CN101705229B - 一种特异抑制ECHS1基因表达的siRNA及其应用 - Google Patents

一种特异抑制ECHS1基因表达的siRNA及其应用 Download PDF

Info

Publication number
CN101705229B
CN101705229B CN2009102376047A CN200910237604A CN101705229B CN 101705229 B CN101705229 B CN 101705229B CN 2009102376047 A CN2009102376047 A CN 2009102376047A CN 200910237604 A CN200910237604 A CN 200910237604A CN 101705229 B CN101705229 B CN 101705229B
Authority
CN
China
Prior art keywords
sirna
echs1
sequence
fat
gene expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102376047A
Other languages
English (en)
Other versions
CN101705229A (zh
Inventor
贺福初
姜颖
厉有名
张雪群
杨俊涛
叶桦
虞朝辉
孙薇
魏汉东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Radiation Medicine of CAMMS
Original Assignee
Institute of Radiation Medicine of CAMMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Radiation Medicine of CAMMS filed Critical Institute of Radiation Medicine of CAMMS
Priority to CN2009102376047A priority Critical patent/CN101705229B/zh
Priority to PCT/CN2010/000020 priority patent/WO2011060599A1/zh
Publication of CN101705229A publication Critical patent/CN101705229A/zh
Application granted granted Critical
Publication of CN101705229B publication Critical patent/CN101705229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/05Animals modified by non-integrating nucleic acids, e.g. antisense, RNAi, morpholino, episomal vector, for non-therapeutic purpose
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/054Animals comprising random inserted nucleic acids (transgenic) inducing loss of function
    • A01K2217/058Animals comprising random inserted nucleic acids (transgenic) inducing loss of function due to expression of inhibitory nucleic acid, e.g. siRNA, antisense
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0362Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种特异抑制ECHS1基因表达的siRNA及其应用。本发明提供的小干扰RNA,为由序列表的序列1和序列表的序列2所示核苷酸序列组成的双链RNA。本发明提供了一种能够特异高效抑制ECHS1基因表达的siRNA及对其进行修饰得到的修饰后RNA。体外和体内试验结果均表明,本发明提供的RNA可以特异高效地抑制ECHS1基因表达,促进游离脂肪酸的增高、甘油三酯的沉积,表现出脂滴的增加。本发明可以应用于制备非酒精性脂肪性肝病动物模型和非酒精性脂肪性肝病发病机制研究。本发明具有重要价值。

Description

一种特异抑制ECHS1基因表达的siRNA及其应用
技术领域
本发明涉及一种特异抑制ECHS1基因表达的siRNA及其应用。
背景技术
RNA干扰(RNA interference,RNAi)是一种进化上保守的抵御转基因或外来病毒侵犯的防御机制,指内源性或外源性与靶基因的转录产物mRNA存在同源互补序列的双链RNA(double-stranded RNA,dsRNA)在细胞内特异降解该mRNA,从而致使特异性的基因有效封闭的过程,是一种序列特异性的转录后基因沉默(post-transcriptional gene silencing,PTGS)。RNAi技术已成功应用于多种生物基因功能的研究。针对目的基因构建siRNA,利用RNAi技术关闭该基因的表达,根据表型的改变可以分析基因的功能。基因敲除技术需要较长时间永久性地关闭某个基因的表达,而RNAi技术则可在1周内,甚至2天内可控性地关闭10个基因,因此RNAi可以较灵活、快速得用于造模及后续的机制研究。籍此,RNAi技术已经广泛运用于疾病发病机制的研究。
裸siRNA(未修饰的siRNA)容易降解,其半衰期短,难以摄取,靶向性的缺乏诱发哺乳动物天然免疫反应,严重者可导致细胞和试验动物死亡,故应用范围不广。而化学修饰的siRNA可以使其具有良好的热力学稳定性、细胞穿透力、靶基因沉默活性以及药物代谢学特征,具有不可比拟的优势。
近年来,随着人们生活习惯和饮食结构的改变,非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)的患病率日益增高,我国已经达到15.35%,且呈不断升高趋势;在西方国家更是高达20-25%,已成为第一大肝病;与肥胖、糖尿病、高脂血症等代谢性疾病密切相关。根据病理学改变及临床表现,可将NAFLD的自然病程分为单纯性NAFLD和非酒精性脂肪性肝炎(nonalcoholicsteatohepatitis,NASH)。总的来说,单纯性NAFLD是一种良性疾病,但NASH却可逐渐进展为肝硬化、肝癌等终末期肝病。回顾性研究发现,在13年内约41%的NASH病人可以发展为肝纤维化,5.4%的NASH病人进展为终末期肝病甚至肝癌。目前NASH已成为隐源性肝硬化最重要的诱因。此外,由于脂变肝脏对很多药物和毒物的敏感性增加,增加了临床用药风险;再者,NAFLD可通过加剧机体代谢紊乱促进糖尿病、冠心病等的发展,导致代谢综合征相关肿瘤及心血管事件的高发;如果脂变肝脏作为供体,会引起移植后肝脏原发性无功能而导致移植失败。因此加强NAFLD的相关研究,尤其是NAFLD发病机制的研究对推动NAFLD的防治工作有着重要的意义。
NAFLD发生发展的分子机制至今尚未明确,目前认为NAFLD与胰岛素抵抗、脂肪储积失调、脂肪分泌抑制等有关。其中脂肪储积失调是NAFLD发病机制研究的热点之一。正常肝脏脂肪酸氧化与合成处于动态平衡,一旦脂肪酸氧化障碍,肝脏中脂肪储积,出现脂肪肝。线粒体β氧化是脂肪酸氧化的主要氧化形式。此过程可分为活化,转移,β氧化共三个阶段,活化后的脂肪酸以脂酰CoA的形式转移到线粒体基质中,进行β氧化。β氧化经过四步反应即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。多次重复上面的循环,就会逐步生成乙酰CoA。其中,第二步加水反应由ECHS1(烯酰-CoA水合酶)催化。ECHS1表达的降低有可能导致NAFLD,但是目前未见有关ECHS1与非酒精性脂肪肝关系的报道,采用RNAi技术进行ECHS1在NAFLD发病中机制的研究是对NAFLD发病机制的重要补充。
现有的非酒精性脂肪性肝病动物模型如ob/ob、db/db小鼠及Obese Zucker大鼠等遗传源性的自发性动物模型,大多需要从国外引进、价格昂贵,饲养条件要求较高,并且这些动物模型由于缺乏瘦素基因,并不能自发地复制出非酒精性脂肪性肝炎;而通过高脂饮食喂养SD大鼠复制的非酒精性脂肪性肝病动物模型,虽然可以复制出非酒精性脂肪性肝炎,但是成模速度慢,一般需要六个月左右的时间,并且模型的稳定性欠佳。因而,目前迫切需要建立一种稳定、便捷、成本合理的非酒精性脂肪性肝病动物模型,以顺利开展疾病发病机制及治疗方法的研究。
发明内容
本发明的目的是提供一种特异抑制ECHS1基因表达的siRNA(小干扰RNA)及其应用。
本发明提供的特异抑制ECHS1(烯酰-CoA水合酶)基因表达的siRNA(ECHS1siRNA)是序列表的序列1和序列表的序列2所示核苷酸组成的双链RNA。
本发明还保护将所述siRNA进行修饰后得到的修饰后RNA。对合成的siRNA进行化学修饰,能增加siRNA的稳定性,同时有效抑制目的基因的表达。siRNA的化学修饰主要有三类:磷酸骨架修饰、核糖修饰和碱基修饰。其中,核糖修饰是siRNA化学修饰最重要的方式。为提高siRNA在体内抵抗核酸酶水解的能力,本发明中对ECHS1 siRNA的核苷酸序列进行2′-O-甲基(2′-O Me)修饰。2′-O-甲基这种修饰方式能增强其在血清中的稳定性,降低免疫刺激反应强度。具体如下:用甲氧基修饰所述siRNA中的嘧啶核苷酸的核糖的2′羟基,得到的修饰后RNA。
所述siRNA或所述修饰后RNA在抑制ECHS1基因表达中的应用也属于本发明的保护范围。所述ECHS1基因可如序列表的序列3所示。
所述siRNA或所述修饰后RNA可应用于制备非酒精性脂肪性肝病动物模型。
所述动物模型可为小鼠模型,所述小鼠可为Balb/c小鼠。
所述siRNA或所述修饰后RNA可应用非酒精性脂肪性肝病发病机制研究。
本发明提供了一种能够特异高效抑制ECHS1基因表达的siRNA及对其进行修饰得到的修饰后RNA。体外和体内试验结果均表明,本发明提供的RNA可以特异高效地抑制ECHS1基因表达,促进游离脂肪酸的增高、甘油三酯的沉积,表现出脂滴的增加。本发明可以应用于制备非酒精性脂肪性肝病动物模型和非酒精性脂肪性肝病发病机制研究,具有重大价值。
附图说明
图1为Western blotting检测转染siRNA后AML-12细胞中ECHS1的表达水平的扫描图。
图2为Western blotting检测转染siRNA后AML-12细胞中ECHS1的表达水平半定量。
图3为转染siRNA后各组AML-12细胞脂变情况的油红O染色图。
图4为转染siRNA后各组AML-12细胞脂变情况的甘油三酯定量。
图5为转染siRNA后各组AML-12细胞脂变情况的游离脂肪酸定量。
图6为Western blotting检测Balb/c小鼠经尾静脉高压注射siRNA后肝脏中ECHS1的表达水平的扫描图。
图7为Western blotting检测Balb/c小鼠经尾静脉高压注射siRNA后肝脏中ECHS1的表达水平半定量。
图8为Balb/c小鼠经尾静脉高压注射siRNA后肝脏脂变情况的油红O染色图。
图9为Balb/c小鼠经尾静脉高压注射siRNA后肝脏脂变情况的甘油三酯定量。
图10为Balb/c小鼠经尾静脉高压注射siRNA后肝脏脂变情况的游离脂肪酸定量。
具体实施方式
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。
统计学方法:采用SPSS11.5统计分析软件分析,各样本均数的比较采用Studentt test分析。
雄性Balb/c小鼠,6周龄,体重18g~20g,购自北京维通力华实验动物中心,于军事医学科学院实验动物中心清洁级屏障系统实验室饲养。
小鼠正常肝脏细胞株AML-12,购于美国模式培养物研究所(ATCC)。
高脂饲料和正常对照饲料购自浙江省实验动物中心。兔抗人ECHS1一抗、兔抗人GAPDH一抗购自ProtienTech公司。抗兔IgG二抗、苏木素购自北京中杉金桥公司。油红O购自广州奥凯公司。甘油三酯测定试剂盒、游离脂肪酸测定试剂盒、RIPA裂解液购自普利莱公司。BCA法蛋白测定试剂盒购自Thermo。LipofectamineTM 2000购自Invitrogen。油酸钠和软脂酸钠购自sigma公司。PBS购自HyClone公司。化学发光剂Supersignal West Pico购自Thermo。
实施例1、siRNA设计合成
一、ECHS1 siRNA的合成
通过美国国立生物技术信息中心(NCBI)数据库中获取小鼠ECHS1 mRNA的序列全长(NM 053119.2;序列表的序列3),跟据RNAi原理,结合设计软件,在实验的基础上,设计合成并筛选出有效的针对小鼠ECSH1基因的一段21nt的siRNA。进行BLAST比对检查以保证和其他基因没有同源性。
ECHS1 siRNA序列为:5’-GCCUUUGAGAUGACGUUAAtt-3’(正义链)(序列1);
                   3’-gtCGGAAACUCUACUGCAAUU-5’(反义链)(序列2)。
由上海吉玛制药技术有限公司(厂址:浦东张江哈雷路1011号602,邮编:201203)进行化学合成:以NTP为原料,利用ABI3900核酸合成仪分别化学合成单链RNA,最后在退火缓冲液的条件下各单链RNA退火形成双链RNA。为提高siRNA在体内的稳定性,在各链化学合成之前,利用化学反应将各链合成原料中的嘧啶核苷酸的核糖进行2′羟基的甲氧基替代修饰。
二、阴性对照siRNA的合成
阴性对照siRNA序列为:5’-UUCUCCGAACGUGUCACGUtt-3’(正义链);
                     3’-ttAAGAGGCUUGCACAGUGCA-5’(反义链)。
由上海吉玛制药技术有限公司(厂址:浦东张江哈雷路1011号602,邮编:201203)进行化学合成:以NTP为原料,利用ABI3900核酸合成仪分别化学合成单链RNA,最后在退火缓冲液的条件下各单链RNA退火形成双链RNA。为提高siRNA在体内的稳定性,在各链化学合成之前,利用化学反应将各链合成原料中的嘧啶核苷酸的核糖进行2′羟基的甲氧基替代修饰。
实施例2、ECHS1 siRNA在体外对AML-12细胞ECHS1基因表达的影响
一、分组转染
将AML-12细胞均匀铺在24孔板中,分为4组:
高脂实验组:含有10%(体积百分含量)灭活的新生牛血清、100U/ml青霉素和100mg/ml链霉素、666μmol/L的油酸钠和333μmol/L的软脂酸钠的DMEM/F12培养基;转染200pmol实施例1的ECHS1 siRNA。
高脂对照组:含有10%(体积百分含量)灭活的新生牛血清、100U/ml青霉素和100mg/ml链霉素、666μmol/L的油酸钠和333μmol/L的软脂酸钠的DMEM/F12培养基;转染200pmol实施例1的阴性对照siRNA。
正常实验组:含有10%(体积百分含量)灭活的新生牛血清、100U/ml青霉素和100mg/ml链霉素的DMEM/F12培养基;转染200pmol实施例1的ECHS1 siRNA。
正常对照组:含有10%(体积百分含量)灭活的新生牛血清、100U/ml青霉素和100mg/ml链霉素的DMEM/F12培养基;转染200pmol实施例1的阴性对照siRNA。
四组细胞先常规培养24h,然后根据组别进行转染(按LipofectamineTM 2000试剂说明书操作),转染后继续培养36h后换液一次,72小时后根据组别换相应的培养基,继续培养24h后进行实验;培养条件:置于37℃、5%CO2、饱和湿度的CO2培养箱中培养。
二、Western blotting检测ECHS1蛋白的表达
吸弃24孔板中的培养基,用冷的PBS洗涤2次,每孔加120μl预冷的PBS和40μl4×Loading Buffer[1.0M Tris-HCL(PH 6.8)2.4ml,十二烷基磺酸钠(SDS)0.8g,二巯基苏糖醇(DTT)0.6g,甘油4ml],充分裂解后收集裂解液,于95℃加热变性5分钟,4℃、12000g离心5min后收集上清液,每个样品取8μl上样,行12%的SDS-PAGE电泳,蛋白充分分离后,转移到NC膜上,于含5%脱脂奶粉TBST的封闭液中,室温封闭1h,取出膜用TBST溶液洗涤5min×5次,将膜在合适的分子量处剪开,分别用ECHS1一抗(1∶200稀释)和内参GAPDH一抗(1∶1000稀释)室温孵育2h,然后TBST洗膜5min×5次,与抗兔IgG二抗(1∶5000稀释)室温孵育1h,将膜与化学发光试剂孵育5min进行显色反应,在暗室中压X胶片曝光,洗胶片。对条带进行光密度扫描。检测各组ECHS1蛋白和内参GAPDH蛋白所对应条带A值,然后将AECHS1/AGAPDH的比值进行统计学分析(Quantity One软件)。
结果如图1、图2。与阴性对照组比较,ECHS1siRNA转染后细胞中ECHS1基因表达显著下调(P<0.01)。
实施例3、ECHS1 siRNA在体外对AML-12细胞脂变的影响
一、分组转染
将AML-12细胞均匀铺在12孔板中,分为4组。具体分组同实施例2的步骤一。
二、ECHS1 siRNA在体外对AML-12细胞脂变的影响
分别将步骤一后的细胞进行如下1或2或3的实验。
1、油红染色
在12孔板中加入4%多聚甲醛在4℃固定30min,蒸馏水洗两次后加入油红O稀释液(油红O 0.5g溶于异丙醇100ml配成的饱和液与蒸馏水按3∶2稀释,静置5-10min后过滤使用),避光染色10-15min,水洗一次后用60%乙醇镜下分化至间质清晰,水洗两次后Mayer氏苏木素复染核8s,水洗两次后在自来水中反蓝30min。对染色后的细胞显微照相。
油红O能够特异性地将脂滴染成鲜红色,直观得反应细胞中脂滴形成情况。结果如图3所示,油红O染色显示高脂实验组的脂滴明显多于高脂对照组,正常实验组的脂滴也略多于正常对照组,即ECHS1敲低组的脂滴均多于相应的未敲低组。这表明:ECHS1 siRNA能促进AML-12细胞的脂变。
2、甘油三酯测定
按照甘油三酯测定试剂盒说明书进行操作。具体如下:将12孔板细胞用冷PBS洗涤2次,每孔加入试剂盒裂解液200μl,振荡裂解细胞30min,取50μl裂解液采用BCA法蛋白定量试剂盒进行蛋白含量测定,其余50μl裂解液转移到600μl离心管,70℃加热30min,室温2000g离心5min,上层清液用于酶学测定。96孔酶标版中将标准品和待测样品与工作液按说明书中列表所示体积混匀,37℃反应10min后用酶标仪在490nm波长下检测,用Excel作图分析数据,结合蛋白浓度以每mg蛋白浓度校正甘油三酯含量。
甘油三酯是脂变细胞中脂滴的主要成分,测定甘油三酯能够将细胞的脂变情况进一步量化。结果如图4所示,高脂实验组的甘油三酯高于高脂对照组50-60%,有显著性差异(P<0.05),正常实验组的甘油三酯也显著高于正常对照组(P<0.01)。这表明:ECHS1 siRNA能促进AML-12细胞甘油三酯的沉积,与油红O染色结果相符。
3、游离脂肪酸测定
按照游离脂肪酸测定试剂盒说明书进行操作。具体如下:消化、离心收集细胞后用冷PBS洗涤2次,每个样品加入200μl RIPA裂解液,剧烈振荡裂解细胞30min,12000g离心10min,取部分上清采用BCA法蛋白定量试剂盒进行蛋白含量测定,其余上清用蒸馏水1∶5稀释,和抽提液及铜试剂按照试剂盒说明书中列表所示体积混匀,充分振荡2min,室温静置10min,12000g离心5min,取上层清液按列表所示体积加入显色剂,振荡5s,室温静置5min,取下层180μl加入96孔酶标版,用酶标仪在490nm波长下检测,用Excel作图分析数据,结合蛋白浓度以每mg蛋白浓度校正游离脂肪酸含量。
游离脂肪酸是甘油三酯合成的原料,也是甘油三酯代谢关键的中间产物,是脂肪酸β氧化的底物,评价其水平可以进一步将ECHS1基因的功能与细胞脂变情况联系起来。结果如图5所示,高脂实验组中游离脂肪酸含量显著高于高脂对照组(P<0.05),正常实验组的游离脂肪酸虽然与正常对照组比较没有显著性差异,但也高于正常对照组。这表明:ECHS1 siRNA能增加AML-12细胞游离脂肪酸水平,与油红O染色及甘油三酯测定结果相符。
以上三个结果共同说明在体外AML-12细胞中,ECHS1 siRNA可能通过阻碍脂肪酸β氧化过程,促进游离脂肪酸的增高、甘油三酯的沉积,表现出脂滴的增加。籍此可见,ECHS1在体外促进AML-12细胞脂肪变中的关键地位。
实施例4、化学修饰的ECHS1 siRNA Balb/c小鼠体内实验
一、动物模型的建立及分组
选6周龄Balb/c小鼠,每组6只随机分成4组:
高脂实验组:高脂饮食,尾静脉高压注射含有ECHS1 siRNA 1.5OD的PBS 1.8ml。
高脂对照组:高脂饮食,尾静脉高压注射含有阴性对照siRNA 1.5OD的PBS1.8ml。
正常实验组:正常饮食,尾静脉高压注射含有ECHS1 siRNA 1.5OD的PBS 1.8ml。
正常对照组:正常饮食,尾静脉高压注射含有阴性对照siRNA 1.5OD的PBS1.8ml。
尾静脉高压注射在5s内完成,每周一次,共4次。4周后隔夜禁食12小时、不禁水,于次日眼球取血后颈椎脱臼法处死小鼠。部分肝脏组织均浆提取蛋白,部分均浆进行甘油三酯及游离脂肪酸定量,部分进行病理学油红O染色。
二、作用效果检测
1、Western blotting检测ECHS1蛋白的表达
按比例每100mg肝脏组织加1m RIPA裂解液,用手动玻璃匀浆器破解组织,12000g离心60min,取少量上清采用BCA法蛋白定量试剂盒进行蛋白含量测定,其余上清用于Western blotting检测。根据蛋白定量结果,用Loading Buffer稀释蛋白到终浓度25μg/8μl,于95℃加热变性5分钟后12000g离心5min,留取上清,每个样品以8μl上样,行12%的SDS-PAGE电泳,蛋白充分分离后,转移到NC膜上,于含5%脱脂奶粉TBST的封闭液中,室温封闭1h,取出膜用TBST溶液洗涤5min×5次,将膜在合适的分子量处剪开,分别用ECHS1一抗(1∶200稀释)和内参GAPDH一抗(1∶1000稀释)室温孵育2h,然后TBST洗膜5min×5次,与抗兔IgG二抗(1∶5000稀释)室温孵育1h,将膜与化学发光试剂孵育5min进行显色反应,在暗室中压X胶片曝光,洗胶片。对条带进行光密度扫描。检测各组ECHS1蛋白和内参GAPDH蛋白所对应条带A值,然后将AECHS1/AGAPDH的比值进行统计学分析(Quantity One软件)。
结果如图6和图7所示,与阴性对照组相比,尾静脉高压注射ECHS1 siRNA后Balb/c小鼠肝脏ECHS1基因表达显著下调(P<0.01)。
2、肝脏油红染色
留取部分肝脏组织进行冰冻切片,将冰冻切片用油红O稀释液染8min,60%异丙醇镜下分化至间质清晰,水洗后Mayer氏苏木素复染核20s,自来水反蓝30min,甘油封片。对染色后的切片显微照相。
如图8所示,油红O染色显示高脂实验组的脂滴明显多于高脂对照组,正常实验组的脂滴也略多于正常对照组,即ECHS1敲低组的脂滴均多于相应的未敲低组。这表明:ECHS1 siRNA能促进Balb/c小鼠肝脏的脂变。
3、肝脏甘油三酯测定
按照甘油三酯测定试剂盒说明书进行操作。具体如下:按比例每100mg肝脏组织加1ml裂解液,手动玻璃匀浆器破解组织,各取一半裂解液用于蛋白浓度测定和甘油三酯测定,余下步骤同细胞甘油三酯测定。
如图9所示,高脂实验组的甘油三酯显著高于高脂对照组(P<0.05),正常实验组的甘油三酯虽然与正常对照组比较没有显著性差异,但也高于正常对照组。这表明:ECHS1 siRNA能促进Balb/c小鼠肝脏甘油三酯的沉积,与油红O染色结果相符。
4、肝脏游离脂肪酸测定
按照游离脂肪酸测定试剂盒说明书进行操作。具体如下:按比例每100mg肝脏组织加1ml RIPA裂解液,手动玻璃匀浆器破解组织,12000g离心10min,取部分上清采用BCA法蛋白定量试剂盒进行蛋白含量测定,部分上清用蒸馏水1∶10稀释,余下步骤同细胞的游离脂肪酸测定。
如图10所示,高脂实验组中含量显著高于高脂对照组(P<0.05),正常实验组的游离脂肪酸虽然与正常对照组比较没有显著性差异,但也高于正常对照组。这表明:ECHS1 siRNA能增加Balb/c小鼠肝脏游离脂肪酸的水平,与油红O染色及甘油三酯测定结果相符。
以上三个结果共同说明在体内Balb/c小鼠肝脏细胞中,ECHS1 siRNA可能通过阻碍脂肪酸β氧化过程,促进游离脂肪酸的增高、甘油三酯的沉积,从而导致肝细胞脂肪变。籍此可见,ECHS1在体内促进肝细胞脂肪变中的关键地位。
序列表
<110>中国人民解放军军事医学科学院放射与辐射医学研究所
<120>一种特异抑制ECHS1基因表达的siRNA及其应用
<130>CGGNARY92670
<160>3
<210>1
<211>21
<212>RNA
<213>人工序列
<220>
<223>
<400>1
gccuuugaga ugacguuaat t                                       21
<210>2
<211>21
<212>RNA
<213>人工序列
<220>
<223>
<400>2
gtcggaaacu cuacugcaau u                                              21
<210>3
<211>1491
<212>DNA
<213>小鼠属小鼠(Mus musculus)
<400>3
ctgtgggcgg aacacatcgt ctctccgcca tggcggccct gcgtgctctg ctgcccagag    60
cctgtagctc actgttgtcc tcagtccgct gcccagaact acggcgcttc gcctcgggtg    120
ctaactttca gtacatcatc acagaaaaga aaggaaagaa tagcagcgtg gggctgatcc    180
agttgaaccg ccccaaagca ctcaatgcac tttgcaatgg cctgattgag gagctcaacc    240
aagcactgga gacctttgag caagatcctg ctgtgggtgc cattgtgctc actggtgggg    300
ataaggcctt tgcagctgga gctgacatca aggaaatgca gaaccgaaca tttcaggact    360
gttactccag caagttcctg agccactggg accacatcac ccgggtcaag aaaccggtca    420
tcgcagctgt caatggttat gctcttggtg ggggttgtga acttgccatg atgtgtgata    480
tcatctatgc tggcgagaaa gcccagttcg gacagccaga aatcctcctg gggaccatcc    540
caggtgctgg aggcactcag agactcaccc gagcagtcgg caaatcgcta gcaatggaga    600
tggtcctcac tggtgaccgc atctcagctc aggatgcaaa gcaggcaggt cttgtaagca    660
agatttttcc tgttgaaaaa ctggttgaag aagccatcca atgtgcagaa aaaattgcca    720
gcaattctaa aatcgtagta gccatggcga aagaatctgt gaatgcagcc tttgagatga    780
cgttaacaga aggaaataag ctggagaaga ggcttttcta ttccaccttt gccaccgatg    840
accggagaga agggatgact gcatttgtag agaaaaggaa ggccaacttc aaagaccact    900
gagaactggc agctataccg tttgccaccc tggaaagctc agcctgtcct ttgagaggca    960
aataaatgat ccaaaagggt agtagtgtcg gccacagttc ccaccgaagg cttcagggct   1020
gtggccacag cttgggtact catggcgtgg cctgcagcct tcaccagttg ttggaagtca   1080
ggctcacccc gtcttctgaa tcagaaacct gggaagcttt caaggtgtct tgattttttt   1140
ttaacttcac tgtaagggca ggtgcacgct tgggccagcc actcccctgt gcattctccg   1200
cagctcatag ctcaagatgt gagcttcaag agggaagtgg ccctctctgc tgattcccaa   1260
ctcaagaatt caatgaaagt aactacttca cagtttagtt tcgactcacc tgtagttgtc    1320
tctagagagc caatgtggtt ttttaaaatt attattgcta ttttcttatg gctaaggttt    1380
cactgtgtat ccctggctgc ctggaagtta ctatatagac caggttgacc ttgaactcac    1440
agagaccagc cagtctctgt tttccaagtg ttgggattaa aggtgtatac t             1491

Claims (3)

1.一种小干扰RNA,为由序列表的序列1和序列表的序列2所示核苷酸序列组成的双链RNA。
2.一种小干扰RNA,其特征在于:是用甲氧基修饰权利要求1所述小干扰RNA中的嘧啶核苷酸的核糖的2′羟基得到的。
3.权利要求1或2所述小干扰RNA在抑制ECHS1基因表达中的应用,所述ECHS1基因如序列表的序列3所示。
CN2009102376047A 2009-11-19 2009-11-19 一种特异抑制ECHS1基因表达的siRNA及其应用 Active CN101705229B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009102376047A CN101705229B (zh) 2009-11-19 2009-11-19 一种特异抑制ECHS1基因表达的siRNA及其应用
PCT/CN2010/000020 WO2011060599A1 (zh) 2009-11-19 2010-01-05 一种特异抑制ECHS1基因表达的siRNA及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102376047A CN101705229B (zh) 2009-11-19 2009-11-19 一种特异抑制ECHS1基因表达的siRNA及其应用

Publications (2)

Publication Number Publication Date
CN101705229A CN101705229A (zh) 2010-05-12
CN101705229B true CN101705229B (zh) 2011-12-21

Family

ID=42375484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102376047A Active CN101705229B (zh) 2009-11-19 2009-11-19 一种特异抑制ECHS1基因表达的siRNA及其应用

Country Status (2)

Country Link
CN (1) CN101705229B (zh)
WO (1) WO2011060599A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851292B (zh) * 2011-03-23 2014-04-02 中国农业科学院哈尔滨兽医研究所 特异性沉默鸡马立克氏病病毒gI、gE基因的siRNA序列及其载体和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2021511A4 (en) * 2006-05-03 2010-02-10 Geisinger Clinic METHODS OF DIAGNOSIS AND PREDICTION OF NON ALCOHOLIC STHEATHYPATITIS (NASH)
CN101011585A (zh) * 2007-01-22 2007-08-08 浙江大学 一种非酒精性脂肪性肝病小鼠模型的制备方法

Also Published As

Publication number Publication date
WO2011060599A1 (zh) 2011-05-26
CN101705229A (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
Morton et al. microRNA-138 modulates cardiac patterning during embryonic development
CN104232644A (zh) 一种特异抑制XOR基因表达的siRNA及其应用
Yan et al. MiR-214-3p exacerbates kidney damages and inflammation induced by hyperlipidemic pancreatitis complicated with acute renal injury
Chi et al. Non-coding RNA as biomarkers for type 2 diabetes development and clinical management
CN106676177A (zh) 长链非编码RNA lnc‑DIF的应用
Fu et al. Let-7g is involved in doxorubicin induced myocardial injury
Guo et al. RETRACTED ARTICLE: Effects of microRNA-21 on Nerve Cell Regeneration and Neural Function Recovery in Diabetes Mellitus Combined with Cerebral Infarction Rats by Targeting PDCD4
Chen et al. GAS5 regulates diabetic cardiomyopathy via miR‑221‑3p/p27 axis‑associated autophagy
CN106729757A (zh) miR‑378抑制心肌肥厚和心肌纤维化并诊断心力衰竭的用途
Yang et al. miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy
CN104548134A (zh) miR-144及其抑制剂的应用
JP2009509544A5 (zh)
He et al. The role of non-coding RNAs in diabetic nephropathy-related oxidative stress
Xuan et al. Up‐regulation of miR‐195 contributes to cardiac hypertrophy‐induced arrhythmia by targeting calcium and potassium channels
Yang et al. lncRNA PINK1‐AS Aggravates Cerebral Ischemia/Reperfusion Oxidative Stress Injury through Regulating ATF2 by Sponging miR‐203
CN103695421B (zh) 一种特异抑制p21基因表达的siRNA及其应用
CN101705229B (zh) 一种特异抑制ECHS1基因表达的siRNA及其应用
Mai et al. MiR-34a affects hepatocyte proliferation during hepatocyte regeneration through regulating Notch/HIF-1α signaling pathway.
CN103667284B (zh) 一种特异抑制COTL1基因表达的siRNA及其应用
Wu et al. CircBCL2L13 attenuates cardiomyocyte oxidative stress and apoptosis in cardiac ischemia‒reperfusion injury via miR‐1246/PEG3 signaling
JP5522435B2 (ja) Mxd3遺伝子の発現阻害による肥満の抑制
CN105247371A (zh) 通过转录因子tsc22d4的抑制剂治疗胰岛素抵抗
CN101220360B (zh) 一种抑制caspase-3基因表达的siRNA序列
Zhang et al. Huaju Xiaoji Formula Regulates ERS‐lncMGC/miRNA to Enhance the Renal Function of Hypertensive Diabetic Mice with Nephropathy
CN111647639B (zh) 一种基于实验鱼胚胎和基因表达快速筛选脂代谢药物的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant