CN111647639A - 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法 - Google Patents

一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法 Download PDF

Info

Publication number
CN111647639A
CN111647639A CN202010597906.1A CN202010597906A CN111647639A CN 111647639 A CN111647639 A CN 111647639A CN 202010597906 A CN202010597906 A CN 202010597906A CN 111647639 A CN111647639 A CN 111647639A
Authority
CN
China
Prior art keywords
embryos
lipid metabolism
drug
embryo
experimental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010597906.1A
Other languages
English (en)
Other versions
CN111647639B (zh
Inventor
魏远征
黄韧
李建军
蔡磊
苗宗余
叶惠欣
曾进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Laboratory Animals Monitoring Institute
Original Assignee
Guangdong Laboratory Animals Monitoring Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Laboratory Animals Monitoring Institute filed Critical Guangdong Laboratory Animals Monitoring Institute
Priority to CN202010597906.1A priority Critical patent/CN111647639B/zh
Publication of CN111647639A publication Critical patent/CN111647639A/zh
Application granted granted Critical
Publication of CN111647639B publication Critical patent/CN111647639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法。以诸氏鲻虾虎鱼(Mugilogobius chulae)的胚胎作为实验材料,用待测药物浸泡胚胎,检测药物是否对诸氏鲻虾虎鱼胚胎的脂代谢产生影响,进而筛选脂代谢药物。本发明能有效降低检测成本,较传统检测方法节省成本60%以上;同时在保证实验数据准确、可重复的基础上,针对取材和基因检测关键环节减少了时间点,为高效快速的批量检测方法提供了可能。

Description

一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法
技术领域:
本发明属于医药生物技术领域,且涉及以实验鱼胚胎为模型,筛选促进脂代谢稳态的小分子化合物的方法,具体涉及一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法。
背景技术:
非酒精性脂肪肝(NAFLD)是脂质沉积导致的肝脏疾病,以大泡性脂肪变性或脂肪肝为特征,包括从单纯性脂肪变性到伴有炎症的脂肪变性(脂肪性肝炎;NASH)、纤维化和肝硬化(Neuschwander-Tetri&Caldwell,2003)。据统计,我国发达地区成人NAFLD患病率高达15%,是慢性肝病的首要原因(Wangetal.,2014)。
NAFLD是一种复杂的疾病,其成因与许多因素有关,包括遗传、代谢综合征和/或外部因素,如饮食和锻炼(Buzzettietal.,2016)。同时,研究表明游离脂肪酸、游离胆固醇的升高均能促进NAFLD的发生发展(Cusi,2009)。三磷酸腺苷结合盒转运子基因(ABCA1)是ABC转运蛋白家族中的一员,研究表明其在调节NAFLD病理进程中的胆固醇稳态和胰岛素抵抗方面具有重要作用。临床数据显示NASH患者肝细胞中ABCA1活性降低会导致肝脏胆固醇沉积和肝脏损伤(VanRooyenetal.,2011)。用西洛他唑增强ABCA1的表达能改善肝脂肪变性,是治疗肝脂肪变性的一个潜在的治疗途径(Jeonetal.,2015)。此外,血管紧张素转换酶(ACE2)主要在肝脏中表达,最新的研究表明ACE2/Ang-(1-7)/Mas轴基因能抑制肝脏胰岛素抵抗的研究,是NAFLD药物治疗的一个潜在靶点(Caoetal.,2016)。迄今,尚无针对NAFLD的有效治疗方法,亦无临床药物批准上市。但相关的药物研发工作非常活跃,大约有95种药物处于不同的研发阶段,此外,大量的中草药被开发用来作为肝保护药物(Yanetal.,2020)。
NAFLD的药物筛选、药效评价均需要合适的动物模型,目前相关动物模型主要是通过高脂喂养、基因突变及四氯化碳(CCl4)等化学试剂诱导等方式构建的大/小鼠模型,这些模型已用于疾病机制和药物干预研究。但针对单纯性脂肪变性的动物模型较少,一般采用高脂饲料投喂大小鼠或斑马鱼获得,但此种造模方法一般实验周期超过7周,且伴随有炎症现象(Carmiel-Haggaietal.,2005;Chaoetal.,2014)。同时,大/小鼠模型的构建、维护成本较高,对饲料和药物的消耗量较大;采用CCl4腹腔注射等毒性损伤下的大/小鼠模型,会因毒性导致死亡率上升,从而使造模成功率下降,限制了其应用。因此能否筛选自发性易感动物模型用于NAFLD研究,并建立一种快速筛选方法极为重要。
发明内容:
本发明的目的提供一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法,利用本发明的方法可以保证模拟性高、重复性好、可靠性强、成本低廉。
本发明的基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法,其是诸氏鲻虾虎鱼(Mugilogobiuschulae)的胚胎作为实验材料,用待测药物浸泡胚胎,检测药物是否对诸氏鲻虾虎鱼胚胎的脂代谢产生影响,进而筛选脂代谢药物。
优选,所述的检测药物是否对诸氏鲻虾虎鱼胚胎的脂代谢产生影响是于胚胎发育24h,48h和72h取样进行脂质代谢相关靶基因表达的检测,同时检测48h胚胎表型。
优选,所述的靶基因是ABCA1和/或ACE2。
优选,还设置有正常发育胚胎作为阴性对照组,靶基因沉默+激动剂处理作为阳性对照组。
优选,所述的靶基因沉默是通过注射靶基因的siRNA进行沉默。
与现有技术相比,本发明的有益效果如下:
1、本发明经过前期的营养学研究表明,水生实验动物诸氏鲻虾虎鱼(Mugilogobiuschulae)的脂肪沉积主要发生在肝脏,能很好模拟脂肪浸润与代谢综合征并发的病理特征,该实验鱼病理特征能很好的模拟人NAFLD代谢综合征早期的病理状态。自发性能保证后代遗传典型的病理特征,近交系能充分保证遗传背景的稳定性。
2、进一步发现诸氏鲻虾虎鱼的胚胎具有明显的脂滴累积现象(图1)。在充分考虑胚胎期脂滴的快速分解和转运的基础上,通过测定一系列的胚胎发育指标,最终确定利用脂滴这个稳定的表征作为检测指标来判断药物对脂代谢的影响,且确定了24h和48h两个关键发育和检测时间点,不仅提高了准确率而且降低了检测难度。
3、随着诸氏鲻虾虎鱼全基因组测序的完成,该诸氏鲻虾虎鱼胚胎模型的脂代谢相关调控基因ABCA1、ACE2等NAFLD相关靶基因均已克隆并验证。建立了标准的靶基因表达时序图谱,以便来从分子水平上判断药物对脂代谢的影响,提高了靶标药物筛选的针对性。
4、诸氏鲻虾虎鱼周年产卵,繁殖周期为14d左右,且每尾雌鱼单次产卵数超过3000粒,不仅能保证产权所有,且能充分保证实验的材料获取和时效性。
5、本发明主要采用从受精卵(0h)至出膜前(96h)的实验鱼胚胎,不同批次实验所需胚胎可全部来自同一对近交系亲本,能充分保证实验材料的稳定性,而且简化了实验流程,更便于显微镜视野下的操作和观察,并为高效筛选提供了可能。
6、本发明的实验材料为诸氏鲻虾虎鱼的胚胎,且增加阳性对照组(siRNA显微注射后激动剂处理组)和阴性对照组(正常发育胚胎),能充分保证脂代谢障碍表型的阳性率,提高药物评价的准确度。
7、本发明能有效降低检测成本,较传统检测方法节省成本60%以上;同时在保证实验数据准确、可重复的基础上,针对取材和基因检测关键环节减少了时间点,为高效快速的批量检测方法提供了可能。
附图说明:
图1是虾虎鱼肝脏和胚胎观察,肝脏HE染色(a),不同组织粗脂肪含量(b);正常受精卵胚胎观察(c),油红染色后胚胎观察(d);
其是取成年诸氏鲻虾虎鱼的肝脏进行HE染色、并取诸氏鲻虾虎鱼全鱼、肌肉组织、肝脏组织和卵巢组织,测定他们的脂肪含量;取正常受精卵胚胎进行观察,还观察油红染色后的胚胎。
图2是正常发育胚胎卵黄囊中脂滴的变化(直接观察,未染色处理);
图3是正常发育胚胎卵黄囊中脂滴的变化(油红染色);
图4是模型实验鱼胚胎发育过程中脂肪组成及游离脂肪酸含量变化,胆固醇(COH),卵磷脂(PC),甘油三酯(TG),胆固醇酯(CE);饱和脂肪酸(SFA),单不饱和脂肪酸(MUFA),多不饱和脂肪酸(PUFA);
图5是实施例2中,ABCA1和ACE2基因的胚胎发育时序表达;
图6是实施例2中,胚胎siRNA显微注射后靶基因抑制检测,每个柱群中每个柱子从左到右分别代表Control、NC、靶基因RNAi(ABCA1-RNAi或ACE2-RNAi);
图7是实施例2中,显微注射靶基因siRNA后的胚胎表型;
图8是实施例3中,药物对胚胎存活率的影响,左侧图中每个柱群中每个柱子从左到右分别代表Control(阴性对照组)、ABCA1-RNAi(空白对照组)、ABCA1激动剂(阳性对照组)、药物1(实验组1)、药物3(实验组2),右侧图中每个柱群中每个柱子从左到右分别代表Control(阴性对照组)、ACE2-RNAi(空白对照组)、ACE2激动剂(阳性对照组)、药物2(实验组1)、药物3(实验组2);
图9是实施例3中,药物对胚胎畸形率的影响,左侧图中每个柱群中每个柱子从左到右分别代表Control、ABCA1-RNAi、ABCA1激动剂、药物1、药物3,右侧图中每个柱群中每个柱子从左到右分别代表Control、ACE2-RNAi、ACE2激动剂、药物2、药物3;
图10是实施例3中,药物对靶基因表达的影响,左侧图中每个柱群中每个柱子从左到右分别代表Control、ABCA1-RNAi、ABCA1激动剂、药物1、药物3,右侧图中每个柱群中每个柱子从左到右分别代表Control、ACE2-RNAi、ACE2激动剂、药物2、药物3;
图11是实施例3中,药物对胚胎表型的影响。
具体实施方式:
以下的实施例便于更好地理解本发明,但并不限定本发明。所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。下述实施例中的实验方法,如无特殊说明,均为常规方法。
实施例1筛选获得虾虎鱼与脂代谢相关的胚胎发育特征表型并验证,建立稳定的表型和成份检测方法,包括以下步骤:
1)选用大于200日龄的诸氏鲻虾虎鱼近交系亲本配对,收集受精卵分别于0h、0.5h、6h、12h、24h、48h、72h和96h体式显微镜下进行表型观察;观察指标主要包括设计脂代谢的卵黄囊脂滴形态变化、胚胎动物极细胞发育情况(细胞分裂、胚轴形成、心脏形成、血液循环开始、器官形成和发育成熟等)。
2)在表型观察的基础上,分别取0h、24h、48h、72h和96h5个重要发育时间点的胚胎,每个时间点5~10枚胚胎。PBS冲洗3~5次后,于4%多聚甲醛中常温过夜固定,进行油红染色。
3)取出固定后的胚胎,PBST溶液冲洗3~5次后,依次用PBST稀释的25%、50%、75%和100%的甲醇脱水,每个梯度浓度室温下孵育5~15min。
4)0.2%~0.6%的油红染液中室温孵育过夜。
5)依次用PBST溶液稀释的100%、75%、50%和25%的甲醇水化,每个梯度浓度室温下孵育5~15min;
6)PBST溶液冲洗3次,4%多聚甲醛中固定10min,体式显微镜下观察脂代谢的卵黄囊脂滴形态变化、胚胎动物极细胞发育情况。
由图1~图3可见,诸氏鲻虾虎鱼不仅成鱼肝脏有大量脂肪累积,有明显的脂肪变性特征(图1a),且其胚胎自受精卵开始,卵黄囊中就存在特别明显的大量的脂滴(图1d,图2),说明遗传是其NAFLD的主要原因,且能稳定遗传。在早期胚胎发育过程中脂滴具有显著的动态变化特征(图2),早期由大的脂滴分裂成若干小脂滴,之后逐步聚集成为一个大且明显的脂滴,24h时油红染色特别显著,说明在胚胎发育过程中脂滴存在早期物质转化和脂肪累积,后面被快速利用的过程(图3)。因此,该实验鱼模型的胚胎卵黄囊脂滴可作为与脂代谢相关的具有显著变化特征的发育表型,且24h和48h可作为关键的检测时间点。
7)此外,分别取0h、24h、48h、72h和96h5个时间点的胚胎,每个时间点重复取3个样品(每个样品100~200枚胚胎),液氮保存,磨碎匀浆后备用。
8)取全部样品,用提取粗脂质,每个样品加入200μl甲醇,匀浆1min,然后加入200μl氯仿,继续匀浆2min,加入氯仿-甲醇混合液(2:1V/V)500μl,充分震荡后,4℃,12000g离心后吸去上层液体,然后加入甲醇-水混合液体(1:1),静置分层,吸去上层液体,有机相减压蒸干后,薄层层析TCL法分析脂肪组成,同时GC-MS测定脂肪酸成份。
图4结果显示:模型实验鱼胚胎脂肪组成中,胆固醇(COH)含量最高,其次为卵磷脂(PC),除甘油三酯(TG)含量在24h上升外,COH、PC和胆固醇酯(CE)均持续下降。游离脂肪酸含量在24h时均有显著上升,在48h时饱和脂肪酸(SFA)达到最大值,单不饱和脂肪酸(MUFA)含量开始下降,多不饱和脂肪酸(PUFA)变化不大。上述结果表明:在血液循环开始前后,胚胎脂代谢非常活跃,其中24h和48h是两个关键时间点。
实施例2,基于NAFLD密切相关的脂代谢基因ABCA1和ACE2,建立标准的表达时序图谱和RNAi检测技术,包括以下步骤:
1)分别取发育0h、6h、12h、24h、48h、72h和96h诸氏鲻虾虎鱼胚胎,每个时间点重复取3个样品(每个样品10~20枚胚胎)液氮保存;
2)TRIzol提取总RNA,每个样品加入TRIzol试剂500μl,加入锆珠高速振荡匀浆,室温孵育5min,后加入100μl氯仿,大力摇动15s。4℃,12000g离心15min,吸取上次离心清液转移到新管中,加入250μl异丙醇,4℃,12000g离心10min。弃上清,加入500μl75%乙醇涡旋振荡,4℃7500g离心5min,15μlRNasefree水溶解后,-70℃保存备用。
3)总RNA反转录为cDNA,配制20μl反转录体系(5×PrimeScriptRTMasterMix4μl,totalRNA1000ng,RNaseFreedH2O补足20μl反应体系);反应条件如下:37℃15min,85℃5s,4℃冷却,-20℃保存备用。
4)根据之前克隆到虾虎鱼ABCA1基因序列设计荧光定量(qPCR)引物,具体如下:
引物1:
qABCA1-F1:5’GCCACTCTGGTCATCATTATCT3’,具体如SEQIDNO.1所示;
qABCA1-R1:5’GGTGTGATAGACCACCCATAAA3’,具体如SEQIDNO.2所示;
引物2:
qABCA1-F2:5’CAAAGTGTCAGAGGGTCCTATTT3’
qABCA1-R2:5’AGCGAGAGATGGTTTGTATGG3’
引物3:
qABCA1-F3:5’CAGTGAGGAAGACAGCGATATG3’
qABCA1-R3:5’TGTCTCCGTCGGTAGGTAAA3’
引物4:
qABCA1-F4:5’AGGCAGAAATGGAGCAGATAG3’
qABCA1-R4:5’GAGCTACAGACAGTTTCCTCTG3’
5)qPCR引物普通PCR扩增验证后,根据扩增效率选用第一对和第二对引物qABCA1-F1/R1和qABCA1-F2/R2作为ABCA1基因的qPCR引物。
6)根据之前克隆到虾虎鱼ACE2基因序列设计荧光定量(qPCR)引物,具体如下:
引物1:
qACE2-F1:5’CCTGGGAAATGGGAAACCGAGA3’
qACE2-R1:5’CACAGCCTCGTGGAAGCCCTCGTTG3’
引物2:
qACE2-F2:5’CGGGACGGGGCCAACGAGGGCTTCC3’
qACE2-R2:5’TACGTGAAGGGCAGAGTGGTCACGA3’
引物3:
qACE2-F3:5’CGCCGGAAACATCACCAAAGACCAG3’
qACE2-R3:5’AAGAGTAATCTCCGGACACGTGGAA3’
引物4:
qACE2-F4:5’GGCTGGTCGCGTTTGGCGTCGTCAT3’
qACE2-R4:5’GAAAGCTTTGTTGGAGTGTCCGTCA3’
7)qPCR引物普通PCR扩增验证后,根据扩增效率选用第一对和第四对引物qACE2-F1/R1和qACE2-F4/R4作为ACE2基因的qPCR引物。
8)分别利用优选的qPCR引物(qABCA1-F1/R1和qACE2-F1/R1)验证ABCA1和ACE2基因的胚胎发育时序表达,反应体系如下:2×TBGreenPremixExTaqII10μL,引物F0.8μL,引物R0.8μL,50×ROXReferenceDyeII0.4μl,步骤3反转录cDNA模板1μL,dH2O补足至20μL。ABI7500荧光定量仪检测,反应条件为:95℃,30s预变性;95℃,5s,60℃,34s,共40个循环。
9)以虾虎鱼β-actin为内参基因进行相对定量分析,图5结果显示:ABCA1在受精12h后显著高表达,24h时稍微降低,之后维持在一个较高的表达水平,提示ABCA1在胚胎发育至血液循环时,在脂滴胆固醇酯的变化中具有重要作用;ACE2在胚胎发育早期低水平表达,且24h时表达最低,之后逐步显著高表达,考虑ACE2可能在维持甘油三酯代谢和血管内皮细胞渗透压稳态中发挥关键作用。
10)根据之前克隆到虾虎鱼ABCA1和ACE2基因序列分析RNA干扰(RNAi)位置,并设计合成siRNA引物,具体如下:
ABCA1siRNA1:
sense1:5’-GGACUUUGCUGCAGAACAATT-3’
antisense1:5’-UUGUUCUGCAGCAAAGUCCTT-3’
ABCA1siRNA2:
sense2:5’-CCAAACAUCUGCAGUUUAUTT-3’
antisense2:5’-AUAAACUGCAGAUGUUUGGTT-3’
ACE2siRNA1:
sense1:5’-GCACCAAACUCAGGAACAUTT-3’
antisense1:5’-AUGUUCCUGAGUUUGGUGCTT-3’
ACE2siRNA2:
sense2:5’-CCUGCCAUCGACCCAUAUUTT-3’
antisense2:5’-AAUAUGGGUCGAUGGCAGGTT-3’
11)将合成的siRNA(ABCA1siRNA2和ACE2siRNA1)用RNasefreedH2O稀释为1μg/ul的母液备用,经验证选用200ng/μL的浓度注射到胚胎,每个胚胎注射体积为1nL,分别取发育24h、48h、72h和96h的胚胎进行油红染色及ABCA1和ACE2基因表达量的检测。对照组分别为正常发育组Control和注射酚红的受精卵NC。
如图6和图7所示,显微注射siRNA的实验鱼胚胎,ABCA1和ACE2的基因表达量在24h时均出现显著抑制,但96h时的抑制作用不明显;油红染色显示,胚胎卵黄囊脂滴在24h和48h时的分解速率显著下降,且有明显抑制表型胚胎占注射总胚胎数的92.5%,尤其是48h时的胚胎油红染色结果特别明显,因此选取24h、48h和72h三个时间点的实验结果作为药物筛选评价时间点。
实施例3,靶向脂代谢药物的安全性和有效性筛查,包括以下步骤:
分别以ABCA1和ACE2为药物筛选靶位点,具体操作如下:
a.针对ABCA1靶基因的药物筛选验证实验:
室温条件下(24℃~26℃)以正常发育的胚胎为阴性对照组,ABCA1-siRNA显微注射组(ABCA1siRNA2200ng/μL的浓度注射到胚胎,每个胚胎注射体积为1nL)为空白对照组,ABCA1-siRNA注射后的激动剂(ABCA1激动剂为T0901317)处理组(即50μM的激动剂T0901317持续浸泡ABCA1-siRNA显微注射后的胚胎直至实验结束,为保证激动剂有效性每隔24h换液一次)作为阳性对照组;实验组设置为两组:分别选用市场上脂肪肝或肝保护药物1和药物3进行96h胚胎浸泡筛选(其中药物1为西洛他唑,可提高ABCA1表达,浸泡浓度为100μM;药物3泽泻提取物为未知作用位点或与ABCA1作用无关的治疗脂肪肝药物,浸泡浓度为20μg/mL,胚胎是ABCA1-siRNA显微注射后的胚胎-同空白对照组),统计计算0.5h、24h、48h、72h和96h胚胎存活率和畸形率。
b.针对ACE2靶基因的药物筛选验证实验:
室温条件下(24℃~26℃)以正常发育的胚胎为阴性对照组,ACE2-siRNA显微注射组为空白对照组(ACE2siRNA1200ng/μL的浓度注射到胚胎,每个胚胎注射体积为1nL),ACE2-siRNA注射后的激动剂(ACE2激动剂为DIZE)处理组(即用50μM激动剂乙酰甘氨酸重氮氨苯脒DIZE持续浸泡ACE2-siRNA显微注射后的胚胎至实验结束,为保证激动剂有效性每隔24h换液一次)作为阳性对照组;实验组设置为两组:分别选用市场上脂肪肝或肝保护药物2和药物3进行96h胚胎浸泡筛选(其中药物2为氧杂蒽酮,可提高ACE2表达,浸泡浓度为100μM;药物3泽泻提取物为未知作用位点或与ACE2作用无关的治疗脂肪肝药物,浸泡浓度为20μg/mL,所述的胚胎是ACE2-siRNA显微注射后的胚胎),统计计算0.5h、24h、48h、72h和96h胚胎存活率和畸形率。
2)分别于24h、48h、72h取样检测药物对靶基因的影响,同时重点取48h的胚胎进行油红染色和相关表型检测,具体检测步骤同实施例1和实施例2。
3)分别计算统计阳性对照组和实验组实验结果,主要包括胚胎48h时油红染色表型、各个时间点胚胎存活率和畸形率,并做显著性差异分析,以判断药物是否通过靶基因位点对脂代谢产生影响。
实验结果显示:虽然显微注射针对靶基因的siRNA后,胚胎存活率均超过90%,但较正常发育的阴性对照组仍有显著差异(图8),除药物3外,其它处理对胚胎存活率影响不大。48h时,RNA干扰会导致胚胎畸形率的显著上升(图9),无论是ABCA1还是ACE2的激动剂均能有效降低畸形率;此外,药物1和药物2对畸形率也有相应的缓解作用,但药物3的作用并不明显。qPCR检测结果显示,激动剂能显著提高靶基因的表达量(图10)。图9和图10的结果表明:药物1对靶基因的有显著影响,且整体优于药物2对靶基因的影响,这个可能与ACE2的作用方式以短时效应为主有关。48h油红染色胚胎表型分析表明:药物1和药物2均能作用于靶基因,对脂代谢产生影响。
综上所述,本发明通过实施例1筛选获得虾虎鱼与脂代谢相关的胚胎发育表型特征并建立稳定的表型和成份检测方法,通过实施例2建立标准的表达时序图谱和RNAi检测技术,明确药物筛选时间点,在此基础上通过实施例3的靶向脂代谢药物的安全性和有效性验证,成功建立起一种快速筛选NAFLD相关脂代谢药物安全性和有效性的方法。同时,在保证实验数据准确、可重复的基础上,针对取材和基因检测关键环节减少了时间点,为高效快速的批量检测方法提供了可能。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。
序列表
<110> 广东省实验动物监测所
<120> 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
gccactctgg tcatcattat ct 22
<210> 2
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ggtgtgatag accacccata aa 22

Claims (5)

1.一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法,其特征在于,以诸氏鲻虾虎鱼(Mugilogobius chulae)的胚胎作为实验材料,用待测药物浸泡胚胎,检测药物是否对诸氏鲻虾虎鱼胚胎的脂代谢产生影响,进而筛选脂代谢药物。
2.根据权利要求1的方法,其特征在于,所述的检测药物是否对诸氏鲻虾虎鱼胚胎的脂代谢产生影响是于胚胎发育24h,48h和72h取样进行脂质代谢相关靶基因表达的检测,同时检测48h胚胎表型。
3.根据权利要求2的方法,其特征在于,所述的靶基因是ABCA1和/或ACE2。
4.根据权利要求1或2的方法,其特征在于,还设置有正常发育胚胎作为阴性对照组,靶基因沉默+激动剂处理作为阳性对照组。
5.根据权利要求4的方法,其特征在于,所述的靶基因沉默是通过注射靶基因的siRNA进行沉默。
CN202010597906.1A 2020-06-28 2020-06-28 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法 Active CN111647639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010597906.1A CN111647639B (zh) 2020-06-28 2020-06-28 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010597906.1A CN111647639B (zh) 2020-06-28 2020-06-28 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法

Publications (2)

Publication Number Publication Date
CN111647639A true CN111647639A (zh) 2020-09-11
CN111647639B CN111647639B (zh) 2023-12-05

Family

ID=72349959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010597906.1A Active CN111647639B (zh) 2020-06-28 2020-06-28 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法

Country Status (1)

Country Link
CN (1) CN111647639B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5477000A (en) * 1999-06-14 2001-01-02 Exelixis, Inc. Animal models and methods for analysis of lipid metabolism and screening of pharmaceutical and pesticidal agents that modulate lipid metabolism
WO2005071098A1 (ja) * 2004-01-21 2005-08-04 Astellas Pharma Inc. 脂質代謝改善物質のスクリーニング方法
JP2009108091A (ja) * 2008-12-10 2009-05-21 Yuji Matsuzawa メタボリック・シンドローム非ヒトモデル動物
US20110126300A1 (en) * 2005-12-20 2011-05-26 The Trustees Of The University Of Pennsylvania High Through-Put Method of Screening Compounds for Pharmacological Activity
CN102858958A (zh) * 2010-02-03 2013-01-02 日本国立癌症研究中心 诱导肝干细胞及其制造方法、以及该细胞的用途
CN104542389A (zh) * 2014-12-23 2015-04-29 中国科学院苏州生物医学工程技术研究所 一种非酒精性脂肪肝斑马鱼的制备方法
CN107773566A (zh) * 2017-09-29 2018-03-09 武汉大学 一种胎源性代谢综合征动物模型的构建方法及其应用
WO2018204764A1 (en) * 2017-05-05 2018-11-08 Camp4 Therapeutics Corporation Identification and targeted modulation of gene signaling networks
CN109247270A (zh) * 2018-08-07 2019-01-22 广东省实验动物监测所 一种快速筛选小型实验鱼构建胰腺脂肪浸润模型的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5477000A (en) * 1999-06-14 2001-01-02 Exelixis, Inc. Animal models and methods for analysis of lipid metabolism and screening of pharmaceutical and pesticidal agents that modulate lipid metabolism
WO2005071098A1 (ja) * 2004-01-21 2005-08-04 Astellas Pharma Inc. 脂質代謝改善物質のスクリーニング方法
US20110126300A1 (en) * 2005-12-20 2011-05-26 The Trustees Of The University Of Pennsylvania High Through-Put Method of Screening Compounds for Pharmacological Activity
JP2009108091A (ja) * 2008-12-10 2009-05-21 Yuji Matsuzawa メタボリック・シンドローム非ヒトモデル動物
CN102858958A (zh) * 2010-02-03 2013-01-02 日本国立癌症研究中心 诱导肝干细胞及其制造方法、以及该细胞的用途
CN104542389A (zh) * 2014-12-23 2015-04-29 中国科学院苏州生物医学工程技术研究所 一种非酒精性脂肪肝斑马鱼的制备方法
WO2018204764A1 (en) * 2017-05-05 2018-11-08 Camp4 Therapeutics Corporation Identification and targeted modulation of gene signaling networks
CN107773566A (zh) * 2017-09-29 2018-03-09 武汉大学 一种胎源性代谢综合征动物模型的构建方法及其应用
CN109247270A (zh) * 2018-08-07 2019-01-22 广东省实验动物监测所 一种快速筛选小型实验鱼构建胰腺脂肪浸润模型的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CAROLINA CAMPOS LIMA MOREIRA等: "Long-term effects of angiotensin-(1–7) on lipid metabolism in the adipose tissue and liver", vol. 92, pages 4 *
JIE ZHANG等: "The lipid metabolism alteration of three spirocyclic tetramic acids on zebrafish (Danio rerio) embryos", vol. 248, pages 4 - 2 *
卢晶;吴谦;谢荣荣;仇海燕;程呈;杨金奎;: "β位淀粉样前体蛋白裂解酶2基因敲除斑马鱼动物模型的构建及其初步应用", no. 06, pages 839 - 843 *
和兴萍;罗燕;李雪;陈朝银;赵声兰;: "几种降脂减肥实验动物模型的建立与比较", no. 07, pages 117 - 121 *
张开翔: "太湖短吻银鱼的胚胎发育", 湖泊科学, no. 1, pages 55 - 61 *
李建军等: "诸氏鲻虾虎鱼实验动物化研究进展", 中国实验动物学报, vol. 26, no. 4, pages 493 - 498 *
辛胜昌;赵艳秋;李松;林硕;仲寒冰;: "斑马鱼模型在药物筛选中的应用", no. 09, pages 1145 *

Also Published As

Publication number Publication date
CN111647639B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
Tourmente et al. Sperm competition and the evolution of sperm design in mammals
San et al. Transcriptome analysis identifies signaling pathways related to meat quality in broiler chickens–the extracellular matrix (ECM) receptor interaction signaling pathway
Rosas et al. Successive negative contrast effect in instrumental runway behaviour: a study with Roman high-(RHA) and Roman low-(RLA) avoidance rats
Eme et al. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression
CN106512014A (zh) 肿瘤进展位点2在治疗脂肪肝和ⅱ型糖尿病中的功能和应用
CN107773566A (zh) 一种胎源性代谢综合征动物模型的构建方法及其应用
CN107459546B (zh) 一种tRF-Gly反义链抑制剂及其应用
Fu et al. Genetic inactivation of the translin/trax microRNA-degrading enzyme phenocopies the robust adiposity induced by Translin (Tsn) deletion
WO2021057806A1 (zh) 糖尿病疾病模型犬的建立方法
CN111647639B (zh) 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法
CN104046641A (zh) 昆虫Ⅱ型几丁质酶基因特异性dsRNA的应用
CN110904223A (zh) 精神分裂症小鼠模型前额皮层circRNA测序分析试剂盒
CN109295203A (zh) 血管内皮细胞sirt6基因的应用及药物
Rosengren et al. High risk no gain-metabolic performance of hatchery reared Atlantic salmon smolts, effects of nest emergence time, hypoxia avoidance behaviour and size
CN109568303A (zh) 提高动物肌肉内脂肪沉积的方法及用途
CN111700034B (zh) 一种基于中枢神经系统髓鞘功能改变的精神分裂症动物模型的构建方法和应用
CN106492230B (zh) 白细胞免疫球蛋白样受体b4在治疗非酒精性脂肪肝和ⅱ型糖尿病中的功能和应用
Liu et al. Intergenerational effects of parental [Cnmim] BF4 (n= 4, 6, 8) ionic liquids exposure on zebrafish development based on transcriptomic analysis
CN110402893A (zh) 一种Nrf2基因缺失斑马鱼突变体的制备及其应用
CN101705229B (zh) 一种特异抑制ECHS1基因表达的siRNA及其应用
Chen et al. Genome-Wide Association study reveals SNPs and candidate genes related to growth and body shape in Bighead carp (Hypophthalmichthys nobilis)
CN110317866A (zh) 精神分裂症小鼠模型海马circRNA测序分析及试剂盒
CN114868707B (zh) 一种代谢性脑病和心律失常疾病的斑马鱼模型及其应用
CN108051553A (zh) 一种仔猪肠道功能保护剂的筛选方法
CN104789596B (zh) 一种常染色体显性多囊肾病基因突变猪的生产方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant