CN103996610B - 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用 - Google Patents

一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN103996610B
CN103996610B CN201410239341.4A CN201410239341A CN103996610B CN 103996610 B CN103996610 B CN 103996610B CN 201410239341 A CN201410239341 A CN 201410239341A CN 103996610 B CN103996610 B CN 103996610B
Authority
CN
China
Prior art keywords
substrate
aln
metal
film
nitration case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410239341.4A
Other languages
English (en)
Other versions
CN103996610A (zh
Inventor
李国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Everbright Technology Co ltd
Original Assignee
Guangzhou Zhongtuo Optoelectrical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Zhongtuo Optoelectrical Technology Co Ltd filed Critical Guangzhou Zhongtuo Optoelectrical Technology Co Ltd
Priority to CN201410239341.4A priority Critical patent/CN103996610B/zh
Publication of CN103996610A publication Critical patent/CN103996610A/zh
Application granted granted Critical
Publication of CN103996610B publication Critical patent/CN103996610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用,所述生长在金属铝衬底上的AlN薄膜包括金属Al衬底、生长在金属Al衬底上的AlN氮化层以及生长在AlN氮化层上的AlN薄膜;所述金属Al衬底以(111)面偏(100)方向0.5~1°为外延面,晶体外延取向关系为AlN(0001)//Al(111)。本发明采用的脉冲激光沉积法生长AlN薄膜,降低AlN薄膜的生长温度,提高AlN薄膜的质量。本发明所述的生长在金属铝衬底上的AlN薄膜在主要应用于LED器件以及光电探测器领域中。

Description

一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用
技术领域
本发明涉及AlN薄膜,具体涉及一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用。
背景技术
AlN是一种III族化合物,一般以六方晶系中的纤锌矿结构存在,有许多优异的性能,如高的热传导性、低的热膨胀系数、高的电绝缘性质、高的介质击穿强度、优异的机械强度、优异的化学稳定性和低毒害性、良好的光学性能等。由于AlN有诸多优异性能,带隙宽、极化强,禁带宽度为6.2eV,使其在电子器件、集成电路封装、光学膜及散热装置中都有广泛的应用
AlN薄膜必须具有较高的结晶质量,才能满足以上多方面的应用。目前AlN薄膜器件大都是生长在蓝宝石衬底上。首先,AlN和蓝宝石的存在较大的晶格失陪度,导致外延AlN薄膜过程中形成很高的位错密度,从而降低了AlN的性能;其次,AlN与蓝宝石之间的热失配度较大,当外延层生长结束后,器件从外延生长的高温冷却至室温过程会产生很大的压应力,容易导致薄膜和衬底的龟裂。最后,由于蓝宝石的热导率低(100℃时为25W/m·K),很难将芯片内产生的热量及时排出,导致热量积累,使器件的内量子效率降低,最终影响器件的性能。
因此迫切寻找一种热导率高可以快速地将器件内的热量传递出来的衬底材料。而金属Al作为外延AlN的衬底材料,具有四大其独特的优势。第一,可在金属表面采用氮的等离子体氮化Al衬底表面,在衬底表面形成AlN为后面生长AlN提供形核的种子。有效的缓解了晶格失配带来的弊端。第二,金属Al有很高的热导率(237W/m·K),可以将器件内产生的热量及时的传导出,以降低器件的温度,提高器件的性能。第三,金属Al可以作为生长AlN基垂直结构的器件的衬底材料,可直接在衬底上镀阴极材料,在阳极上镀阳极材料,使得电流几乎全部垂直流过外延层,因而电阻下降,没有电流拥挤,电流分布均匀,电流产生的热量减小,对器件的散热有利。第四,金属Al衬底材料相对其他衬底,价格更便宜,可以极大地降低器件的制造成本。正因为上述诸多优势,金属Al衬底现已被尝试用作AlN外延生长的衬底材料。
但是金属Al衬底在化学性质不稳定,当外延温度高于620℃的时候,外延氮化物会与金属Al衬底之间发生界面反应,严重影响了外延薄膜生长的质量。
发明内容
为克服现有技术的缺陷,本发明的在于提供一种生长在金属铝衬底上的AlN薄膜,提高AlN薄膜的质量、扩大应用范围。
本发明的另一目的在于提供一种生长在金属铝衬底上的AlN薄膜的其制备方法,采用的脉冲激光沉积法生长AlN薄膜,降低AlN薄膜的生长温度,提高AlN薄膜的质量。
本发明的又一目的在于提供生长在金属铝衬底上的AlN薄膜在制备LED器件以及光电探测器中的应用。
为实现上述目的本发明所采用的技术方案如下:
一种生长在金属铝衬底上的AlN薄膜,其包括金属Al衬底、生长在金属Al衬底上的AlN氮化层以及生长在AlN氮化层上的AlN薄膜;所述金属Al衬底以(111)面偏(100)方向0.5~1°为外延面,晶体外延取向关系为AlN(0001)//Al(111)。
在本发明中氮化层可以提供模板,为接下来外延生长高质量AlN薄膜奠定基础,因此,作为本发明的一种优选的方案,所述AlN氮化层的厚度为5~10nm。
作为本发明的一种优选的方案,所述AlN薄膜的厚度为100~300nm。
一种生长在金属Al衬底上的AlN薄膜的制备方法,其包括以下步骤:
(1)衬底以及其晶向的选取:采用金属Al衬底,以(111)面偏(100)方向0.5~1°为外延面;
(2)衬底处理:将金属Al衬底表面抛光、清洗以及退火处理;
(3)AlN氮化层的外延生长:衬底温度调为500~600℃,在反应室的压力为6.0~7.2×10-5Pa的氮的等离子体气氛内,用氮的等离子体氮化处理金属Al衬底,在金属Al衬底表面生成一层AlN氮化层;
(4)AlN薄膜的外延生长:采用脉冲激光沉积生长工艺,在步骤(3)得到的AlN氮化层上生长AlN薄膜;
在上述方法中,发明人研究发现,在500~600℃生长AlN氮化层,可以有效的抑制衬底和薄膜之间的界面反应,同时为氮化生成AlN氮化层提供足够多的生长能量。
作为本发明的一种优选的方案,步骤2)中,抛光具体工艺为:将Al衬底表面用金刚石泥浆进行抛光,配合显微镜观察衬底表当没有划痕后,再采用化学机械抛光的方法对衬底进行抛光处理。
作为本发明的一种优选的方案,步骤2)中,清洗工艺为将衬底放入去离子水中室温下超声清洗5分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物;清洗后的衬底用纯度为99.9999%的干燥氮气吹干。
在本发明中,发明人发现退火处理可使衬底获得原子级平整的表面。作为本发明的一种优选的方案,步骤2)中,退火的具体过程为:将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在450-550℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温。
作为本发明的一种优选的方案,步骤4)中脉冲激光沉积生长工艺的具体步骤是:将衬底保持在400~500℃,在反应室的压力为4.0~5.0×10-5Pa、生长速度为0.6~0.8ML/s条件下。
本发明所述的生长在金属铝衬底上的AlN薄膜在制备LED器件以及光电探测器中的应用。
相比现有技术,本发明的有益效果在于:
1)本发明使用Al作为衬底,Al衬底容易获得,价格便宜,有利于降低生产成本;
2)本发明使用Al作为衬底,用于生长AlN氮化层可以较容易控制AlN薄膜的厚度,为下一步沉积高质量低缺陷的AlN薄膜做铺垫;
3)本发明制备得到的AlN薄膜,由于半峰宽数值小,位错密度低,另外采用与AlN晶格失配和热失配度低的Al(111)作为衬底,能够有效的减少热应力,减少位错的形成,有利于高质量AlN薄膜的生长,制备得到的AlN基光电材料器件的载流子辐射复合效率高,可大幅度提高氮化物器件如半导体激光器、发光二极管及太阳能电池的发光效率;
4)本发明的采用脉冲激光沉积技术生长AlN薄膜,由于脉冲激光照射能为薄膜前驱体提供了较高的动能,可以很大程度地降低AlN薄膜的生长温度;另外由于低温下,外延层与衬底之间的界面反应受到抑制,为在金属Al衬底上外延生长AlN薄膜提供了重要的保证;
5)本发明的工艺操作简单,易重复,
下面结合附图与具体的实施方式对本发明作进一步详细说明。
附图说明
图1为实施例1制备的AlN薄膜的结构示意图。
图2为实施例1制备的AlN薄膜(AlN(0002))的高分辨X射线衍射(HRXRD)图谱。
图3为实施例1制备的AlN薄膜(AlN(10-12))的高分辨X射线衍射(HRXRD)图谱。
图4为实施例1制备的AlN薄膜的扫描电镜(SEM)图谱。
具体实施方式
实施例1
如图1所示,本发明所述的生长在金属Al衬底上的AlN薄膜包括金属Al衬底11、生长在金属Al衬底11上的AlN氮化层12以及生长在AlN氮化层12上的AlN薄膜13;所述金属Al衬底11以(111)面偏(100)方向0.5~1°为外延面,晶体外延取向关系为AlN(0001)//Al(111);其制备方法如下:
1)衬底以及其晶向的选取:采用金属Al衬底,以(111)面偏(100)方向0.5°为外延面;
(2)衬底处理:将金属Al衬底表面抛光、清洗以及退火处理;其中抛光具体工艺为:将Al衬底表面用金刚石泥浆进行抛光,配合显微镜观察衬底表当没有划痕后,再采用化学机械抛光的方法对衬底进行抛光处理;清洗工艺为将衬底放入去离子水中室温下超声清洗6分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物,清洗后的衬底用纯度为99.9999%(v%)的干燥氮气吹干;退火的具体过程为:将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在450℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温;
(3)AlN氮化层外延生长:衬底温度调为600℃,在反应室的压力为6.0×10-5Pa、生长速度为0.4ML/s的条件下生长厚度为10nm的AlN氮化层。
(4)AlN薄膜的外延生长:采用脉冲激光沉积生长工艺,将衬底保持在450℃,在反应室的压力为7.0×10-5Pa、生长速度为0.6ML/s条件下,在步骤(3)得到的AlN氮化层上生长厚度为100nm的AlN薄膜;
图2~3是本实施例制备的AlN薄膜的HRXRD图谱,从X射线回摆曲线中可以看到,AlN(0002)的X射线回摆曲线的半峰宽(FWHM)值低于0.6度,AlN(10-12)的半峰宽值为0.9度;表明在Al(111)衬底上外延生长出了高质量的AlN薄膜。
图4是本实施例制备的AlN薄膜的扫描电镜(SEM)图谱,可以看到AlN薄膜表面光滑且平整,表明外延生长得到的AlN已经进入二维横向生长。
综上,无论是结构性质还是在表面性质上,都具有非常好的性能,优于目前已经报道的应用传统衬底获得的AlN薄膜的相关结果。
实施例2
与实施例1的区别是:生长在金属Al衬底上的AlN薄膜的制备方法,包括以下步骤:
1)衬底以及其晶向的选取:采用金属Al衬底,以(111)面偏(100)方向0.5°为外延面;
(2)衬底处理:将金属Al衬底表面抛光、清洗以及退火处理;其中抛光具体工艺为:将Al衬底表面用金刚石泥浆进行抛光,配合显微镜观察衬底表当没有划痕后,再采用化学机械抛光的方法对衬底进行抛光处理;清洗工艺为将衬底放入去离子水中室温下超声清洗8分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物,清洗后的衬底用纯度为99.9999%(v%)的干燥氮气吹干;退火的具体过程为:将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在500℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温;
(3)AlN氮化层外延生长:衬底温度调为550℃,在反应室的压力为7.2×10-5Pa、生长速度0.6ML/s的条件下生长厚度为5nm的AlN氮化层。
(4)AlN薄膜的外延生长:采用脉冲激光沉积生长工艺,将衬底保持在600℃,在反应室的压力为5.0×10-5Pa、生长速度为0.8ML/s条件下,在步骤(3)得到的AlN缓冲层上生长300nm AlN薄膜。
应用实施例1
将本实施例1制备的生长在金属Al衬底上的AlN薄膜用于制备LED:所述生长在金属Al衬底上的AlN薄膜上依次外延生长非掺杂的GaN薄膜,Si掺杂的n型掺硅GaN、InGaN多量子阱层、Mg掺杂的p型掺镁的GaN层,最后电子束蒸发形成欧姆接触,在金属Al衬底上制备得到的GaN基LED器件,其非掺杂的GaN薄膜约为2μm,n型GaN的厚度约为3μm,其载流子的浓度为1×1019cm-3;InGaN多量子阱层的厚度约为105nm,InGaN多量子阱层包括In0.125Ga0.875N阱层和GaN垒层,周期数为7,其中In0.125Ga0.875N阱层为3nm,GaN垒层为12nm,p型掺镁的GaN层厚度约为300nm,其载流子的浓度为3×1017cm-3。在20mA的工作电流下,LED器件的光输出功率为4.3mW,开启电压值为2.78V。
应用实施例2
将本实施例2制备的生长在金属Al衬底上的AlN薄膜用于制备光电探测器:在生长在金属Al衬底上的AlN薄膜上依次外延生长非掺杂GaN、n型掺硅GaN、p型掺镁的GaN,最后电子束蒸发形成欧姆接触和肖特基结;其中n型掺硅GaN厚度约为3μm,其载流子的浓度为1×1019cm-3;非掺杂GaN厚度约为200nm,其载流子浓度为2.2×1016cm-3;p型掺镁的GaN度约为1.5μm。本实施例所制备的光电探测器在1V偏压下,暗电流仅为65pA,并且器件在1V偏压下,在361nm处响应度的最大值达到了0.92A/W。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (9)

1.一种生长在金属铝衬底上的AlN薄膜,其特征在于:其包括金属Al衬底、生长在金属Al衬底上的AlN氮化层以及生长在AlN氮化层上的AlN薄膜;所述金属Al衬底以(111)面偏(100)方向0.5~1°为外延面,晶体外延取向关系为AlN(0001)//Al(111);所述AlN薄膜是采用如下步骤制备而成:
(1)衬底以及其晶向的选取:采用金属Al衬底,以(111)面偏(100)方向0.5~1°为外延面;
(2)衬底处理:将金属Al衬底表面抛光、清洗以及退火处理;
(3)AlN氮化层的外延生长:衬底温度调为500~600℃,在反应室的压力为6.0~7.2×10-5Pa的氮的等离子体气氛内,用氮的等离子体氮化处理金属Al衬底,在金属Al衬底表面生成一层AlN氮化层;
(4)AlN薄膜的外延生长:采用脉冲激光沉积生长工艺,在步骤(3)得到的AlN氮化层上生长AlN薄膜。
2.根据权利要求1所述的AlN薄膜,其特征在于:所述AlN氮化层的厚度为5~10nm。
3.根据权利要求1所述的AlN薄膜,其特征在于:所述AlN薄膜的厚度为100~300nm。
4.一种如权利要求1-3任一项所述的生长在金属Al衬底上的AlN薄膜的制备方法,其特征在于,其包括以下步骤:
(1)衬底以及其晶向的选取:采用金属Al衬底,以(111)面偏(100)方向0.5~1°为外延面;
(2)衬底处理:将金属Al衬底表面抛光、清洗以及退火处理;
(3)AlN氮化层的外延生长:衬底温度调为500~600℃,在反应室的压力为6.0~7.2×10-5Pa的氮的等离子体气氛内,用氮的等离子体氮化处理金属Al衬底,在金属Al衬底表面生成一层AlN氮化层;
(4)AlN薄膜的外延生长:采用脉冲激光沉积生长工艺,在步骤(3)得到的AlN氮化层上生长AlN薄膜。
5.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,抛光具体工艺为:将Al衬底表面用金刚石泥浆进行抛光,配合显微镜观察衬底表面没有划痕后,再采用化学机械抛光的方法对衬底进行抛光处理。
6.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,清洗工艺为将衬底放入去离子水中室温下超声清洗5分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物;清洗后的衬底用纯度为99.9999%的干燥氮气吹干。
7.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,退火的具体过程为:将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在450-550℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温。
8.根据权利要求4所述的制备方法,其特征在于,步骤(4)中脉冲激光沉积生长工艺的具体步骤是:将衬底保持在400~500℃,在反应室的压力为4.0~5.0×10-5Pa、生长速度为0.6~0.8ML/s条件下。
9.如权利要求1-3任一项所述的生长在金属铝衬底上的AlN薄膜在制备LED器件以及光电探测器中的应用。
CN201410239341.4A 2014-05-30 2014-05-30 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用 Active CN103996610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410239341.4A CN103996610B (zh) 2014-05-30 2014-05-30 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410239341.4A CN103996610B (zh) 2014-05-30 2014-05-30 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103996610A CN103996610A (zh) 2014-08-20
CN103996610B true CN103996610B (zh) 2017-02-15

Family

ID=51310730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410239341.4A Active CN103996610B (zh) 2014-05-30 2014-05-30 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103996610B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719966B (zh) * 2016-03-15 2018-11-20 河源市众拓光电科技有限公司 一种在铝衬底上外延生长的AlGaN薄膜及其制备方法
CN105742424B (zh) * 2016-03-15 2018-08-10 河源市众拓光电科技有限公司 一种在金属Al衬底上外延生长的GaN薄膜及其制备方法
CN108206130B (zh) * 2018-01-11 2023-10-10 华南理工大学 生长在铝箔衬底上的氮化铟纳米柱外延片及其制备方法
CN112725896B (zh) * 2019-10-28 2022-04-22 宁波安芯美半导体有限公司 氮化铝单晶薄膜制备方法、氮化铝单晶薄膜及发光二极管
CN112599646B (zh) * 2020-12-25 2022-12-16 惠州学院 一种全光谱光电双通道器件及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945898A (zh) * 2012-11-23 2013-02-27 广州市众拓光电科技有限公司 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用
CN204257684U (zh) * 2014-05-30 2015-04-08 广州市众拓光电科技有限公司 一种生长在金属铝衬底上的AlN薄膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100075107A1 (en) * 2008-05-28 2010-03-25 The Regents Of The University Of California Hexagonal wurtzite single crystal and hexagonal wurtzite single crystal substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945898A (zh) * 2012-11-23 2013-02-27 广州市众拓光电科技有限公司 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用
CN204257684U (zh) * 2014-05-30 2015-04-08 广州市众拓光电科技有限公司 一种生长在金属铝衬底上的AlN薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Epitaxial growth of GaN on copper substrates;INOUE S et al;《Appl Phys Lett》;20060628;第88卷(第26期);第261910_1-261910_3页 *

Also Published As

Publication number Publication date
CN103996610A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
CN103996610B (zh) 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用
CN108206130B (zh) 生长在铝箔衬底上的氮化铟纳米柱外延片及其制备方法
JP4806475B2 (ja) 基板およびその製造方法
CN111009602B (zh) 具有2d材料中介层的外延基板及制备方法和制作组件
JPH05343741A (ja) 窒化ガリウム系半導体素子及びその製造方法
JP2009277882A (ja) Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
CN108807625A (zh) 一种AlN缓冲层结构及其制备方法
CN104091873A (zh) 一种发光二极管外延片及其制作方法
CN103996764B (zh) 生长在Ag衬底的LED外延片及其制备方法和应用
CN210120150U (zh) 采用2d材料磊晶去疵单晶基板
CN115101639A (zh) InGaN基光电子器件的复合衬底及其制备方法和应用
CN103996611B (zh) 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用
CN106206888B (zh) 生长在铝酸镁钪衬底上的InGaN/GaN量子阱及其制备方法
CN106328774A (zh) 一种GaN薄膜的外延生长方法及应用
CN110323308A (zh) 一种利用石墨烯阻挡层制备氮化物垂直结构led的方法
JP2004119423A (ja) 窒化ガリウム結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
CN210984756U (zh) 具有2d材料中介层的外延基板
CN115101633A (zh) InGaN基光电子器件及其制备方法
CN204257684U (zh) 一种生长在金属铝衬底上的AlN薄膜
CN106169523B (zh) 一种采用L-MBE和MOCVD技术在Si衬底上生长的LED外延片及其制备方法
JP2009161434A (ja) Iii族窒化物半導体結晶の製造方法及びiii族窒化物半導体結晶
CN203983318U (zh) 生长在Cu衬底的AlN薄膜
CN103996615B (zh) 生长在Cu衬底的AlN薄膜及其制备方法和应用
CN105742424B (zh) 一种在金属Al衬底上外延生长的GaN薄膜及其制备方法
CN206225395U (zh) 生长在铝酸镁钪衬底上的InGaN/GaN量子阱

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200320

Address after: 510000 Room 303, building 1, No. 23, Jinzhong Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: Guangzhou Everbright Technology Co.,Ltd.

Address before: The science city of Guangzhou high tech Industrial Development Zone 510000 Guangdong province Guangzhou Nanxiang Road No. 62 building

Patentee before: GUANGZHOU ZHONGTUO PHOTOELECTRIC TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: An AlN thin film grown on metal aluminum substrate and its preparation method and application

Effective date of registration: 20220926

Granted publication date: 20170215

Pledgee: Agricultural Bank of China Co.,Ltd. Heyuan Yuancheng District Sub branch

Pledgor: Guangzhou Everbright Technology Co.,Ltd.

Registration number: Y2022980016273

PE01 Entry into force of the registration of the contract for pledge of patent right