CN111607824A - 基于ScAlMgO4衬底的氮化镓单晶及其制备方法 - Google Patents

基于ScAlMgO4衬底的氮化镓单晶及其制备方法 Download PDF

Info

Publication number
CN111607824A
CN111607824A CN202010487573.7A CN202010487573A CN111607824A CN 111607824 A CN111607824 A CN 111607824A CN 202010487573 A CN202010487573 A CN 202010487573A CN 111607824 A CN111607824 A CN 111607824A
Authority
CN
China
Prior art keywords
substrate
scalmgo
single crystal
gallium nitride
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010487573.7A
Other languages
English (en)
Inventor
张海涛
许彬
庞博
刘良宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Wuyue Semiconductor Co ltd
Original Assignee
Wuxi Wuyue Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Wuyue Semiconductor Co ltd filed Critical Wuxi Wuyue Semiconductor Co ltd
Priority to CN202010487573.7A priority Critical patent/CN111607824A/zh
Publication of CN111607824A publication Critical patent/CN111607824A/zh
Priority to PCT/CN2021/090179 priority patent/WO2021244188A1/zh
Priority to JP2022547804A priority patent/JP7412808B2/ja
Priority to US17/761,607 priority patent/US12065755B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供基于ScAlMgO4衬底的氮化镓单晶制备方法,包括如下步骤:(1)提供ScAlMgO4衬底;(2)在所述ScAlMgO4衬底表面进行缓冲层生长;(3)所述缓冲层进行退火处理;(4)于所述缓冲层上生长GaN晶体;(5)降温,GaN晶体自所述ScAlMgO4衬底自动剥离。本发明不需要使用复杂的MOCVD沉积GaN并预处理以制作掩模或分离层的工艺,有效降低了生产成本;相比于传统衬底如蓝宝石,具有更高的质量与更大的曲率半径,对于生长4英寸以上的GaN来说,不会造成OFFCUT不均匀的问题;最后,本发明可以实现连续生长成厚度高达5毫米以上的晶棒,进一步降低了成本。

Description

基于ScAlMgO4衬底的氮化镓单晶及其制备方法
技术领域
本发明涉及半导体技术领域,具体涉及一种基于ScAlMgO4衬底的氮化镓单晶及其制备方法。
背景技术
GaN是第三代宽禁带半导体的典型代表,已被广泛应用于半导体照明、微波功率器件和电力电子器件等方面,展现出巨大的应用前景。用于氮化镓生长的最理想衬底自然是氮化镓单晶材料,这样的同质外延(即外延层和衬底是同一种材料)可以大大提高外延膜的晶体质量,降低位错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。但是氮化镓单晶生长困难,价格昂贵,大规模化同质外延生长目前仍然没有可能。因此,目前氮化镓单晶制备仍然采用异质外延,如硅衬底、蓝宝石衬底、碳化硅衬底等。
目前基本上所有的商业化GaN衬底(晶圆,基片)都是通过HVPE制造的。但是其尺寸通常还是局限在2寸,更大的尺寸比如4英寸受到了曲率半径的限制。而HVPE由于采用异质外延,晶格常数和热膨胀数造成的应力会引起氮化镓在长厚时或冷却时开裂。
现有的解决方法是在蓝宝石表面先用MOCVD生长几微米GaN薄膜并进行界面处理形成各种掩模,一方面减少生长时的起始缺陷并形成应力屈服型衬底,从而使GaN生长的临界厚度尽可能大比如达到几百微米甚至几个毫米;另一方面是制造弱界面,这样可以在降温时由于热膨胀数不同引入的切应力来造成GaN和蓝宝石或其他衬底的自动剥离。这种方法的本质是通过插入一个在异质衬底界面上的过渡层,达到降低生长时的位错和应力的目的,并使生长的氮化镓在降温时与衬底如蓝宝石容易剥离。
然而此类方法存在不足:以蓝宝石为基础的HVPE由于采用晶格失配常数达-13.9%的异质材料,其生长的氮化镓晶体位错比较高,同时由于应力曲率半径在10米以下限制了到4寸的拓展,同时剥离和降位错工艺复杂造成良率低,最后只能采用单片法造成生产成本过于高昂。
发明内容
本发明针对以上问题以及现有技术缺点,做出研究改进,提供一种基于 ScAlMgO4衬底的氮化镓单晶及其制备方法,本发明采用了与GaN晶格常数非常接近的ScAlMgO4作为HVPE生长的衬底,通过在ScAlMgO4衬底沉积缓冲层,在生长时得到位错密度在1E6cm-2以下的GaN晶体。
具体而言,本发明提供的基于ScAlMgO4衬底的氮化镓单晶制备方法,包括以下步骤:
(1)提供ScAlMgO4衬底;
(2)在所述ScAlMgO4衬底表面进行缓冲层生长;
(3)所述缓冲层进行退火处理;
(4)于所述缓冲层上生长GaN晶体;
(5)降温,GaN晶体自所述ScAlMgO4衬底自动剥离。
作为本发明的优选设置,所述ScAlMgO4衬底为圆形或正六边形。
作为本发明的优选设置,所述ScAlMgO4衬底表面经过抛光处理,其具有原子层表面,表面粗糙度不超过0.5nm,其c-planeOFFCUT在0~1.5度。
作为本发明的优选设置,步骤(2)中所述缓冲层生长采用低温AlN溅射法,温度设置为300~800℃,AlN厚度在10~300nm,并在步骤(3)中对所述缓冲层于H2/N2环境下进行高温退火处理。
作为本发明的优选设置,步骤(2)中所述缓冲层生长为采用MOCVD方法生长的AlN薄膜模板,厚度为1~10um.
作为本发明的优选设置,步骤(2)中所述缓冲层生长采用高温AlNHVPE 方法,温度设置为1000~1600℃,厚度为50~3000nm并在步骤(3)中进行高温1600~1700℃还原或惰性环境下退火处理。
作为本发明的优选设置,步骤(2)中所述缓冲层生长采用低温GaNHVP E方法,温度设置为300~800℃,厚度约20~500nm并在步骤(3)中进行9 50~1100℃退火处理。
作为本发明的优选设置,步骤(3)与步骤(4)之间还包括对所述ScAlMg O4衬底底面与侧面进行低温AlN溅射沉积处理,温度设置为300~800℃,厚度不超过50nm。
作为本发明的优选设置,步骤(4)采用HVPE方法,进一步还包括维持G aN单晶厚膜继续生长与形貌的方法:
①不断增加温度,增加幅度为GaN单晶厚膜每增长1mm温度增加1~1 0℃;
②不断增加NH3;增加幅度为GaN单晶厚膜每增长1mmNH3(或相应的V/III)增加5%~50%。
本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶,所述基于ScAlMgO4衬底的氮化镓单晶采用如权利要求1至权利要求9中任一项所述的制备方法制备而得到。
本发明的有益效果:首先,通过本发明提供的工艺生长的晶体有效降低了位错;其次,本发明不需要使用复杂的MOCVD沉积GaN并预处理以制作掩模或分离层的工艺,有效降低了生产成本;再次,相比于传统衬底如蓝宝石,本发明具有更高的质量与更大的曲率半径,对于生长4英寸以上的GaN来说,不会造成OFFCUT不均匀的问题;最后,本发明可以实现连续生长成厚度高达5 毫米以上的晶棒,进一步降低了成本。
附图说明
图1是本发明的生产工艺流程图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
实施例1
请参阅图1,本发明提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,包括如下步骤:
(1)提供ScAlMgO4衬底;
(2)在所述ScAlMgO4衬底表面进行缓冲层生长;
(3)所述缓冲层进行退火处理;
(4)于所述缓冲层上生长GaN晶体;
(5)降温,将GaN晶体自所述ScAlMgO4衬底剥离。
请参阅图1和步骤(1),提供ScAlMgO4衬底100。
作为本实施例的优选设置,所述ScAlMgO4衬底为圆形或正多边形;更加优选地,所述ScAlMgO4衬底为圆形或正六边形。
作为本实施例的优选设置,所述ScAlMgO4具有高的晶体质量,其(001) XRDFWHM通常小于20arcsec,优选地小于10arcsec;所述ScAlMgO4衬底具有原子层表面,采用CMP制备得到,CMP即化学机械抛光工艺,此处不再赘述。
在步骤(2)中,基于所述ScAlMgO4衬底表面进行缓冲层生长,采用低温 AlN溅射法。在本实施例中,溅射法生产工艺采用高纯度铝靶材(5N以上), N2和Ar的混合气体环境,压力设置0.1~2Pa,优选地,低温范围设置为 300~800℃;更为优选地,低温范围设置为400~650℃;更为优选地,低温范围设置为500~600℃。
作为本实施例的优选设置,步骤(3)对所述AlN缓冲层于H2/N2环境下在1200~2000℃进行退火处理;更为优选地,所述缓冲层于H2/N2环境下在 1350~1850℃进行退火处理;更为优选地,所述缓冲层于H2/N2环境下在 1600~1700℃进行退火处理。
作为本实施例的优选设置,步骤(3)与步骤(4)之间还包括对所述ScAlMgO4衬底底面与侧面进行低温300~800℃优选400°AlN溅射沉积处理,以在底面与侧面形成厚度不超过50nm的保护层,避免高温生长时ScAlMgO4分解析出O2,提高生长的GaN纯度。
步骤(4)采用HVPE方法,包括HCl通过Ga700~900度反应生长GaCl 作为镓源,NH3气体直接提供氮源,温度范围设置900~1100℃,V/III比2~ 1000,载气为H2/N2混合气等本领域技术人员所熟知的HVPE工艺手段,进一步还包括维持GaN单晶厚膜继续生长与形貌的方法:
①不断增加温度,增加幅度为GaN单晶厚膜每增长1mm温度增加1~1 0℃;
②不断增加NH3;增加幅度为GaN单晶厚膜每增长1mmNH3(或相应的V/III)增加5%~50%。
本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶,所述基于ScAlMgO4衬底的氮化镓单晶基于以上制备方法制备而得到。
实施例2
本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,本实施例中所述的基于ScAlMgO4衬底的氮化镓单晶制备方法与其他实施例中所述的制备方法大致相同,区别在于:实施例2步骤(2)中所述缓冲层生长采用MOCVD 方法生长薄膜模板厚度1~10um,其(102)XRDFWHM小于320arcsec,优选地小于240arcsec。MOCVD方法为本领域技术人员所熟知,其原理在此不做赘述。
步骤(3)中于MOCVD炉中原位退火,即低温生长结束后升温到1000℃进行退火处理。
实施例3
本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,本实施例中所述的基于ScAlMgO4衬底的氮化镓单晶制备方法与其他实施例中所述的制备方法大致相同,区别在于:本实施例中步骤(2)中所述缓冲层生长采用高温 AlNHVPE方法。优选地,在HVPE工艺条件下,温度设置为1000~1600℃;更为优选地,温度设置为1200~1600℃;更为优选地,温度设置为1500~1600℃ ,厚度为50~3000nm.
作为本发明实施例3的优选设置,采用AlNHVPE方法所制备的缓冲层,可以允许不进行退火处理,也可以在步骤(3)中进行高温1600~1700℃还原环境下退火处理。
实施例4
本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,本实施例中所述的基于ScAlMgO4衬底的氮化镓单晶制备方法与其他实施例中所述的制备方法大致相同,区别在于,步骤(2)中所述缓冲层生长采用低温GaNHVPE方法。优选地,在HVPE工艺条件下,温度设置为300~800℃;更为优选地,温度设置为400~700℃;更为优选地,温度设置为500~600℃。厚度约20~ 500nm;更为优选地,温度设置为50~100nm。
作为本发明实施例3的优选设置,采用低温GaNHVPE方法所制备的缓冲层在步骤(3)中进行950~1100℃退火处理。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (10)

1.一种基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,包括以下步骤:
(1)提供ScAlMgO4衬底;
(2)在所述ScAlMgO4衬底表面进行缓冲层生长;
(3)所述缓冲层进行退火处理;
(4)于所述缓冲层上生长GaN晶体;
(5)降温,GaN晶体自所述ScAlMgO4衬底自动剥离。
2.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,所述ScAlMgO4衬底为圆形或正六边形。
3.如权利要求2所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,所述ScAlMgO4衬底表面经过抛光处理,其具有原子层表面,表面粗糙度不超过0.5nm,其c-planeOFFCUT在0~1.5度。
4.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长采用低温AlN溅射法,温度设置为300~800℃,AlN厚度在10~300nm,并在步骤(3)中对所述缓冲层于H2/N2环境下进行高温退火处理。
5.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长为采用MOCVD方法生长的AlN薄膜模板,厚度为1~10um。
6.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长采用高温AlN HVPE方法,温度设置为1000~1600℃,厚度为50~3000nm并在步骤(3)中进行高温1600~1700℃还原或惰性环境下退火处理。
7.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长采用低温GaN HVPE方法,温度设置为300~800℃,厚度约20~500nm并在步骤(3)中进行950~1100℃退火处理。
8.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(3)与步骤(4)之间还包括对所述ScAlMgO4衬底底面与侧面进行低温AlN溅射沉积处理,温度设置为300~800℃,厚度不超过50nm。
9.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(4)采用HVPE方法,进一步还包括维持GaN单晶厚膜继续生长与形貌的方法:
①不断增加温度,增加幅度为GaN单晶厚膜每增长1mm温度增加1~10℃;
②不断增加NH3;增加幅度为GaN单晶厚膜每增长1mm NH3(或相应的V/III)增加5%~50%。
10.基于ScAlMgO4衬底的氮化镓单晶,其特征在于,所述基于ScAlMgO4衬底的氮化镓单晶采用如权利要求1至权利要求9中任一项所述的制备方法制备而得到。
CN202010487573.7A 2020-06-02 2020-06-02 基于ScAlMgO4衬底的氮化镓单晶及其制备方法 Pending CN111607824A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010487573.7A CN111607824A (zh) 2020-06-02 2020-06-02 基于ScAlMgO4衬底的氮化镓单晶及其制备方法
PCT/CN2021/090179 WO2021244188A1 (zh) 2020-06-02 2021-04-27 基于ScAlMgO4衬底的氮化镓单晶及其制备方法
JP2022547804A JP7412808B2 (ja) 2020-06-02 2021-04-27 ScAlMgO4基板に基づく窒化ガリウム単結晶及びその製造方法
US17/761,607 US12065755B2 (en) 2020-06-02 2021-04-27 Method for growing a GaN single crystal film on a buffer layer on a ScAlMgO4 substrate and performing cooling so that the GaN film is peeled from the ScAlMgO4 substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010487573.7A CN111607824A (zh) 2020-06-02 2020-06-02 基于ScAlMgO4衬底的氮化镓单晶及其制备方法

Publications (1)

Publication Number Publication Date
CN111607824A true CN111607824A (zh) 2020-09-01

Family

ID=72197848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010487573.7A Pending CN111607824A (zh) 2020-06-02 2020-06-02 基于ScAlMgO4衬底的氮化镓单晶及其制备方法

Country Status (4)

Country Link
US (1) US12065755B2 (zh)
JP (1) JP7412808B2 (zh)
CN (1) CN111607824A (zh)
WO (1) WO2021244188A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035689A (zh) * 2021-02-26 2021-06-25 无锡吴越半导体有限公司 一种氮化镓单结晶基板的制造方法
CN113046712A (zh) * 2021-03-10 2021-06-29 无锡吴越半导体有限公司 一种基于磁控溅射氮化铝的氮化镓单结晶基板制造方法
CN113725067A (zh) * 2021-07-12 2021-11-30 无锡吴越半导体有限公司 一种用于外延芯片生长的samo衬底单晶基板
WO2021244188A1 (zh) * 2020-06-02 2021-12-09 无锡吴越半导体有限公司 基于ScAlMgO4衬底的氮化镓单晶及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574970B (zh) * 2022-01-29 2023-07-04 西湖大学 一种大尺寸柔性氮化镓单晶薄膜的制备方法
WO2023214590A1 (ja) * 2022-05-06 2023-11-09 株式会社福田結晶技術研究所 高品質・低コストGaN自立基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074437A1 (en) * 2002-10-16 2004-04-22 Fang Yean Kuen Method of growing single crystal Gallium Nitride on silicon substrate
CN101431017A (zh) * 2008-12-03 2009-05-13 南京大学 一种改善蓝宝石衬底上GaN厚膜完整性的方法
EP2192625A1 (en) * 2005-04-04 2010-06-02 Tohoku Techno Arch Co., Ltd. Method for growth of GaN single crystal, method for preparation of GaN substrate, process for producing GaN-based element, and GaN-based element
CN104409319A (zh) * 2014-10-27 2015-03-11 苏州新纳晶光电有限公司 一种石墨烯基底上生长高质量GaN缓冲层的制备方法
CN109411329A (zh) * 2018-09-21 2019-03-01 张海涛 氮化镓单结晶晶片的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569807B2 (ja) * 2002-01-21 2004-09-29 松下電器産業株式会社 窒化物半導体素子の製造方法
JP6514915B2 (ja) * 2014-02-28 2019-05-15 国立大学法人東北大学 単結晶基板の製造方法およびレーザ素子の製造方法
US10141184B2 (en) * 2015-02-18 2018-11-27 Tohoku University Method of producing self-supporting nitride semiconductor substrate
KR20160136581A (ko) * 2015-05-20 2016-11-30 주식회사 루미스탈 벽개 특성을 이용한 질화물 반도체 기판 제조 방법
EP3349238B1 (en) * 2015-09-11 2021-09-01 Mie University Method for manufacturing nitride semiconductor substrate
JP6241831B2 (ja) * 2016-03-14 2017-12-06 パナソニックIpマネジメント株式会社 Iii族窒化物結晶の製造方法、およびramo4含有基板
CN107230611A (zh) * 2016-03-25 2017-10-03 松下知识产权经营株式会社 Iii族氮化物结晶制造方法以及ramo4基板
CN106158592A (zh) * 2016-08-29 2016-11-23 华南理工大学 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用
JP6785455B2 (ja) * 2018-05-11 2020-11-18 パナソニックIpマネジメント株式会社 発光ダイオード素子、及び発光ダイオード素子の製造方法
JP7296614B2 (ja) * 2018-10-10 2023-06-23 国立大学法人三重大学 窒化物半導体の製造方法、窒化物半導体、及び発光素子
JP7350477B2 (ja) * 2018-11-02 2023-09-26 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子および半導体成長用基板の製造方法
CN111607824A (zh) * 2020-06-02 2020-09-01 无锡吴越半导体有限公司 基于ScAlMgO4衬底的氮化镓单晶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074437A1 (en) * 2002-10-16 2004-04-22 Fang Yean Kuen Method of growing single crystal Gallium Nitride on silicon substrate
EP2192625A1 (en) * 2005-04-04 2010-06-02 Tohoku Techno Arch Co., Ltd. Method for growth of GaN single crystal, method for preparation of GaN substrate, process for producing GaN-based element, and GaN-based element
CN101431017A (zh) * 2008-12-03 2009-05-13 南京大学 一种改善蓝宝石衬底上GaN厚膜完整性的方法
CN104409319A (zh) * 2014-10-27 2015-03-11 苏州新纳晶光电有限公司 一种石墨烯基底上生长高质量GaN缓冲层的制备方法
CN109411329A (zh) * 2018-09-21 2019-03-01 张海涛 氮化镓单结晶晶片的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林祖伦 著: "《阴极电子学》", 31 January 2013, 国防工业出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021244188A1 (zh) * 2020-06-02 2021-12-09 无锡吴越半导体有限公司 基于ScAlMgO4衬底的氮化镓单晶及其制备方法
US12065755B2 (en) 2020-06-02 2024-08-20 Wuxi Wuyue Semiconductor Co. Ltd. Method for growing a GaN single crystal film on a buffer layer on a ScAlMgO4 substrate and performing cooling so that the GaN film is peeled from the ScAlMgO4 substrate
CN113035689A (zh) * 2021-02-26 2021-06-25 无锡吴越半导体有限公司 一种氮化镓单结晶基板的制造方法
CN113046712A (zh) * 2021-03-10 2021-06-29 无锡吴越半导体有限公司 一种基于磁控溅射氮化铝的氮化镓单结晶基板制造方法
CN113725067A (zh) * 2021-07-12 2021-11-30 无锡吴越半导体有限公司 一种用于外延芯片生长的samo衬底单晶基板

Also Published As

Publication number Publication date
US20220372652A1 (en) 2022-11-24
WO2021244188A1 (zh) 2021-12-09
US12065755B2 (en) 2024-08-20
JP2022552024A (ja) 2022-12-14
JP7412808B2 (ja) 2024-01-15

Similar Documents

Publication Publication Date Title
US12065755B2 (en) Method for growing a GaN single crystal film on a buffer layer on a ScAlMgO4 substrate and performing cooling so that the GaN film is peeled from the ScAlMgO4 substrate
US20180038010A1 (en) Method for manufacturing group-iii nitride semiconductor crystal substrate
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
CN113235047B (zh) 一种AlN薄膜的制备方法
KR100728533B1 (ko) 질화갈륨 단결정 후막 및 이의 제조방법
US9790616B2 (en) Method of fabricating bulk group III nitride crystals in supercritical ammonia
JP2007246331A (ja) Iii−v族窒化物系半導体基板及びその製造方法
JP2006225232A (ja) 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、および薄膜エピタキシャルウェハ
JP6526811B2 (ja) Iii族窒化物結晶を加工する方法
CN111430220A (zh) GaN自支撑衬底的制备方法
CN111593408B (zh) 一种超大尺寸自支撑氮化镓单晶及其制备方法
CN111501102A (zh) 基于hvpe的自支撑氮化镓单晶及其制备方法
US20200263320A1 (en) Method for producing group iii nitride crystal and seed substrate
JP2006306722A (ja) GaN単結晶基板の製造方法及びGaN単結晶基板
JP2000044399A (ja) 窒化ガリウム系化合物半導体のバルク結晶製造方法
CN113725067A (zh) 一种用于外延芯片生长的samo衬底单晶基板
KR101072433B1 (ko) 질화물계 반도체 단결정 기판의 제조방법
JP3560180B2 (ja) ZnSeホモエピタキシャル単結晶膜の製造法
CN113053735B (zh) BxAlyGa(1-x-y)N自支撑单晶衬底及其制备方法
CN111463325B (zh) 大尺寸GaN厚膜的制备方法
CN111607825A (zh) 衬底、基于所述衬底的自支撑GaN单晶及其制备方法
JP3946448B2 (ja) 窒化物半導体基板の製造方法
CN101924022A (zh) 采用InxGa1-xN缓冲层生长的氮化镓和铟镓氮的方法
JP2006232571A (ja) 窒化ガリウム単結晶基板の製造方法
CN116752233A (zh) 基于异质外延生长单晶金刚石的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200901

RJ01 Rejection of invention patent application after publication