 一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用

Publications (1)

Publication Number Publication Date
CN111682205A true CN111682205A (zh) 2020-09-18

Family

ID=72453849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010482322.XA Pending CN111682205A (zh) 2020-05-30 2020-05-30 一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用

Country Status (1)

Country Link
CN (1) CN111682205A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511641A (zh) * 2021-07-04 2021-10-19 桂林理工大学 一种以葡萄糖为碳源盐晶发泡制备三维多孔碳/磷酸铁复合物的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000060718A (ko) * 1999-03-18 2000-10-16 윤덕용 발포성 염을 이용한 생체조직공학용 다공성 고분자 지지체의 제조방법
CN106179440A (zh) * 2016-06-24 2016-12-07 浙江大学 氮掺杂多级孔炭及其制备方法和应用
CN107275578A (zh) * 2017-07-05 2017-10-20 中国矿业大学 一种采用氮掺杂多孔碳材料制作钾离子电池负极的方法
CN107572522A (zh) * 2017-10-19 2018-01-12 天津工业大学 一种氮掺杂多级孔炭的制备及其电容性能研究
CN108910859A (zh) * 2018-07-16 2018-11-30 东华大学 一种金属负载氮掺杂块状多孔碳材料的制备方法
CN110277247A (zh) * 2018-03-17 2019-09-24 中国海洋大学 一种基于模板法制备的碳纳米材料及其在全碳基锂离子电容器中的应用
CN110556546A (zh) * 2019-09-03 2019-12-10 武汉工程大学 一种氮、氧共掺杂分级多孔碳材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000060718A (ko) * 1999-03-18 2000-10-16 윤덕용 발포성 염을 이용한 생체조직공학용 다공성 고분자 지지체의 제조방법
CN106179440A (zh) * 2016-06-24 2016-12-07 浙江大学 氮掺杂多级孔炭及其制备方法和应用
CN107275578A (zh) * 2017-07-05 2017-10-20 中国矿业大学 一种采用氮掺杂多孔碳材料制作钾离子电池负极的方法
CN107572522A (zh) * 2017-10-19 2018-01-12 天津工业大学 一种氮掺杂多级孔炭的制备及其电容性能研究
CN110277247A (zh) * 2018-03-17 2019-09-24 中国海洋大学 一种基于模板法制备的碳纳米材料及其在全碳基锂离子电容器中的应用
CN108910859A (zh) * 2018-07-16 2018-11-30 东华大学 一种金属负载氮掺杂块状多孔碳材料的制备方法
CN110556546A (zh) * 2019-09-03 2019-12-10 武汉工程大学 一种氮、氧共掺杂分级多孔碳材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511641A (zh) * 2021-07-04 2021-10-19 桂林理工大学 一种以葡萄糖为碳源盐晶发泡制备三维多孔碳/磷酸铁复合物的方法

Similar Documents

Publication Publication Date Title
CN109873158B (zh) 一种锂硫电池用碳材料及其制备和应用
KR20180042157A (ko) 리튬-황 배터리를 위한 미세다공성 탄소 나노시트를 포함하는 황-탄소 복합체 및 그의 제조 방법
CN111825074A (zh) 硫氮共掺三维多孔碳纳米片的制备方法及应用
CN113708005B (zh) 一种嵌锂mof/石墨烯复合修饰的功能隔膜及制备方法
Zhang et al. Functionalized hierarchical porous carbon with sulfur/nitrogen/oxygen tri-doped as high quality sulfur hosts for lithium-sulfur batteries
CN114141986B (zh) 一种负极材料、制备方法及钠离子电池
CN112421005B (zh) 一种三维石墨烯-c3n4复合材料及其制备方法和应用、半电池
CN113871598B (zh) 一种mof复合材料及其制备方法与应用
CN105470511A (zh) 锡钴合金原位催化三维石墨烯/锡/碳纳米管复合材料的制备方法
Wang et al. Multi-stage explosion of lignin: a new horizon for constructing defect-rich carbon towards advanced lithium ion storage
CN109301223B (zh) 锂硫电池正极复合材料及其制备方法
CN110993365A (zh) 泡沫镍上自生长双金属mof及其衍生物电极材料
CN111682205A (zh) 一种双盐晶模板辅助制备类“气泡垫”状多孔碳材料的方法及其储钾应用
CN115347323B (zh) 一种应用于Li-S电池隔膜的BC负载MOFs衍生CNF/CoP复合材料及其制备与应用方法
CN108461755B (zh) 一种锂金属电池负极骨架材料及其制备方法和锂金属电池负极
GB2621289A (en) Method for preparing silicon-carbon composite negative electrode material and use thereof
CN114975957A (zh) 一种硫/葡萄糖介孔碳球锂硫电池正极材料及其制备方法
CN114695861B (zh) 硫和氮共掺杂多孔碳材料的制备方法、制得的碳材料及其应用
Hong et al. A high performance Li/S cell cathode with hierarchical architecture composed of ketjenblack@ mesoporous carbon/sulfur hybrid
CN115117307A (zh) 一种凝胶态固硫正极的制备方法及其应用
CN110957485A (zh) 一种石墨烯纳米片包覆多孔碳纤维材料及其制备方法
CN114506835A (zh) 废磷酸铁锂缺陷修复并构筑三维多孔碳网的方法和应用
CN111313020A (zh) 一种硫掺杂富氮碳材料的制备方法、电极及其在钠/钾离子电池中的应用
CN117163946B (zh) 一种氮氧掺杂多孔碳及其制备方法和应用
CN115557488B (zh) 一种采用液相模板制备中空碳球的方法以及一种中空碳球及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination