WO2021135953A1 - 具有2d材料中介层的外延基板及制备方法和制作组件 - Google Patents

具有2d材料中介层的外延基板及制备方法和制作组件 Download PDF

Info

Publication number
WO2021135953A1
WO2021135953A1 PCT/CN2020/137030 CN2020137030W WO2021135953A1 WO 2021135953 A1 WO2021135953 A1 WO 2021135953A1 CN 2020137030 W CN2020137030 W CN 2020137030W WO 2021135953 A1 WO2021135953 A1 WO 2021135953A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
interposer
epitaxial
layer
gan
Prior art date
Application number
PCT/CN2020/137030
Other languages
English (en)
French (fr)
Inventor
王晓靁
Original Assignee
王晓靁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王晓靁 filed Critical 王晓靁
Priority to DE212020000802.7U priority Critical patent/DE212020000802U1/de
Priority to US17/790,850 priority patent/US20230046307A1/en
Publication of WO2021135953A1 publication Critical patent/WO2021135953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0205Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth during growth of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the invention relates to an epitaxial substrate with an intermediate layer of 2D material, as well as its preparation method and manufacturing components, which are suitable for AlGaN wide band gap components and GaN series laser diodes.
  • the impact on quality even includes luminous efficiency and durability.
  • the reason is that light-emitting diodes particularly require electrons and holes to cooperate with each other when the crystal is excited to generate photons smoothly.
  • the possibility of being hindered by the defects in the process of mutual combination of electrons and holes will increase, resulting in the deterioration of the luminous effect.
  • the main luminescent material of light-emitting diodes is gallium nitride (GaN), which is usually grown on a substrate by an epitaxial method.
  • the crystalline structure and structure of gallium nitride produced are largely affected by the substrate used.
  • this technical field usually considers several conditions when selecting a suitable substrate material.
  • the substrate material hopes to minimize the defect density of single crystal materials.
  • the crystal structure, lattice constant (lattice constant), coefficient of thermal expansion (CTE, coefficient of thermal expansion) and the epitaxial material match, in order to avoid the epitaxial process as much as possible. Affect the crystal quality of light-emitting diodes.
  • the most commonly used substrate material is single crystal sapphire (Sapphire), mainly considering its advantages such as good chemical stability and mature manufacturing technology; and due to the increase in production capacity in recent years, the sapphire substrate is compared with other alternatives, such as: Nitrogen Aluminum (AlN) and even gallium nitride (GaN) substrates are more in line with economic requirements.
  • Nitrogen Aluminum (AlN) and even gallium nitride (GaN) substrates are more in line with economic requirements.
  • lattice constant lattice constant
  • CTE coefficient of thermal expansion
  • epitaxial material the high defect density of GaN or AlGaN epitaxial layer affects the laser diode (LD).
  • UV LED ultraviolet light emitting diode
  • the UVC LED luminous wavelength belonging to the deep ultraviolet range has the most disinfection and sterilization effect, and will effectively replace the current low-efficiency energy consumption and harmful environment In addition to the new mercury lamps, they will also have great potential for development in people’s death and daily disinfection and sterilization applications.
  • the current volume production technology of aluminum nitride substrates most suitable for UV LEDs has bottlenecks.
  • the development of UVC LEDs is still focused on the lack of matching. A good sapphire substrate leads to great obstacles to performance improvement.
  • the melting points of aluminum nitride and gallium nitride are both above 2,500 degrees Celsius and there is a problem of high vapor pressure. In other words, if you want to directly melt and grow single crystal substrates of the two materials, it will not only cost Higher, relatively more waste heat will be generated, causing unavoidable pollution to the environment.
  • the current growth of gallium nitride is based on the Hydride Vapor Phase Epitaxy (HVPE) method to produce monocrystalline GaN substrates. Due to the constraints of production costs and yield conditions, mass production is currently The technology reaches a 4-inch substrate and the cost is extremely high.
  • HVPE Hydride Vapor Phase Epitaxy
  • the defect density of the above-mentioned gas phase method is still higher than that of other liquid phase crystal growth processes, but it is limited by the slow crystal growth rate of the remaining processes, and the mass production cost is higher.
  • the mainstream business is still limited to the HVPE method.
  • the literature points out that it is still possible to increase the growth rate of GaN by the vapor phase method several times and maintain good crystallinity. However, due to the deterioration of defect density, it is not currently used as an orientation to reduce the cost of GaN substrates.
  • PVT physical vapor transport
  • one of the vapor phase methods is used to produce single crystal aluminum nitride substrates.
  • Zinc oxide (ZnO) single crystal material is a more suitable substrate material choice in the previous item in terms of crystal structure, thermal properties and lattice constant, so it has attracted technology developers to invest in research.
  • zinc oxide is not widely used in the technical field today. The main reasons include the high chemical activity of zinc oxide, which is easily corroded by hydrogen-containing substances during the subsequent epitaxy process, resulting in poor epitaxial layer quality, as shown in Figure 1.
  • hydrogen etches the zinc oxide substrate while zinc rapidly diffuses into the epitaxial layer, resulting in poor epitaxial quality. Adjusting the process to improve the epitaxial quality still occurs diffusion of zinc and oxygen and doping into the light-emitting diode crystal grains, causing light emission The characteristics do not meet expectations, making this structure unable to meet actual market demand.
  • Two-dimensional (2D) materials is a rapidly developing emerging field.
  • the first and most well-known material in the 2D material family that attracted a large amount of R&D investment is graphene, which has a special or special two-dimensional layered structure. Excellent physical/chemical/mechanical/optical properties. There is no strong bond between the layers, only Van der Waals forces are combined, which also means that there are no dangling bonds on the surface of the layered structure.
  • Graphene has been It has been confirmed to have a wide range of excellent application potential; graphene research and development work is generally carried out around the world, and it also drives the research and development of more 2D materials, including hexagonal boron nitride hBN (hexagonal Boron Nitride), transition metal dichalcogenides TMDs (transition Metal dichalcogenides) and black phosphorus are also among the 2D material families that have accumulated more research and development results. As shown in Figures 2 and 3, the above materials have their own specific material properties and application potentials, and the development of related materials manufacturing technology is also Continue to actively promote.
  • graphene, hBN, and MoS 2 which is one of the TMDs materials, are all considered to have excellent diffusion barrier properties, as well as varying degrees of high temperature stability.
  • hBN has excellent chemical passivation. (Inertness) and high temperature oxidation resistance.
  • van der Waals epitaxy may be beneficial to hetero epitaxy comes from the replacement of the direct chemical bond of the traditional epitaxial interface by van der Waals force bonding, which will relieve the stress or strain energy from the lattice and thermal expansion mismatch in the epitaxial process to a certain extent. Therefore, the quality of the epitaxial layer is improved, or the introduction of 2D materials and van der Waals epitaxy can make certain heteroepitaxial technologies that were previously impossible to be practical.
  • the above-mentioned 2D layered material has a hexagon or honeycomb structure, and is considered structurally compatible with Wurtzite and Zinc-Blende structural materials in the external delay.
  • the related fields of the present invention are mainly All epitaxial materials belong to this type of structure.
  • single crystal is one of the requirements to ensure the quality of epitaxial growth.
  • the growth of 2D materials tends to be related to the crystal orientation of the crystalline substrate during the nucleation stage. It belongs to a polycrystalline structure.
  • the 2D material has formed inconsistent directions during the nucleation stage. After the crystal nuclei grows and aggregates into a continuous film, there are still domains with different orientations instead of single crystals.
  • the substrate uses single crystal materials such as sapphire, it is still Because of the symmetrical correlation between the two structures, the specific nucleation direction that may occur is not unique, and it is impossible to form a single crystal continuous film.
  • hBN is regarded as an excellent epitaxial substrate of transition metal dichalcogenides (transition metal dichalcogenides) materials.
  • TMD materials such as MoS 2 , WS 2 , MoSe 2 , WSe 2 and maintain up to 95% of the surface area as a single crystal continuous film.
  • the existing process is to perform intrinsic or heterogeneous epitaxy on the surface of a high-quality single crystal substrate.
  • AlGaN wide band gap components are epitaxially on sapphire or aluminum nitride (AlN), and GaN-based laser diodes are epitaxially on high-quality single crystal GaN.
  • AlGaN wide-bandgap components are epitaxially on sapphire. Due to poor matching, the defect density is too high (epitaxial layer defect density> 10 8 /cm 2 ), which seriously affects the performance of the module. UVC LED modules are even more due to the difference in refractive index between AlGaN and sapphire.
  • the luminous efficiency EQE Extra Quantum Efficiency
  • the high-quality AlN single crystal substrate is an ideal substrate for AlGaN epitaxy.
  • the lattice and thermal expansion coefficient are highly matched with the epitaxial layer, and the defect density of the epitaxial layer is less than 10 5 /cm 2 , currently limited by the PVT manufacturing technology containing specific impurities that can absorb the UVC band spectrum, resulting in the luminous efficiency EQE (External Quantum Efficiency, The external quantum efficiency) is also less than 10%.
  • PVT AlN manufacturing technology can only produce 2-inch chips at the same time, and the output is relatively low-cost and high.
  • the production capacity of the world’s only PVT AlN supplier is also controlled by specific groups. Satisfy market supply demand; high-quality single crystal GaN for GaN laser diode epitaxy is expensive to manufacture, but due to manufacturing technology HVPE GaN crystal defect density is 100 to 1000 times that of sapphire substrate, and the level reaches 10 5 /cm 2 And the mass production size is only 4 inches chips; due to the high sensitivity of laser diode performance to the defect density of the epitaxial layer, the existing GaN monocrystalline chips are not ideal options, but there is a lack of better solutions in the market.
  • the purpose of the present invention is to provide an epitaxial substrate with a 2D material interposer.
  • the invention also provides a method for preparing the above-mentioned epitaxial substrate.
  • the present invention also provides the manufacturing component of the above-mentioned epitaxial substrate, the AlGaN wide band gap component and the GaN laser diode.
  • the solution of the present invention is:
  • An epitaxial substrate with a 2D material interposer On the surface of a polycrystalline substrate, an ultra-thin interposer of 2D material is epitaxially grown by van der Waals.
  • the surface lattice constant and substrate thermal expansion coefficient of the ultra-thin interposer of 2D material are highly matched with AlGaN or GaN.
  • 2D material The ultra-thin interposer has a single-layer structure or a composite layer structure, and an AlGaN or single crystal GaN epitaxial layer is grown on the 2D material ultra-thin interposer by means of van der Waals epitaxial growth.
  • the thickness of the 2D material ultra-thin interposer is in the range of 0.5 nm to 1000 nm.
  • the 2D material ultra-thin interposer is a 2D layer suitable for AlGaN or GaN epitaxy.
  • the 2D material ultra-thin interposer is a composite layer structure formed by a top layer and a bottom layer, the top layer is a 2D layer suitable for AlGaN or GaN epitaxy, and the bottom layer is a 2D material suitable as a single crystal base layer.
  • the top lattice constant (a) of the single-layer structure or the composite layer structure of the 2D material ultra-thin interposer does not match with AlN or GaN by more than 5%, and is suitable for AlGaN or GaN epitaxy.
  • the condition range of the substrate is as follows: the thermal expansion coefficient in the direction of the parallel epitaxial interface is not more than 1.5 ⁇ 10 -6 °C -1 from AlN or GaN, and the material quality can be maintained stable during the AlGaN and GaN epitaxial processes without causing defects Influence or damage.
  • the method for preparing an epitaxial substrate with a 2D material interposer is as follows:
  • Step 1 Use a polished polycrystalline substrate that meets the epitaxial growth level as a starting material, and go through appropriate pre-treatment as preparation for subsequent manufacturing procedures;
  • Step 2 Using the existing manufacturing process to grow a single crystal 2D material layer, using van der Waals epitaxy technology, the single crystal 2D material ultra-thin layer of single layer structure or composite layer structure is covered on the surface of the polycrystalline substrate material as an intermediary layer;
  • the non-single crystal 2D material layer suitable for AlGaN and GaN epitaxy can be peeled off from the surface of sapphire and transferred to the surface of the polycrystalline substrate material as an intermediary layer by the existing process to form the surface lattice constant and the thermal expansion coefficient of the substrate.
  • AlGaN and GaN highly matched substrates;
  • Step 3 Using van der Waals epitaxial technology, an AlGaN or GaN single crystal epitaxial layer is grown on the interposer to obtain an epitaxial substrate with an interposer of 2D material.
  • the 2D material covering the surface of the substrate material adopts processes such as growth, deposition, transfer or coating, and the total thickness of a single layer or multiple layers ranges from 0.5 nm to 1000 nm.
  • step 2 the manufacturing process of ultra-thin single crystal 2D material: using copper foil as the starting substrate material, step A.
  • Step C Joining the foil of Step B with untreated polycrystalline copper foil;
  • Step D Process the finished product of Step C in accordance with the process of Step A to form a single crystal copper foil; Step E.
  • Step F Transfer the thin layer of single crystal 2D material from the surface of the copper foil to the surface of the polycrystalline substrate by the existing process, supplemented by appropriate fixtures to control the crystal lattice orientation relative to the flat edges or grooves of the substrate; Step G. According to It is necessary to epitaxial thin layers of other types of single crystal 2D materials to meet the lattice matching requirements of the subsequent epitaxial process.
  • the necessary manufacturing processes such as subsequent epitaxy can be continued on the epitaxial substrate with the 2D material interposer, that is, the wide band gap optoelectronic and electronic components and the GaN-based laser diodes can be fabricated to form AlGaN wide Band gap components or GaN-based laser diode components.
  • the present invention provides a brand new substrate.
  • the lattice constant of 2D materials (WS 2 and MoS 2 ) is highly matched with c-plane AlGaN and GaN, and the thermal expansion properties of polycrystalline sintered substrates (such as sintered AlN) are compatible with AlGaN and GaN.
  • the present invention simultaneously solves the existing UVC LED and GaN-based laser diode epitaxial substrate problems and can significantly reduce process costs, and can effectively improve the performance of AlGaN wide band gap optoelectronic and electronic components and GaN-based laser diode components. reduce manufacturing cost.
  • Figure 1 is a schematic diagram of the zinc oxide substrate being corroded during the epitaxy process
  • FIG. 2 is a schematic diagram of the structure of two-dimensional material transition metal dichalcogenides TMDs
  • Figure 3 is a schematic diagram of the structure of the two-dimensional material hexagonal boron nitride hBN;
  • Figures 4a and 4b are schematic diagrams of mechanically forming laminates
  • Figures 5a and 5b are schematic diagrams of physical and chemical vapor deposition
  • Figure 6 is the hexagonal symmetry structure diagram of the crystal structure on the epitaxial junction
  • Fig. 7 is a schematic diagram of intrinsic or hetero epitaxy on the surface of an existing high-quality single crystal substrate
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 9 is a schematic structural diagram of the second embodiment of the present invention.
  • FIG. 10 is a flowchart of the preparation method of the present invention.
  • the epitaxial substrate with a 2D material interposer disclosed in the present invention on the surface of the polycrystalline substrate 1, with the help of van der Waals epitaxial growth of 2D material ultra-thin interposer 2, 2D material ultra-thin interposer 2
  • the surface lattice constant and the thermal expansion coefficient of the substrate are highly matched with AlGaN or GaN.
  • the 2D material ultra-thin interposer 2 has a single-layer structure ( Figure 9) or a composite layer structure (heterogeneous material junction, Figure 8), and the 2D material is ultra-thin.
  • An AlGaN or single crystal GaN epitaxial layer 3 is grown on the interposer 2 by means of van der Waals epitaxial growth.
  • the polycrystalline substrate 1 adopts sintered AlN, other ceramic or metal substrates.
  • the thickness of the 2D material ultra-thin interposer 2 ranges from 0.5 nm to 1000 nm.
  • the 2D material ultra-thin interposer 2 is a 2D layer suitable for AlGaN or GaN epitaxy, such as a WS 2 or MoS 2 single-layer structure, as shown in FIG. 9.
  • the 2D material ultra-thin interposer 2 is a composite layer structure formed by a top layer 21 and a bottom layer 22, the top layer 21 is a 2D layer suitable for AlGaN or GaN epitaxy, such as WS 2 or MoS 2 , and the bottom layer 22 is suitable as a single crystal base layer 2D materials, such as hexagonal boron nitride hBN.
  • the lattice constant (a) of the top layer 21 of the single-layer structure or the composite layer structure of the 2D material ultra-thin interposer 2 is not more than 5% with the lattice constant misfit of AlN or GaN, and is suitable for AlGaN or GaN epitaxy, Such as WS 2 or MoS 2 or other 2D materials.
  • the condition range of the substrate is: the difference between the coefficient of thermal expansion (CTE) and AlN or GaN in the direction of the parallel epitaxial interface is not more than 1.5 ⁇ 10 -6 °C -1 , and it can be used in AlGaN and GaN epitaxial processes. Maintain stable material quality without causing adverse effects or damage.
  • CTE coefficient of thermal expansion
  • AlN or GaN in the direction of the parallel epitaxial interface is not more than 1.5 ⁇ 10 -6 °C -1 , and it can be used in AlGaN and GaN epitaxial processes. Maintain stable material quality without causing adverse effects or damage.
  • the single crystal 2D material heterojunction interposer of the present invention uses an existing process to produce a single crystal hBN layer, and transfers the single crystal hBN layer to the surface of the polycrystalline substrate 1 using the existing process, and then completes the top 2D material on the surface layer.
  • the hBN used is an example, but is not limited to hBN.
  • the present invention also provides a new method.
  • the crystal lattice direction of the single crystal 2D material interposer is dependent on the wafer flat or notch of the original substrate to ensure that the manufactured single crystal substrate is maintained with the traditional substrate. Consistency of the crystal lattice direction or customer-specific requirements.
  • the method for preparing an epitaxial substrate with a 2D material intermediate layer of the present invention includes the following steps:
  • Step 1 Use a polished polycrystalline substrate 1 (chip) that meets the epitaxial growth level as a starting material, and go through appropriate pre-treatment (including chip cleaning) as a preparation for subsequent manufacturing procedures;
  • Step 2 Use the existing manufacturing process to grow a single crystal 2D material layer, and use van der Waals Epitaxy technology to cover the single crystal 2D material ultra-thin layer heterojunction with a single layer structure or a composite layer structure on the polycrystalline substrate
  • the material surface is used as the interposer 2; or, the non-single crystal 2D material layer suitable for AlGaN and GaN epitaxy is grown from the sapphire surface by the existing process and then peeled off and transferred to the polycrystalline substrate material surface as the interposer 2 to form the surface layer A substrate whose lattice constant and thermal expansion coefficient of the substrate are highly matched with AlGaN and GaN;
  • Step 3 Using van der Waals epitaxy technology, an AlGaN or GaN single crystal epitaxial layer 3 is grown on the interposer 2 to obtain an epitaxial substrate with an interposer of 2D material.
  • step 2 the 2D material covering the surface of the substrate material adopts growth, deposition, transfer or coating processes, and the total thickness of a single layer or multiple layers ranges from 0.5 nm to 0.5 nm. 1000nm.
  • step 2 single crystal 2D material ultra-thin layer manufacturing process: using copper foil as the starting substrate material, step A. First use the existing process to slowly pass the polycrystalline copper foil at a temperature close to but low In the hot zone of copper melting point, single crystal copper foil is formed; single crystal copper foil with suitable crystal orientation is selected (for example, Cu(110) is suitable for single crystal hBN growth); Step B. Orientation characterization and cutting: Step A copper foil Cut according to the selected (specific) lattice orientation to form a foil with a sharp tip at the front end and the selected lattice orientation; step C. Join (bond) the foil of step B with the untreated polycrystalline copper foil Step D.
  • Step E Growth/deposition of a thin layer of single crystal 2D material (such as Cu (110) is suitable for single Crystal hBN growth);
  • Step F Transfer a thin layer of single crystal 2D material from the surface of the copper foil to the surface of the polycrystalline substrate by the existing process, supplemented by appropriate fixtures to control the crystal lattice orientation relative to the flat edge or groove of the substrate ;
  • Step G According to needs, epitaxial thin layers of other types of single crystal 2D materials to meet the lattice matching requirements of the subsequent epitaxy process.
  • the present invention can continue to perform necessary manufacturing processes such as subsequent epitaxy on an epitaxial substrate with a 2D material interlayer, such as AlGaN UVC LED (but not limited to UVC LED) wide band gap optoelectronic and electronic components and GaN laser diodes.
  • a 2D material interlayer such as AlGaN UVC LED (but not limited to UVC LED) wide band gap optoelectronic and electronic components and GaN laser diodes.
  • the internal component production can form AlGaN wide band gap components or GaN-based laser diode components (AlGaN is used for C-band LEDs in UVC LEDs; GaN is used for blue laser diodes).
  • the invention solves the problems of the existing UVC LED and GaN series laser diode epitaxial substrates and can significantly reduce the process cost, can effectively improve the component efficiency of the AlGaN wide band gap optoelectronic and electronic components and the GaN series laser diode and reduce the production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了具有2D材料中介层的外延基板,在多晶基板表面,借助范德华外延生长2D材料超薄中介层,2D材料超薄中介层的表层晶格常数及基底热膨胀系数与AlGaN或GaN高度匹配,2D材料超薄中介层为单层结构或者复合层结构,2D材料超薄中介层上借助范德华外延生长AlGaN或单晶GaN外延层。还公开了上述外延基板的制备方法和制作组件。本发明提供可行技术满足在多晶基底上进行单晶层外延,可以制作大尺寸(6吋及6吋以上)基底且制作成本远低于相关单晶芯片,同时解决现有UVC LED和GaN系镭射二极管外延基板问题并能显着降低工序成本,有效提升AlGaN宽能隙光电及电子组件以及GaN系镭射二极管的组件效能。

Description

具有2D材料中介层的外延基板及制备方法和制作组件 技术领域
本发明涉及具有2D材料中介层的外延基板,以及其制备方法和制作组件,适用于AlGaN宽能隙组件以及GaN系镭射二极管。
背景技术
在发光二极管或镭射二极管(LD,laser diode)的组件制造过程中,磊晶对产品的质量有重要的影响。其中对质量的影响甚至包含发光效率、耐久度等。原因在于发光二极管尤其要求构成晶体激发时电子与电洞彼此配合才可以顺利产生光子。相对地,如果在材料结构或组织上产生缺陷,电子与电洞的相互结合过程中被缺陷阻碍的可能性就会增加,导致发光效果的劣化。发光二极管主要的发光材料选用氮化镓(GaN),通常是以外延的方法生长在基板上,而所生产出的氮化镓结晶结构和组织则很大部分受所采用的基板影响。为了增进上述发光二极管的发光效率、耐久度以及其他关于发光二极管质量相关的特性,此技术领域通常在选择合适基板材料时考虑几种条件。通常,基板的材料希望能尽量减少缺陷密度的单晶材料,在晶体结构、晶格常数(lattice constant)、热膨胀系数(CTE,coefficient of thermal expansion)与外延材料匹配,才能尽可能避免在外延过程中影响发光二极管的晶体质量。
依照目前技术,最常采用的基板材料是单晶的蓝宝石(Sapphire),主要是考虑其化学稳定性好、制造技术成熟等优点;并且由于近年产能增加,蓝宝石基板相对其他替代品,如:氮化铝(AlN)、甚至氮化 镓(GaN)基板等,更符合经济要求。但由于蓝宝石在晶体结构、晶格常数(lattice constant)、热膨胀系数(CTE,coefficient of thermal expansion)与外延材料匹配上不尽理想,导致GaN或AlGaN外延层缺陷密度偏高影响了镭射二极管(LD,laser diode)方面的应用以及紫外光发光二极管(UV LED)的性能提升;其中属于深紫外光范围的UVC LED发光波长最具有消毒杀菌的效能,除将有效取代现行低效耗能并有害环境的汞灯之外,更将于民生及日常消毒杀菌应用中有极大发展潜能,但目前最适于UV LED的氮化铝基板量产技术存在瓶颈,UVC LED开发主要仍着力于匹配度不佳的蓝宝石基板,导致性能提升存在极大障碍。
氮化铝和氮化镓的熔点均在摄氏两千五百度以上且存在蒸气压高问题,换言之,若想要直接以熔融长晶的方法制作前述两种材料的单晶基板,则不只制造成本更高,也相对会产生更多废热,对环境造成不可避免的污染。气相法长晶部分,目前氮化镓长晶采用的是氢化物气相外延法(Hydride Vapor Phase Epitaxy,HVPE)来生产单晶氮化镓基板,由于生产成本及产率条件等限制,目前量产技术达到4英寸基板同时成本极高。事实上,上述气相法缺陷密度仍然偏高于其他液相长晶工序,但受限于其余工序长晶速率过于缓慢,量产成本更为高昂,在市场需求、组件性能以及基板成本与供应量折衷考虑之下,商转主流仍限于HVPE法。文献指出气相法GaN长晶速率仍有提高数倍的可能并维持良好结晶性,但受限于缺陷密度劣化,目前并未能作为降低GaN基板成本的取向。至于氮化铝长晶技术,采用的是气相法之一的物理气相传输法(Physical Vapor Transport,PVT)来生产单晶氮化铝基板,由于生产技术及良率限制,全球仅两家厂家有量产能力,目前量产技术仅达到2英寸基板同时成本极高,而产能全由少数厂商占 有无法广泛供应市场。由于氮化铝本身化学特性以及物理气相传输法硬件零组件限制,单晶成品中一定程度的碳(C)与氧(O)杂质存在为不可避免,也一定程度影响组件特性。
表1
Figure PCTCN2020137030-appb-000001
氧化锌(ZnO)单晶材料以结晶构造、热性质和晶格常数而言,都是前项中较为合适的基板材料选择,因此吸引了技术开发者投入研究。不过氧化锌今日在技术领域中并不被广泛采用,其中主要的原因包括氧化锌的化学活性高,容易在随后的外延过程中受到含氢物质的侵蚀导致外延层质量低劣,如图1所示,在外延工序时会发生氢蚀刻氧化锌基板同时锌快速扩散进入外延层导致外延品质不佳,调整制程改善外延质量却仍然发生锌与氧扩散、掺杂入发光二极管的晶粒中,造成发光特性不符合预期,使得该种结构无法符合实际市场需求。
同样的情形,也可能存在于目前使用中的其他光电组件基板-外延组合中,例如碳化硅(SiC)或砷化镓(GaAs)等;其中单晶碳化硅基板 是目前高性能功率半导体以及高端发光二极管的基板材料,单晶长晶工序为气相法中的物理气相传输法(Physical Vapor Transport,PVT),高质量大尺寸碳化硅单晶成长技术难度高,高端量产技术掌握在少数厂商手中,影响所及应用成本仍有很大进步空间。
二维材料(two-dimensional(2D)materials)是一个快速发展的新兴领域,2D材料家族中最早吸引大量研发投入也最知名的材料为石墨烯(graphene),其二维层状结构具备特殊或优异的物理/化学/机械/光电特性,层与层间则没有强力的键结存在,仅以范德华力结合,这也表示层状结构表面没有空悬键(dangling bond)存在,目前石墨烯已被确认具有广泛而优异的应用潜能;石墨烯研发工作于全球普遍开展,同时也带动更多2D材料的研发,包括六方氮化硼hBN(hexagonal Boron Nitride)、过渡金属二硫族化物TMDs(transition metal dichalcogenides)以及黑磷black phosphorus等也是2D材料家族中累积较多研发成果者,如图2和图3所示,上述材料均各自具备特异的材料特性与应用潜能,相关材料的制造技术开发也持续积极推展中。除了优异的光电特性之外,石墨烯、hBN以及TMDs材料之一的MoS 2都被视为具有优异的扩散阻障特性,也有程度不一的高温稳定性,尤其hBN更具有绝佳的化学钝性(inertness)以及高温耐氧化性。
由于具备上述层状结构本质以及层间范德华力结合特性,将2D材料家族中两种或多种材料制作成层状堆栈异质结构(hetero-structures)技术可行性大开,异质结构除了结合不同特性更创造出新的应用特性或制作出新的组件成为可能,目前光电及半导体领域的研发相当积极。如图4a、4b所示是机械性组成迭层的示意图,图5a、5b所示是物理或化学气相沉积的示意图。
2D材料的范德华力结合特性也获得应用于传统3D材料的外延 基板用途的关注,其着眼点在于外延技术中外延材料在晶体结构、晶格常数(lattice constant)、热膨胀系数(CTE,coefficient of thermal expansion)必须与基板材料匹配非常良好,但现实上常遭遇如本发明主题欠缺适合基板材料,或者是理想的基板材料成本偏高或不容易取得等情形,此时2D材料对于异质外延基板提供了另一种解决方案,也就是所谓的范德华外延(van der Waals Epitaxy)。范德华外延可能有利于异质外延的机制来自于传统外延接口直接的化学键改由范德华力结合所取代,将使得来自于外延工序中晶格以及热膨胀不匹配的应力或应变能因此获得一定程度的舒缓,从而使得外延层质量获得改善,或者说藉由2D材料以及范德华外延导入可以使某些原先无法实用化的异质外延技术成为可能。相关研究也指出,当上述2D材料相互迭层异质结构时,相互间作用力以范德华力为主;而在2D材料上进行3D材料的外延时,由于接口上3D材料的空悬键(dangling bond)存在同时对接口的结合力有贡献,这种外延实质上并非纯粹范德华外延(van der Waals Epitaxy)或者更精确地可视为准范德华外延(Quasi van der Waals Epitaxy);不论何种情形,晶格与热膨胀的匹配程度,无疑地仍对最终的外延质量起了一定的作用,2D材料中介层与基板材料都对整体的匹配度有所贡献。上述2D层状材料具有六角形或蜂巢状(hexagon or honeycomb)结构,与纤锌矿(Wurtzite)和闪锌矿(Zinc-Blende)结构材料在外延时被视为结构兼容,本发明相关领域主要外延材料均属此类结构。
基于外延基板用途,单晶(single crystal)为确保磊晶质量的要求之一,一般2D材料成长往往会在成核阶段与结晶性基板晶体指向呈现相关性,当基板采用一般金属箔片时由于属于多晶结构,2D材料在成核阶段已经形成方向不一致,晶核随成长聚合成连续薄膜后仍存在 不同指向的区块(domain)而非单晶;当基板采用单晶材料如蓝宝石,仍然因为两者结构对称相关性导致可能出现的特定成核指向并非唯一,而无法形成单晶连续薄膜。近期的研究发现藉由改进既存工艺,将铜箔经过热处理形成特定晶格指向的铜箔时,可以消弭2D材料石墨烯和六方氮化硼(hBN)成长过程形成的异向晶格区块(domain)特征,而长成单晶石墨烯和六方氮化硼连续薄膜。
近年多项研究指出2D材料家族通常互为异质外延的理想基板材料,例如hBN被视为绝佳的过渡金属二硫族化物TMDs(transition metal dichalcogenides)材料的外延基板,研究指出在单晶hBN表面可以外延成长MoS 2、WS 2、MoSe 2、WSe 2等TMD材料并维持高达95%表面积为单晶连续薄膜。
近年研究指出在单晶的c面(c-plane)蓝宝石表面可以CVD等方式成长结晶性良好的层状MoS 2、WS 2、MoSe 2、WSe 2等TMD材料,成长出来的TMD材料存在两种(0o及60o)晶体指向(crystal orientation)(参考文献:Nature 2019,v.567,169-170)。针对本发明所关注的AlGaN以及GaN材料而言,晶体结构在外延接面上具有六方对称性(如图6所示),上述的TMD层虽不构成单晶层,但理论上作为外延基板时无碍于AlGaN以及GaN外延层形成单晶;目前将TMD层自蓝宝石表面剥下并移转到其他基板表面的技术已达成实用化及大面积化,蓝宝石基板可以重复循环使用,已属于商业量产可行的制程(参考文献:ACS Nano 2015,9,6,6178-6187)。因此,除了前项方式制作TMD单晶连续薄膜之外,移转蓝宝石表面TMD层到热膨胀系数与AlGaN以及GaN高度匹配的基板亦是另一适用的量产可行方案。
现有工艺,如图7所示,是在高质量单晶基板表面进行本质或异质外延。目前AlGaN宽能隙组件在蓝宝石或氮化铝(AlN)上外延,GaN 系镭射二极管在高质量单晶GaN上外延。AlGaN宽能隙组件在蓝宝石上外延,由于匹配度不佳,导致缺陷密度偏高(外延层缺陷密度>10 8/cm 2),严重影响组件效能,UVC LED组件更因为AlGaN与蓝宝石折射率差异幅度大,导致内部反射,因此降低了整体发光效率,目前市场上组件发光效率EQE(External Quantum Efficiency,外部量子效率)远低于10%;高质量AlN单晶基板是AlGaN外延的理想基板,由于晶格与热膨胀系数与外延层高度匹配,外延层缺陷密度<10 5/cm 2,目前受限于PVT制造技术含有特定杂质恰好吸收UVC波段光谱导致目前市场上组件发光效率EQE(External Quantum Efficiency,外部量子效率)也低于10%,尽管如此,PVT AlN制造技术目前只能产制2英寸芯片同时产量偏低成本偏高,全球唯二的PVT AlN供货商产能也遭特定集团掌握,难以满足市场供应需求;GaN系镭射二极管外延用的高质量单晶GaN制造成本偏高,然而受限于制造技术HVPE GaN晶体缺陷密度为蓝宝石基板缺陷密度的100~1000倍,水平达到10 5/cm 2且量产尺寸仅以4吋芯片为主;由于镭射二极管效能对外延层缺陷密度高度敏感,现有GaN单晶芯片实非理想选项,但市场上缺乏更佳方案。
发明内容
本发明的目的在于提供一种具有2D材料中介层的外延基板。
本发明还提供了上述外延基板的制备方法。
本发明还提供了上述外延基板的制作组件,AlGaN宽能隙组件以及GaN系镭射二极管。
为了达成上述目的,本发明的解决方案是:
具有2D材料中介层的外延基板,在多晶基板表面,借助范德华外延生长2D材料超薄中介层,2D材料超薄中介层的表层晶格常数 及基底热膨胀系数与AlGaN或GaN高度匹配,2D材料超薄中介层为单层结构或者复合层结构,2D材料超薄中介层上借助范德华外延生长AlGaN或单晶GaN外延层。
所述2D材料超薄中介层的厚度范围在0.5nm到1000nm。
所述2D材料超薄中介层为适用于AlGaN或GaN外延的2D层。
所述2D材料超薄中介层为由顶层和底层形成的复合层结构,顶层为适用于AlGaN或GaN外延的2D层,底层为适合作为单晶基层的2D材料。
所述2D材料超薄中介层的单层结构或者复合层结构的顶层晶格常数(a)与AlN或GaN不匹配度不大于5%且适用于AlGaN或GaN外延。
所述基板的条件范围为:在平行外延接口方向上热膨胀系数与AlN或GaN差异不大于1.5×10 -6-1,且能在AlGaN以及GaN外延工序中能维持材料质量稳定,并不致不良影响或损害。
具有2D材料中介层的外延基板的制备方法,步骤如下:
步骤1,以符合外延成长等级的抛光多晶基板作为起始材料,经过适当前处理作为后续制造程序的准备;
步骤2,以既有制造工艺成长单晶2D材料层,利用范德华外延技术,将单层结构或者复合层结构的单晶2D材料超薄层异质接合覆盖在多晶基板材料表面作为中介层;或者,以既有工序将适用于AlGaN以及GaN外延的非单晶2D材料层自蓝宝石表面成长后剥下并移转到多晶基板材料表面作为中介层,形成表层晶格常数及基底热膨胀系数与AlGaN以及GaN高度匹配的基板;
步骤3,利用范德华外延技术,在中介层上成长AlGaN或GaN单晶外延层,得到具有2D材料中介层的外延基板。
所述步骤2,2D材料覆盖基板材料表面是采用成长、沉积、转移或涂覆等工序,单层或多层总厚度范围在0.5nm到1000nm。
所述步骤2,单晶2D材料超薄层制造工序:以铜箔为起始基板材料,步骤A.首先以既有工序将多晶铜箔缓缓通过温度接近但低于铜熔点之热区,形成单晶铜箔;择取结晶方向适用的单晶铜箔;步骤B.将步骤A铜箔依选定晶格指向裁切,形成前端具有尖锐端并呈选定晶格指向的箔片;步骤C.将步骤B的箔片与未处理的多晶铜箔接合;步骤D.将步骤C成品依照步骤A工序处理,形成单晶铜箔;步骤E.成长单晶2D材料薄层;步骤F.以既有工序将单晶2D材料薄层从铜箔表层移转至多晶基板表面,辅以适当夹治具以控制晶格指向与基板平边或凹槽相对关系;步骤G.根据需要外延其他种类单晶2D材料薄层以满足后续外延工序晶格匹配需求。
所述步骤3中,在具有2D材料中介层的外延基板上可继续进行后续外延等必要制造工序,即进行宽能隙光电及电子组件以及GaN系镭射二极管在内的组件制作,可形成AlGaN宽能隙组件或GaN系镭射二极管组件。
采用上述方案后,本发明提供全新的基板,藉由2D材料(WS 2与MoS 2)晶格常数与c面AlGaN和GaN高度匹配,多晶烧结基底(例如烧结AlN)热膨胀性质与AlGaN和GaN高度匹配,提供可行技术满足在多晶基底上进行单晶层外延,加上烧结(AlN)技术可以制作大尺寸(6吋及6吋以上)基底且制作成本远低于相关单晶芯片(GaN,AlN及蓝宝石),本发明同时解决现有UVC LED和GaN系镭射二极管外延基板问题并能显着降低工序成本,可以有效提升AlGaN宽能隙光电及电子组件以及GaN系镭射二极管的组件效能并降低生产成本。
附图说明
图1是氧化锌基板在外延过程中受侵蚀示意图;
图2是二维材料过渡金属二硫族化物TMDs的结构示意图;
图3是二维材料六方氮化硼hBN的结构示意图;
图4a、4b是机械性组成迭层的示意图;
图5a、5b是物理和化学气相沉积的示意图;
图6是晶体结构在外延接面上的六方对称性结构图;
图7是现有高质量单晶基板表面进行本质或异质外延示意图;
图8是本发明的实施例一结构示意图;
图9是本发明的实施例二结构示意图;
图10是本发明的制备方法流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
请参阅图8和图9所示,本发明揭示的具有2D材料中介层的外延基板,在多晶基板1表面,借助范德华外延生长2D材料超薄中介层2,2D材料超薄中介层2的表层晶格常数及基底热膨胀系数与AlGaN或GaN高度匹配,2D材料超薄中介层2为单层结构(如图9)或者复合层结构(异质材料接合,如图8),2D材料超薄中介层2上借助范德华外延生长AlGaN或单晶GaN外延层3。
其中,所述多晶基板1采用烧结AlN、其他陶瓷或金属基板。
所述2D材料超薄中介层2的厚度范围在0.5nm到1000nm。
所述2D材料超薄中介层2为适用于AlGaN或GaN外延的2D层,比如WS 2或MoS 2单层结构,见图9。
所述2D材料超薄中介层2为由顶层21和底层22形成的复合层 结构,顶层21为适用于AlGaN或GaN外延的2D层,如WS 2或MoS 2,底层22为适合作为单晶基层的2D材料,如六方氮化硼hBN。所述2D材料超薄中介层2的单层结构或者复合层结构的顶层21晶格常数(a)与AlN或GaN不匹配度(lattice constant misfit)不大于5%且适用于AlGaN或GaN外延,如WS 2或MoS 2或其他2D材料。
所述基板的条件范围为:在平行外延接口方向上热膨胀系数(CTE,coefficient of thermal expansion)与AlN或GaN差异不大于1.5×10 -6-1,且能在AlGaN以及GaN外延工序中能维持材料质量稳定,并不致不良影响或损害。
表2
材料 晶格常数a(nm)
六方氮化硼hBN 0.25
石墨烯graphene 0.246
WS 2 0.318
MoS 2 0.3161
WSe 2 0.3297
MoSe 2 0.3283
本发明单晶2D材料异质接合中介层是借助既有工艺制作单晶hBN层,并将单晶hBN层以既有工艺移转到多晶基板1表面,再完成顶层2D材料于表层,所采用的hBN为实施例,但不限定为hBN。
本发明还提供了一种新方法,单晶2D材料中介层晶格方向与原基板平边(wafer flat)或凹槽(wafer notch)相依关系,以确保制成的单晶基板与传统基板维持晶格方向一致性或客户订制需求。
本发明具有2D材料中介层的外延基板的制备方法,步骤如下:
步骤1,以符合外延成长等级的抛光多晶基板1(芯片)作为起始材料,经过适当前处理(含芯片清洗)作为后续制造程序的准备;
步骤2,以既有制造工艺成长单晶2D材料层,利用范德华外延(van der Waals Epitaxy)技术,将单层结构或者复合层结构的单晶2D材料超薄层异质接合覆盖在多晶基板材料表面作为中介层2;或者,以既有工序将适用于AlGaN以及GaN外延的非单晶2D材料层自蓝宝石表面成长后剥下并移转到多晶基板材料表面作为中介层2,形成表层晶格常数及基底热膨胀系数与AlGaN以及GaN高度匹配的基板;
步骤3,利用范德华外延技术,在中介层2上成长AlGaN或GaN单晶外延层3,得到具有2D材料中介层的外延基板。
其中,所述步骤2,2D材料覆盖基板材料表面是采用成长(growth)、沉积(deposition)、转移(transfer)或涂覆(coating)等工序,单层或多层总厚度范围在0.5nm到1000nm。
配合图10所示,所述步骤2,单晶2D材料超薄层制造工序:以铜箔为起始基板材料,步骤A.首先以既有工序将多晶铜箔缓缓通过温度接近但低于铜熔点之热区,形成单晶铜箔;择取结晶方向适用的单晶铜箔(例如Cu(110)适用于单晶hBN成长);步骤B.定向表征与切割:将步骤A铜箔依选定(特定)晶格指向裁切,形成前端具有尖锐端并呈选定晶格指向的箔片;步骤C.将步骤B的箔片与未处理的多晶铜箔接合(键合);步骤D.将步骤C成品依照步骤A工序处理,转换成具有指定方向的单晶,形成单晶铜箔;步骤E.生长/沉积单晶2D材料薄层(例如Cu(110)适用于单晶hBN成长);步骤F.以既有工序将单晶2D材料薄层从铜箔表层移转至多晶基板表面,辅以适当夹治具以控制晶格指向与基板平边或凹槽相对关系;步骤G.根据需要外延其他种类单晶2D材料薄层以满足后续外延工序晶格匹配需求。
本发明进一步,在具有2D材料中介层的外延基板上可继续进行后续外延等必要制造工序,比如进行AlGaN UVC LED等(但不限于 UVC LED)宽能隙光电及电子组件以及GaN系镭射二极管在内的组件制作,可形成AlGaN宽能隙组件或GaN系镭射二极管组件(AlGaN用于UVC LED紫外线中的C波段LED;GaN用于blue laser diode蓝色激光二极管)。
本发明解决了现有UVC LED和GaN系镭射二极管外延基板问题并能显着降低工序成本,可以有效提升AlGaN宽能隙光电及电子组件以及GaN系镭射二极管的组件效能并降低生产成本。
以上所述仅为本发明的较佳实施例,并非对本发明的限制。应当指出,本领域的技术人员在阅读完本说明书后,依本案的设计思路所做的等同变化,均落入本案的保护范围。

Claims (10)

  1. 具有2D材料中介层的外延基板,其特征在于:在多晶基板表面,借助范德华外延生长2D材料超薄中介层,2D材料超薄中介层的表层晶格常数及基底热膨胀系数与AlGaN或GaN高度匹配,2D材料超薄中介层为单层结构或者复合层结构,2D材料超薄中介层上借助范德华外延生长AlGaN或单晶GaN外延层。
  2. 如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层的厚度范围在0.5nm到1000nm。
  3. 如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层为适用于AlGaN或GaN外延的2D层。
  4. 如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层为由顶层和底层形成的复合层结构,顶层为适用于AlGaN或GaN外延的2D层,底层为适合作为单晶基层的2D材料。
  5. 如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层的单层结构或者复合层结构的顶层晶格常数a与AlN或GaN不匹配度不大于5%且适用于AlGaN或GaN外延。
  6. 如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述基板的条件范围为:在平行外延接口方向上热膨胀系数与AlN或GaN差异不大于1.5×10 -6-1
  7. 如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:制备方法步骤如下:
    步骤1,以符合外延成长等级的抛光多晶基板作为起始材料,经 过前处理作为后续制造程序的准备;
    步骤2,以既有制造工艺成长单晶2D材料层,利用范德华外延技术,将单层结构或者复合层结构的单晶2D材料超薄层异质接合覆盖在多晶基板材料表面作为中介层;或者,以既有工序将适用于AlGaN以及GaN外延的非单晶2D材料层移转到多晶基板材料表面作为中介层,形成表层晶格常数及基底热膨胀系数与AlGaN以及GaN高度匹配的基板;
    步骤3,利用范德华外延技术,在中介层上成长AlGaN或GaN单晶外延层,得到具有2D材料中介层的外延基板。
  8. 如权利要求7所述的具有2D材料中介层的外延基板,其特征在于:所述步骤2,2D材料覆盖基板材料表面是采用成长、沉积、转移或涂覆工序,单层或多层总厚度范围在0.5nm到1000nm。
  9. 如权利要求7所述的具有2D材料中介层的外延基板,其特征在于:所述步骤2,单晶2D材料超薄层制造工序:以金属箔为起始基板材料,步骤A.首先以既有工序将多晶金属箔缓缓通过温度接近但低于铜熔点之热区,形成单晶金属箔;择取结晶方向适用的单晶金属箔;步骤B.将步骤A金属箔依选定晶格指向裁切,形成前端具有尖锐端并呈选定晶格指向的箔片;步骤C.将步骤B的箔片与未处理的多晶金属箔接合;步骤D.将步骤C成品依照步骤A工序处理,形成单晶金属箔;步骤E.成长单晶2D材料薄层;步骤F.以既有工序将单晶2D材料薄层从金属箔表层移转至多晶基板表面,辅以夹治具以控制晶格指向与基板平边或凹槽相对关系。
  10. 应用如权利要求1至6任一项所述的具有2D材料中介层的外延基板,进行后续外延制造工序,制成AlGaN宽能隙组件或GaN系镭射二极管组件。
PCT/CN2020/137030 2020-01-03 2020-12-17 具有2d材料中介层的外延基板及制备方法和制作组件 WO2021135953A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212020000802.7U DE212020000802U1 (de) 2020-01-03 2020-12-17 Epitaxiesubstrat mit 2D-Material-Zwischenschicht und dessen Herstellungsverfahren und Herstellung von Bauelementen
US17/790,850 US20230046307A1 (en) 2020-01-03 2020-12-17 Epitaxial substrate with 2d material interposer, manufacturing method, and manufacturing assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010006008.4 2020-01-03
CN202010006008.4A CN111009602B (zh) 2020-01-03 2020-01-03 具有2d材料中介层的外延基板及制备方法和制作组件

Publications (1)

Publication Number Publication Date
WO2021135953A1 true WO2021135953A1 (zh) 2021-07-08

Family

ID=70120430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137030 WO2021135953A1 (zh) 2020-01-03 2020-12-17 具有2d材料中介层的外延基板及制备方法和制作组件

Country Status (5)

Country Link
US (1) US20230046307A1 (zh)
CN (1) CN111009602B (zh)
DE (1) DE212020000802U1 (zh)
TW (1) TWI744038B (zh)
WO (1) WO2021135953A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009602B (zh) * 2020-01-03 2023-03-28 王晓靁 具有2d材料中介层的外延基板及制备方法和制作组件
CN212967721U (zh) * 2020-10-29 2021-04-13 王晓靁 具有2D材料中间层的硅上氮化镓GaN-on-Si外延基板
CN212967718U (zh) * 2020-11-02 2021-04-13 王晓靁 具有2d材料中介层的氮化镓外延基板
CN113644168B (zh) * 2021-08-12 2024-04-23 王晓靁 一种RGB InGaN基micro LED的制作方法及其制作的器件
CN116885067A (zh) * 2023-09-06 2023-10-13 江西兆驰半导体有限公司 发光二极管外延片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170047223A1 (en) * 2015-08-13 2017-02-16 The Regents Of The University Of California Epitaxial growth of gallium arsenide on silicon using a graphene buffer layer
CN109980061A (zh) * 2019-04-10 2019-07-05 王晓靁 采用2d材料磊晶去疵单晶基板及其制备方法和制作组件
CN110010729A (zh) * 2019-03-28 2019-07-12 王晓靁 RGB全彩InGaN基LED及其制备方法
CN111009602A (zh) * 2020-01-03 2020-04-14 王晓靁 具有2d材料中介层的外延基板及制备方法和制作组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730545A (zh) * 2013-12-26 2014-04-16 广州有色金属研究院 一种AlGaN基垂直结构深紫外LED的制造方法
JP6938468B2 (ja) * 2015-09-08 2021-09-22 マサチューセッツ インスティテュート オブ テクノロジー グラフェンベースの層転写のためのシステム及び方法
CN210984756U (zh) * 2020-01-03 2020-07-10 王晓靁 具有2d材料中介层的外延基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170047223A1 (en) * 2015-08-13 2017-02-16 The Regents Of The University Of California Epitaxial growth of gallium arsenide on silicon using a graphene buffer layer
CN110010729A (zh) * 2019-03-28 2019-07-12 王晓靁 RGB全彩InGaN基LED及其制备方法
CN109980061A (zh) * 2019-04-10 2019-07-05 王晓靁 采用2d材料磊晶去疵单晶基板及其制备方法和制作组件
CN111009602A (zh) * 2020-01-03 2020-04-14 王晓靁 具有2d材料中介层的外延基板及制备方法和制作组件

Also Published As

Publication number Publication date
CN111009602A (zh) 2020-04-14
TWI744038B (zh) 2021-10-21
TW202127687A (zh) 2021-07-16
DE212020000802U1 (de) 2023-03-24
US20230046307A1 (en) 2023-02-16
CN111009602B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2021135953A1 (zh) 具有2d材料中介层的外延基板及制备方法和制作组件
TWI766256B (zh) RGB全彩InGaN基LED及其製備方法
WO2020207234A1 (zh) 采用2d材料磊晶去疵单晶基板及其制备方法和制作组件
WO2018040123A1 (zh) 生长在铝酸镁钪衬底上的led外延片及其制备方法
CN102839417B (zh) 一种在蓝宝石衬底上生长自剥离氮化镓薄膜的方法
CN210120150U (zh) 采用2d材料磊晶去疵单晶基板
TW202135337A (zh) 一種微發光二極體外延結構及其製備方法
WO2022089181A1 (zh) 具有2D材料中间层的硅上氮化镓GaN-on-Si外延基板
CN103996610B (zh) 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用
CN111354629B (zh) 一种用于紫外LED的AlN缓冲层结构及其制作方法
CN106206888B (zh) 生长在铝酸镁钪衬底上的InGaN/GaN量子阱及其制备方法
CN210984756U (zh) 具有2d材料中介层的外延基板
WO2022089182A1 (zh) 具有2d材料中介层的氮化镓外延基板
CN213150800U (zh) 一种具有纳米夹层的氮化铝成核层结构
CN106158592A (zh) 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用
CN105742424B (zh) 一种在金属Al衬底上外延生长的GaN薄膜及其制备方法
CN106299068B (zh) 基于Os衬底的外延结构及其制作方法
CN206225395U (zh) 生长在铝酸镁钪衬底上的InGaN/GaN量子阱
US20240038931A1 (en) Epitaxial Substrate Having a 2D Material Interposer, Method for Manufacturing the Epitaxial Substrate, and Device Prepared from the Epitaxial Substrate
CN204257684U (zh) 一种生长在金属铝衬底上的AlN薄膜
CN105633232A (zh) 一种具有GaN缓冲层衬底的GaN基LED外延结构及其制备方法
CN103996607B (zh) 生长在蓝宝石衬底上的金属Al单晶薄膜及其制备方法和应用
CN204130574U (zh) 一种生长在金属Al衬底上的GaN薄膜
CN218525568U (zh) 一种半导体制程适用的三族氮化物外延陶瓷基板及半导体组件
CN212907773U (zh) 一种氮化镓外延芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909669

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20909669

Country of ref document: EP

Kind code of ref document: A1