CN106158592A - 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用 - Google Patents

生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN106158592A
CN106158592A CN201610754971.4A CN201610754971A CN106158592A CN 106158592 A CN106158592 A CN 106158592A CN 201610754971 A CN201610754971 A CN 201610754971A CN 106158592 A CN106158592 A CN 106158592A
Authority
CN
China
Prior art keywords
gan
substrate
grown
gan film
magnesium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610754971.4A
Other languages
English (en)
Inventor
李国强
王文樑
朱运农
杨为家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610754971.4A priority Critical patent/CN106158592A/zh
Publication of CN106158592A publication Critical patent/CN106158592A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了生长在铝酸镁钪衬底上的GaN薄膜,包括依次生长在ScMgAlO4衬底上的GaN缓冲层,GaN形核层,GaN非晶层以及GaN薄膜。所述ScMgAlO4衬底以(0001)面偏(11‑20)面0.5~1°为外延面。本发明还公开了上述GaN薄膜的制备方法和应用。与现有技术相比,本发明具有生长工艺简单,制备成本低廉的优点,同时采用了非晶层技术,所以本发明制备的GaN薄膜具有晶体质量好、缺陷密度低等特点。

Description

生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用
技术领域
本发明涉及GaN薄膜,特别涉及生长在铝酸镁钪(ScMgAlO4)衬底上的GaN薄膜及其制备方法、应用。
背景技术
GaN及III-族氮化物由于宽禁带、稳定的物理化学性质、高的热导率和高的电子饱和速度等优点,广泛应用于发光二极管(LED)、激光器和光电子器件等方面。
目前,GaN基器件主要是基于蓝宝石衬底。蓝宝石与GaN的晶格失配高达13.3%,导致外延GaN薄膜过程中形成很高的位错密度,从而降低了材料的载流子迁移率,缩短了载流子寿命,进而影响了GaN基器件的性能。其次,由于室温下蓝宝石热膨胀系数(6.63×10-6K-1)较GaN的热膨胀系数(5.6×10-6K-1)大,两者间的热失配度约为27%;当外延层生长结束后,器件从外延生长的高温冷却至室温过程会产生很大的压应力,容易导致薄膜和衬底的龟裂。再次,由于蓝宝石的热导率低(100℃时为25W/m.K),很难将芯片内产生的热量及时排出,导致热量积累,使器件的内量子效率降低,最终影响器件的性能。因此迫切寻找一种晶格和热膨胀系数匹配的衬底材料应用于外延生长GaN薄膜。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的之一在于提供一种生长在铝酸镁钪衬底上的GaN薄膜,铝酸镁钪衬底材料与GaN的晶格失配率仅为1.8%,热失配小(9.7%),有利于GaN的形核;基于此衬底材料生长的GaN薄膜,具有晶体质量好,位错密度低的优点。
本发明的目的之二在于提供上述生长在铝酸镁钪衬底上的GaN薄膜的制备方法。
本发明的目的之三在于提供上述生长在铝酸镁钪衬底上的GaN薄膜的应用。
本发明的目的通过以下技术方案实现:
生长在铝酸镁钪衬底上的GaN薄膜,包括依次生长在ScMgAlO4衬底上的GaN缓冲层、GaN形核层,GaN非晶层和GaN薄膜。
所述ScMgAlO4衬底以(0001)面偏(11-20)面0.5~1°为外延面。
所述GaN缓冲层的厚度为30~80nm。
所述GaN形核层的厚度为50~150nm。
所述GaN非晶层的厚度为10~120nm。
所述GaN薄膜的厚度为100~500nm。
生长在铝酸镁钪衬底上的GaN薄膜的制备方法,包括以下步骤:
(1)衬底以及其晶向的选取:采用ScMgAlO4衬底,以(0001)面偏(11-20)面0.5~1°为外延面,晶体外延取向关系为:GaN的(0001)面平行于ScMgAlO4的(0001)面;
(2)衬底退火处理:将衬底放入退火室内,在600~700℃下对ScMgAlO4衬底进行退火处理1~2h,获得原子级平整的衬底表面;
(3)GaN缓冲层外延生长:衬底温度调为450~550℃,采用脉冲激光沉积在反应室的压力为1.0~4.0×10-5Pa、激光能量密度为1.5~3.0J/cm2的条件下生长GaN缓冲层;
(4)GaN形核层的外延生长:采用分子束外延生长工艺,将衬底保持在500~600℃,在反应室的压力为6.0~8.0×10-5Pa、生长速度为0.6~0.8ML/s条件下,在步骤(3)得到的GaN缓冲层上生长GaN薄膜;
(5)GaN非晶层的生长:采用分子束外延生长工艺,将衬底保持在350~400℃,在反应室的压力为1.2~2.0×10-4Pa、生长速度为0.5~0.6ML/s条件下,在步骤(4)得到的GaN形核层上生长GaN非晶层,释放生长中引入的应力;
(6)GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底保持在500~600℃,在反应室的压力为6.0~8.0×10-5Pa、生长速度为0.6~0.8ML/s条件下,在步骤(5)得到的GaN非晶层上生长GaN薄膜。
所述的生长在铝酸镁钪衬底上的GaN薄膜的应用,用于制备LED或光电探测器。
ScAlMgO4晶体属于六方晶系,晶格常数a=0.3246nm,c=2.5195nm,具有菱形六面体层状结构,与纤锌矿氮化物和氧化锌的结构相似。ScAlMgO4是一种与GaN和ZnO晶格常数和结构非常匹配的衬底材料。它与GaN的晶格失配率约为1.8%,与ZnO的晶格失配率仅为0.09%,a轴的热膨胀系数为6.2×10-6/℃,c轴的热膨胀系数为12.2×10-6/℃,与GaN、ZnO外延薄膜之间的热膨胀系数失配比传统的蓝宝石和硅等衬底好的多,可制作大尺寸衬底,降低成本。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明使用铝酸镁钪作为衬底,ScMgAlO4衬底与GaN晶格失配小(1.8%),热失配小(9.7%),并且价格便宜,有利于降低生产成本,铝酸镁钪衬底生产工艺成熟,可制作大尺寸衬底;ScMgAlO4热导率要比蓝宝石高,有利于制备大功率器件。
(2)本发明使用铝酸镁钪作为衬底,外延生长GaN薄膜前,先采用脉冲激光沉积低温生长GaN缓冲层。GaN缓冲层可以提供形核的中心,容易获得岛状GaN,为下一步外延高质量低缺陷的GaN薄膜做铺垫。
(3)本发明外延生长中采用了GaN非晶层这一结构。GaN非晶层由晶体向非晶转变过程中,有效释放了薄膜生长中应力,减少了缺陷;从而易于在此基础上生长高质量的GaN薄膜。
(4)本发明制备得到的GaN薄膜,X射线摇摆曲线半峰宽数值小,晶体质量高,位错密度低。另外采用与GaN晶格失配和热失配度小的铝酸镁钪作为衬底,能够有效的减少热应力和位错的形成,有利于高质量GaN薄膜的生长。制备得到的GaN基光电材料器件的载流子辐射复合效率高,可大幅度提高氮化物器件如半导体激光器、发光二极管及太阳能电池的发光效率。
(5)本发明的生长工艺简单易行,具有可重复性。
附图说明
图1为实施例1制备的GaN薄膜的截面示意图。
图2为实施例1制备的GaN非晶层的反射高能电子衍射仪(RHEED)图。
图3为实施例1制备的GaN薄膜(GaN(0002))的高分辨X射线衍射(HRXRD)图谱。
图4为实施例1制备的GaN薄膜(GaN(10-12))的高分辨X射线衍射(HRXRD)图谱。
图5为实施例1制备的GaN薄膜的显微镜(100X)图谱。
图6是5000倍下GaN薄膜表面的SEM图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
生长在铝酸镁钪衬底上的高质量GaN薄膜的制备方法,包括以下步骤:
(1)衬底以及其晶向的选取:采用ScMgAlO4衬底,以(0001)面偏(11-20)面0.5°为外延面,晶体外延取向关系为:GaN的(0001)面平行于ScMgAlO4的(0001)面;
(2)衬底退火处理:将衬底分子束外延真空生长室内,在600℃下对铝酸镁钪衬底进行退火处理1小时,获得原子级平整表面;
(3)GaN缓冲层外延生长:衬底温度调为450℃,采用脉冲激光沉积在反应室的压力为2.0×10-5Pa、激光能量密度为1.8J/cm2的条件下生长30nm厚的GaN缓冲层;
(4)GaN形核层的外延生长:采用分子束外延生长工艺,将衬底保持在500℃,在反应室的压力为6.0×10-5Pa、生长速度为0.6ML/s条件下,在步骤(3)得到的GaN缓冲层上生长厚度为100nm的GaN薄膜;
(5)GaN非晶层的外延生长:采用分子束外延生长工艺,将衬底保持在550℃,在反应室的压力为1.6×10-4Pa、生长速度为0.8ML/s条件下,在步骤(4)得到的GaN形核层上生长厚度为120nm的GaN非晶层,释放生长中引入的应力;
(6)GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底保持在500℃,在反应室的压力为6.0×10-5Pa、生长速度为0.6ML/s条件下,在步骤(5)得到的GaN非晶层上生长厚度为200nm的GaN薄膜。
如图1所示,本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜,包括生长在ScMgAlO4衬底11上的GaN缓冲层12;生长在GaN缓冲层12上的GaN形核层13;生长在GaN形核层13上的GaN非晶层14;生长在GaN非晶层14上的GaN薄膜15。
图2为实施例1制备的GaN非晶层的反射高能电子衍射仪(RHEED)图,证明是GaN非晶层,可以有效释放应力,减少缺陷。图3~4是本实施例制备的GaN薄膜的HRXRD图谱,从X射线回摆曲线中可以看到,GaN(0002)的X射线回摆曲线的半峰宽(FWHM)值低于0.2°,GaN(10-12)的半峰宽值为0.4°;表明在ScMgAlO4衬底上外延生长出了高质量的GaN薄膜。
图5是本实施例制备的GaN薄膜的显微镜(OM)图谱,可以看到GaN薄膜表面光滑且平整。
图6是5000倍下GaN薄膜表面的SEM图,可以看到平整的GaN薄膜。
将本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜用于制备LED:在本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜上依次外延生长Si掺杂的n型掺硅GaN、InxGa1-xN多量子阱层、Mg掺杂的p型掺镁的GaN层,最后电子束蒸发形成欧姆接触。在铝酸镁钪衬底上制备得到的GaN基LED器件,其n型GaN的厚度约为8μm,其载流子的浓度为1×1019cm-3;InxGa1- xN/GaN多量子阱层的厚度约为240nm,周期数为15,其中InxGa1-xN阱层为3nm,GaN垒层为13nm,p型掺镁的GaN层厚度约为400nm,其载流子的浓度为2×1017cm-3。在20mA的工作电流下,LED器件的光输出功率为4.5mW,开启电压值为3V。
将本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜用于制备MSM型紫外光电探测器:在本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜,依次进行光刻显影,电子束蒸发沉积电极形成肖特基接触,退火等工艺。其中沉积电极厚度约为80μm,退火温度为500℃,退火时间为180s。本实施例所制备的光电探测器在10V偏压下,暗电流仅为9pA;并且器件在3V偏压下,在365nm处响应度的最大值达到了0.15A/W;光响应从10%上升到90%仅用50ps。
实施例2
生长在铝酸镁钪衬底上的GaN薄膜的制备方法,包括以下步骤:
(1)衬底以及其晶向的选取:采用ScMgAlO4衬底,以(0001)面偏(11-20)方向0.5°为外延面,晶体外延取向关系为:GaN的(0001)面平行于ScMgAlO4的(0001)面;
(2)衬底退火处理:将衬底分子束外延真空生长室内,在700℃下对铝酸镁钪衬底进行退火处理2小时,获得原子级平整表面;
(3)GaN缓冲层外延生长:衬底温度调为500℃,采用脉冲激光沉积在反应室的压力为3.0×10-5Pa、激光能量密度为2.0J/cm2的条件下生长80nm厚的GaN缓冲层;
(4)GaN形核层的外延生长:采用分子束外延生长工艺,将衬底保持在600℃,在反应室的压力为8.0×10-5Pa、生长速度为0.8ML/s条件下,在步骤(3)得到的GaN缓冲层上生长厚度为150nm的GaN薄膜;
(5)GaN非晶层的生长:采用分子束外延生长工艺,将衬底保持在350℃,在反应室的压力为1.4×10-4Pa、生长速度为0.6ML/s条件下,在步骤(4)得到的GaN形核层上生长厚度为50nm的GaN非晶层,释放生长中引入的应力;
(6)GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底保持在500℃,在反应室的压力为8.0×10-5Pa、生长速度为0.8ML/s条件下,在步骤(5)得到的GaN非晶层上生长厚度为400nm的GaN薄膜。
本实施例制备的铝酸镁钪衬底上的GaN薄膜具有非常好的光学性能,测试数据与实施例1相近,在此不再赘述。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.生长在铝酸镁钪衬底上的GaN薄膜,其特征在于,包括依次生长在ScMgAlO4衬底上的GaN缓冲层、GaN形核层,GaN非晶层和GaN薄膜。
2.根据权利要求1所述的生长在铝酸镁钪衬底上的GaN薄膜,其特征在于,所述ScMgAlO4衬底以(0001)面偏(11-20)面0.5~1°为外延面。
3.根据权利要求1所述的生长在铝酸镁钪衬底上的GaN薄膜,其特征在于,所述GaN缓冲层的厚度为30~80nm。
4.根据权利要求1所述的生长在铝酸镁钪衬底上的GaN薄膜,其特征在于,所述GaN形核层的厚度为50~150nm。
5.根据权利要求1所述的生长在铝酸镁钪衬底上的GaN薄膜,其特征在于,所述GaN非晶层的厚度为10~120nm。
6.根据权利要求1所述的生长在铝酸镁钪衬底上的GaN薄膜,其特征在于,所述GaN薄膜的厚度为100~500nm。
7.生长在铝酸镁钪衬底上的GaN薄膜的制备方法,其特征在于,包括以下步骤:
(1)衬底以及其晶向的选取:采用ScMgAlO4衬底,以(0001)面偏(11-20)面0.5~1°为外延面,晶体外延取向关系为:GaN的(0001)面平行于ScMgAlO4的(0001)面;
(2)衬底退火处理:将衬底放入退火室内,在600~700℃下对ScMgAlO4衬底进行退火处理1~2h,获得原子级平整的衬底表面;
(3)GaN缓冲层外延生长:衬底温度调为450~550℃,采用脉冲激光沉积在反应室的压力为1.0~4.0×10-5Pa、激光能量密度为1.5~3.0J/cm2的条件下生长GaN缓冲层;
(4)GaN形核层的外延生长:采用分子束外延生长工艺,将衬底保持在500~600℃,在反应室的压力为6.0~8.0×10-5Pa、生长速度为0.6~0.8ML/s条件下,在步骤(3)得到的GaN缓冲层上生长GaN薄膜;
(5)GaN非晶层的生长:采用分子束外延生长工艺,将衬底保持在350~400℃,在反应室的压力为1.2~2.0×10-4Pa、生长速度为0.5~0.6ML/s条件下,在步骤(4)得到的GaN形核层上生长GaN非晶层,释放生长中引入的应力;
(6)GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底保持在500~600℃,在反应室的压力为6.0~8.0×10-5Pa、生长速度为0.6~0.8ML/s条件下,在步骤(5)得到的GaN非晶层上生长GaN薄膜。
8.权利要求1~7任一项所述的生长在铝酸镁钪衬底上的GaN薄膜的应用,其特征在于,用于制备LED或光电探测器。
CN201610754971.4A 2016-08-29 2016-08-29 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用 Pending CN106158592A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610754971.4A CN106158592A (zh) 2016-08-29 2016-08-29 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610754971.4A CN106158592A (zh) 2016-08-29 2016-08-29 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106158592A true CN106158592A (zh) 2016-11-23

Family

ID=57343823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610754971.4A Pending CN106158592A (zh) 2016-08-29 2016-08-29 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106158592A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725067A (zh) * 2021-07-12 2021-11-30 无锡吴越半导体有限公司 一种用于外延芯片生长的samo衬底单晶基板
WO2021244188A1 (zh) * 2020-06-02 2021-12-09 无锡吴越半导体有限公司 基于ScAlMgO4衬底的氮化镓单晶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468974A (zh) * 2001-11-17 2004-01-21 厦门三安电子有限公司 一种制作ⅲ族氮化物材料的方法
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
US20070158785A1 (en) * 2002-12-27 2007-07-12 General Electric Company Gallium nitride crystals and wafers and method of making
CN105742424A (zh) * 2016-03-15 2016-07-06 河源市众拓光电科技有限公司 一种在金属Al衬底上外延生长的GaN薄膜及其制备方法
CN206225325U (zh) * 2016-08-29 2017-06-06 华南理工大学 生长在铝酸镁钪衬底上的GaN薄膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468974A (zh) * 2001-11-17 2004-01-21 厦门三安电子有限公司 一种制作ⅲ族氮化物材料的方法
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
US20070158785A1 (en) * 2002-12-27 2007-07-12 General Electric Company Gallium nitride crystals and wafers and method of making
CN105742424A (zh) * 2016-03-15 2016-07-06 河源市众拓光电科技有限公司 一种在金属Al衬底上外延生长的GaN薄膜及其制备方法
CN206225325U (zh) * 2016-08-29 2017-06-06 华南理工大学 生长在铝酸镁钪衬底上的GaN薄膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021244188A1 (zh) * 2020-06-02 2021-12-09 无锡吴越半导体有限公司 基于ScAlMgO4衬底的氮化镓单晶及其制备方法
CN113725067A (zh) * 2021-07-12 2021-11-30 无锡吴越半导体有限公司 一种用于外延芯片生长的samo衬底单晶基板

Similar Documents

Publication Publication Date Title
CN102368519B (zh) 一种提高半导体二极管多量子阱发光效率的方法
CN104409587B (zh) 一种InGaN基蓝绿光发光二极管外延结构及生长方法
CN102306691B (zh) 一种提高发光二极管发光效率的方法
TW200534382A (en) A novel technique to grow high quality SnSe epitaxy layer on Si substrate
WO2018040123A1 (zh) 生长在铝酸镁钪衬底上的led外延片及其制备方法
WO2021135953A1 (zh) 具有2d材料中介层的外延基板及制备方法和制作组件
CN103337573A (zh) 半导体发光二极管的外延片及其制造方法
CN102709424A (zh) 一种提高发光二极管发光效率的方法
CN101381891B (zh) 一种制备MgZnO单晶薄膜的方法
JPWO2011155157A1 (ja) 太陽電池及びその製造法
CN103441197B (zh) 一种GaN基发光二极管外延片及其制作方法
KR101030823B1 (ko) 투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법
CN102544276A (zh) 生长在LiGaO2衬底上的非极性GaN薄膜及其制备方法、应用
CN103996610A (zh) 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用
CN103996611B (zh) 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用
CN106158592A (zh) 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用
CN106206888B (zh) 生长在铝酸镁钪衬底上的InGaN/GaN量子阱及其制备方法
KR101201641B1 (ko) 투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법
CN106328774A (zh) 一种GaN薄膜的外延生长方法及应用
CN106169523B (zh) 一种采用L-MBE和MOCVD技术在Si衬底上生长的LED外延片及其制备方法
CN206225325U (zh) 生长在铝酸镁钪衬底上的GaN薄膜
CN111354629B (zh) 一种用于紫外LED的AlN缓冲层结构及其制作方法
CN210984756U (zh) 具有2d材料中介层的外延基板
CN105633232B (zh) 一种具有GaN缓冲层衬底的GaN基LED外延结构及其制备方法
CN202454605U (zh) 生长在LiGaO2衬底上的非极性GaN薄膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161123