CN103996611B - 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用 - Google Patents

一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN103996611B
CN103996611B CN201410240783.0A CN201410240783A CN103996611B CN 103996611 B CN103996611 B CN 103996611B CN 201410240783 A CN201410240783 A CN 201410240783A CN 103996611 B CN103996611 B CN 103996611B
Authority
CN
China
Prior art keywords
substrate
thin film
gan
layer
gan thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410240783.0A
Other languages
English (en)
Other versions
CN103996611A (zh
Inventor
李国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Zhongtuo Optoelectrical Technology Co Ltd
Original Assignee
Guangzhou Zhongtuo Optoelectrical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Zhongtuo Optoelectrical Technology Co Ltd filed Critical Guangzhou Zhongtuo Optoelectrical Technology Co Ltd
Priority to CN201410240783.0A priority Critical patent/CN103996611B/zh
Publication of CN103996611A publication Critical patent/CN103996611A/zh
Application granted granted Critical
Publication of CN103996611B publication Critical patent/CN103996611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种生长在金属Al衬底上生长的GaN薄膜及其制备方法和应用,所述生长在金属Al衬底上生长的GaN薄膜包括Al衬底,Al衬底的(111)面为外延面上生长的Al2O3保护层以及在Al2O3保护层上外延生长的GaN薄膜层,其中Al2O3保护层与GaN薄膜层晶体外延取向关系为GaN(0001)//Al2O3(0001)//Al(111)。本发明通过选择合适的晶体取向,Al(111)衬底上获得的高质量GaN外延薄膜,用于提高氮化物器件效率。本发明主要应用在声波谐振器、逻辑电路、发光二极管、光电薄膜器件,太阳能电池、光电二极管、光电探测器、激光器等的介电层薄膜。

Description

一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用
技术领域
本发明涉及金属有机化学气相沉积法合成膜的技术领域,具体涉及生长在金属Al衬底上生长的GaN薄膜及其制备方法和应用,本发明主要应用在声波谐振器、逻辑电路、发光二极管、光电薄膜器件,太阳能电池、光电二极管、光电探测器、激光器等的介电层薄膜。
背景技术
发光二极管(LED)作为一种新型固体照明光源和绿色光源,具有体积小、耗电量低、环保、使用寿命长、高亮度、低热量以及多彩等突出特点,在室外照明、商业照明以及装饰工程等领域都具有广泛的应用。当前,在全球气候变暖问题日趋严峻的背景下,节约能源、减少温室气体排放成为全球共同面对的重要问题。以低能耗、低污染、低排放为基础的低碳经济,将成为经济发展的重要方向。在照明领域,LED发光产品的应用正吸引着世人的目光,LED作为一种新型的绿色光源产品,必然是未来发展的趋势,二十一世纪将是以LED为代表的新型照明光源的时代。但是现阶段LED的应用成本较高,发光效率较低,这些因素都会大大限制LED向高效节能环保的方向发展。
III族氮化物GaN在电学、光学以及声学上具有极其优异的性质,近几年受到广泛关注。GaN是直接带隙材料,且声波传输速度快,化学和热稳定性好,热导率高,热膨胀系数低,击穿介电强度高,是制造高效的LED器件的理想材料。目前,GaN基LED的发光效率现在已经达到28%并且还在进一步的增长,该数值远远高于目前通常使用的白炽灯(约为2%)或荧光灯(约为10%)等照明方式的发光效率。数据统计表明,我国目前的照明用电每年在4100亿度以上,超过英国全国一年的用电量。如果用LED取代全部白炽灯或部分取代荧光灯,可节省接近一半的照明用电,超过三峡工程全年的发电量。因照明而产生的温室气体排放也会因此而大大降低。另外,与荧光灯相比,GaN基LED不含有毒的汞元素,且使用寿命约为此类照明工具的100倍。
LED要真正实现大规模广泛应用,需要进一步提高LED芯片的发光效率。虽然LED的发光效率已经超过日光灯和白炽灯,但是商业化LED发光效率还是低于钠灯(150lm/w),单位流明/瓦的价格偏高。目前,LED芯片的发光效率不够高,一个主要原因是由于其蓝宝石衬底造成的。由于蓝宝石与GaN的晶格失配高达17%,导致外延GaN薄膜过程中形成很高的位错密度,从而降低了材料的载流子迁移率,缩短了载流子寿命,进而影响了GaN基器件的性能。其次,由于室温下蓝宝石热膨胀系数(6.63×10-6/K)较GaN的热膨胀系数(5.6×10-6/K)大,两者间的热失配度约为-18.4%,当外延层生长结束后,器件从外延生长的高温冷却至室温过程会产生很大的压应力,容易导致薄膜和衬底的龟裂。再次,由于蓝宝石的热导率低(100℃时为0.25W/cm·K),很难将芯片内产生的热量及时排出,导致热量积累,使器件的内量子效率降低,最终影响器件的性能。此外,由于蓝宝石是绝缘体,不能制作垂直结构半导体器件。因此电流在器件中存在横向流动,导致电流分布不均匀,产生较多热量,很大程度上影响了GaN基LED器件的电学和光学性质。
因此迫切寻找一种热导率高可以快速地将LED节区的热量传递出来的材料作为衬底。而金属Al作为外延氮化物的衬底材料,具有三大其独特的优势。第一,金属Al有很高的热导率,Al的热导率为2.37W/cm·K,可以将LED芯片内产生的热量及时的传导出,以降低器件的节区温度,一方面提高器件的内量子效率,另一方面有助于解决器件散热问题。第二,金属Al可以作为生长GaN基垂直结构的LED器件的衬底材料,可直接在衬底上镀阴极材料,P-GaN上镀阳极材料,使得电流几乎全部垂直流过GaN-基的外延层,因而电阻下降,没有电流拥挤,电流分布均匀,电流产生的热量减小,对器件的散热有利;另外,可以将阴极材料直接镀在金属衬底上,不需要通过腐蚀P-GaN层和有源层将电极连在N-GaN层,这样充分利用了有源层的材料。第三,金属Al衬底材料相对其他衬底,价格更便宜,可以极大地降低器件的制造成本。正因为上述诸多优势,金属衬底现已被尝试用作III族氮化物外延生长的衬底材料。
但是金属Al衬底在化学性质不稳定,当外延温度高于700℃的时候,外延氮化物会与金属衬底之间发生界面反应,严重影响了外延薄膜生长的质量。III族氮化物外延生长的先驱研究者、著名科学家Akasaki等人就曾尝试应用传统的MOCVD或者MBE技术直接在化学性质多变的衬底材料上外延生长氮化物,结果发现薄膜在高温下外延相当困难。
发明内容
为克服现有技术的缺陷,本发明的在于提供一种生长在金属Al衬底上生长的GaN薄膜,通过选择合适的晶体取向,Al(111)衬底上获得的高质量GaN外延薄膜,用于提高氮化物器件效率。
本发明的另一目的在于提供一种生长在金属Al衬底上生长的GaN薄膜的制备方法,生长工艺简单、可大幅度降低器件的制造成本。
本发明的又一目的在于提供生长在金属Al衬底上生长的GaN薄膜在声波谐振器、逻辑电路、发光二极管、光电薄膜器件,太阳能电池、光电二极管、光电探测器、激光器的介电层薄膜的应用。
为实现上述目的本发明所采用的技术方案如下:
一种生长在金属Al衬底上生长的GaN薄膜,其包括Al衬底,Al衬底的(111)面为外延面上生长的Al2O3保护层以及在Al2O3保护层上外延生长的GaN薄膜层,其中Al2O3保护层与GaN薄膜层晶体外延取向关系为GaN(0001)//Al2O3(0001)//Al(111)。
在本发明中,Al2O3保护层为在Al2O3(0001)上外延生长GaN(0001)薄膜铺垫,同时也是为了防止Al离子扩散到外延薄膜中。作为本发明的一种优选的方案,所述Al2O3保护层的厚度为15-25nm。
一种生长在金属Al衬底上生长的GaN薄膜的制备方法,其包括如下步骤:
1)衬底的处理:选择金属Al做衬底,并对衬底表面抛光、清洗、退火处理;
2)保护层生长:采用Al衬底的(111)面为外延面,在经过步骤1)处理后的金属Al衬底上铺一层处理的Al层,待衬底温度为650-750℃时通入O2至形成Al2O3层,保温,获得一层Al2O3保护层;
3)外延生长GaN薄膜:采用脉冲激光沉积在Al2O3保护层表面生长出GaN薄膜,其中,Al2O3保护层与GaN薄膜层晶体外延取向关系为GaN(0001)//Al2O3(0001)//Al(111)。
在本发明中,发明人发现在Al衬底上直接外延GaN薄膜很困难,通过研究表明在先Al衬底生长一层Al2O3保护层,一方面可以防止Al离子扩散到外延层中;另一方面Al2O3为外延生长GaN薄膜提供有利的条件。
上述方案中,步骤1)中,抛光具体工艺为:将Al衬底表面用金刚石泥浆进行抛光,配合显微镜观察衬底表面,当没有划痕后,再采用化学机械抛光的方法对衬底再进行抛光处理。
上述方案中,步骤1)清洗工艺为将衬底放入去离子水中室温下超声清洗5分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物;清洗后的衬底用纯度为99.9999%(v%)的干燥氮气吹干。
作为本发明的优选的方案,所述步骤2中衬底上的Al层的厚度为1-2nm。
在本发明中,退火处理可使衬底获得原子级平整的表面。优选的,步骤1)中,退火的具体过程为:将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在450-550℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温。
作为本发明的优选的方案,步骤2)保温的时间为25-35分钟。
上述方案中,步骤3)采用脉冲激光沉积在Al2O3保护层表面生长出GaN薄膜的具体工艺为:将衬底温度降至450-550℃,用能量为3.0J/cm2以及重复频率为20Hz、λ=248nm的KrF准分子激光PLD烧蚀Ga靶材,Ga靶材纯度为99.9999%;其中,反应室压力为10mTorr,N2的体积百分比为99.9999%,Ⅴ/Ⅲ比为50-60,控制GaN生长速度为0.4-0.6ML/s。
本发明所述的生长在金属Al衬底上生长的GaN薄膜在制备声波谐振器、逻辑电路、发光二极管、光电薄膜器件,太阳能电池、光电二极管、光电探测器、激光器中的应用。
相比现有技术,本发明的有益效果在于:
1.本发明使用了金属Al作为衬底,用生长Al2O3保护层可以获得衬底与GaN外延层之间很低的晶格失配度,有利于沉积高质量低缺陷的GaN薄膜,可提高介电层薄膜体声波谐振器质量;
2.本发明使用了Al作为衬底,其热导率高约2.37W/cm·K,能够迅速地将器件内的热量传导出来,一方面提高器件的内量子效率,另一方面助于解决器件散热问题;另外Al衬底容易获得,价格便宜,有利于降低生产成本;
3.本发明采用的脉冲激光沉积工艺,由于产生的前驱物具有很高的动能,可有效缩短氮化物的形核时间,保证所获得的单一性优异的GaN薄膜;
4.本发明制备出了高质量的GaN薄膜,可以作为生长高质量GaN基LED器件的缓冲层材料,加之金属的优异的热导率,可以作为制造GaN基垂直结构的LED器件,使得电流几乎全部垂直流过GaN-基的外延层,因而电阻下降,没有电流拥挤,电流分布均匀,电流产生的热量减小,对器件的散热有利提高了载流子的辐射复合效率,可大幅度提高氮化物器件如介电层薄膜体声波谐振器、半导体激光器、发光二极管及太阳能电池的效率;
5.本发明采用了低温外延技术在Al衬底上先生长一层Al2O3保护层薄膜。在低温下能保证Al衬底的稳定性,减少Al离子的挥发造成的晶格失配和剧烈界面反应,从而为下一步的高质量GaN薄膜外延层打下良好基础;
6.本发明技术生长衬底的生长工艺独特而简单易行,具有可重复性、外延生长的GaN薄膜缺陷密度低、晶体质量高,电学和光学性质优异等优点,可广泛应用于半导体激光器、发光二极管及太阳能电池等领域,便于推广应用。
下面结合具体的实施方式对本发明作进一步详细说明。
附图说明
图1是本发明所制备的高质量GaN薄膜的截面示意图;
图2是应用本发明应用实施例1中所制备的LED器件的结构截面示意图;
图3是应用本发明应用实施例2中所制备的光电探测器结构的截面示意图;
图4是应用本发明应用实施例3中所制备的InGaN太阳能电池器件结构的截面示意图;
图5是本发明所制备的高质量GaN薄膜的反射高能电子衍射(RHEED)图谱;
图6是本发明所制备的高质量GaN薄膜的X射线回摆曲线图谱。
具体实施方式
实施例1
如图1所示,本发明所示的生长在金属Al衬底上生长的GaN薄膜,其包括Al衬底1,Al衬底的(111)面为外延面上生长的Al2O3保护层2以及在Al2O3保护层2上外延生长的GaN薄膜层3,其中Al2O3保护层2与GaN薄膜层3晶体外延取向关系为GaN(0001)//Al2O3(0001)//Al(111);所述生长在金属Al衬底上生长GaN薄膜是通过以下方法制备而成:
1)衬底的处理:选择金属Al做衬底,首先将Al衬底表面用金刚石泥浆进行抛光,配合光学显微镜观察衬底表当没有划痕后,再采用化学机械抛光的方法对衬底再进行抛光处理;然后将衬底放入去离子水中室温下超声清洗5分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物;清洗后的衬底用高纯干燥氮气吹干;再将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在450℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温;
2)保护层生长:采用Al衬底的(111)面为外延面,在经过步骤1)处理后的金属Al衬底上铺一层处理的Al层,待衬底温度为750℃时通入O2至形成Al2O3层,保温30min,获得一层Al2O3保护层;
3)外延生长GaN薄膜:采用脉冲激光沉积衬底温度降至450℃,反应室压力为10mTorr、N2的体积百分比为99.9999%、Ⅴ/Ⅲ比为50、生长速度为0.4ML/s;用能量为3.0J/cm2以及重复频率为20Hz的KrF准分子激光(λ=248nm,t=20ns)PLD烧蚀Ga靶材,靶材Ga的纯度为99.9999%,在沉积GaN薄膜时,生长室内压力保持在10mTorr;其中,所述Al2O3保护层与GaN薄膜层晶体外延取向关系为GaN(0001)//Al2O3(0001)//Al(111)。
实施例2
与实施例1的区别为所述GaN薄膜是通过以下方法制备而成:
1)衬底的处理:选择金属Al做衬底,首先将Al衬底表面用金刚石泥浆进行抛光,配合光学显微镜观察衬底表当没有划痕后,再采用化学机械抛光的方法对衬底再进行抛光处理;然后将衬底放入去离子水中室温下超声清洗5分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物;清洗后的衬底用高纯干燥氮气吹干;再将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在550℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温;
2)保护层生长:采用Al衬底的(111)面为外延面,在经过步骤1)处理后的金属Al衬底上铺一层处理的Al层,待衬底温度为650℃时通入O2至形成Al2O3层,保温30min,获得一层Al2O3保护层;
3)外延生长GaN薄膜:采用脉冲激光沉积衬底温度降至450℃,反应室压力为10mTorr、N2的体积百分比为99.9999%,Ⅴ/Ⅲ比为60、生长速度为0.4ML/s;用能量为3.0J/cm2以及重复频率为20Hz的KrF准分子激光(λ=248nm,t=20ns)PLD烧蚀Ga靶材,靶材Ga的纯度为99.9999%,在沉积GaN薄膜时,生长室内压力保持在10mTorr;其中,所述Al2O3保护层与GaN薄膜层晶体外延取向关系为GaN(0001)//Al2O3(0001)。
图5-6是对本发明的GaN薄膜进行检测,图5中表明当GaN缓冲层的厚度达到10nm时,RHEED图谱从斑点状图样的转变为条状图样,说明在GaN缓冲层上长出了高结晶度的GaN薄膜。从图6中的X射线回摆曲线可以看到,GaN的半峰宽(FWHM)值低于1.0°;表明在Al(111)面上外延生长出了高质量的GaN薄膜。
应用实施例1
如图2所示,采用本发明实施例1所述的GaN薄膜,继续外延生长并制备GaN基LED器件,其包括Al(111)晶面上外延生长高质量GaN薄膜10,U-GaN薄膜11,n型掺硅GaN12,InxGa1-xN多量子阱层13,p型掺镁的GaN层14。
在GaN薄膜11上生长n型GaN外延层12,外延层的厚度约为5μm,其载流子的浓度为1×1019cm-3。接着生长InxGa1-xN多量子阱层13,厚度约为110nm,其包括In0.25Ga0.75N和垒层,周期数为7,其中In0.15Ga0.85N阱层为3nm,垒层为13nm;之后再生长Mg掺杂的p型GaN层14,厚度约为350nm;其载流子浓度为2×1016cm-3,最后电子束蒸发形成欧姆接触;在此基础上通过在N2气氛下退火,提高了p型GaN薄膜14的载流子浓度和迁移率,制得p-i-n结构的GaN基LED器件。
应用实施例2
如图3所示,采用本发明实施例2所述的GaN薄膜,继续外延生长并制备了光电探测器,其包括Al(111)晶面上外延生长高质量GaN薄膜20,高质量U-GaN薄膜21,n型掺硅GaN22,非掺杂GaN23,p型掺镁的GaN层24。
在GaN薄膜20上生长U-GaN薄膜21,外延层的厚度约为300nm;在GaN薄膜21生长n型GaN外延层22,外延层的厚度约为3μm,其载流子的浓度为1×1019cm-3。接着生长本征GaN外延层23,厚度约为200nm,其载流子浓度为2.2×1016cm-3。之后再生长Mg掺杂的p型GaN层24,厚度约为1.5μm。最后电子束蒸发形成欧姆接触和肖特基结。在此基础上通过在N2气氛下退火,提高了p型GaN薄膜24的载流子浓度和迁移率。所制备的p-i-n结构的GaN紫外光电探测器在1V偏压下,暗电流仅为65pA,并且器件在1V偏压下,在361nm处响应度的最大值达到了0.92A/W。
应用实施例3
如图4所示,采用本发明实施例2所述的GaN薄膜,继续外延生长并制备了InGaN太阳能电池器件,其包括Al(111)晶面上外延生长高质量GaN薄膜30,在生长高质量GaN薄膜31,和具有成分梯度的InxGa1-xN缓冲层32,n型掺硅InxGa1-xN33,InxGa1-xN多量子阱层34,p型掺镁的InxGa1-xN层35,x的值可以在0-0.2之间可调。
在GaN薄膜30生长高质量的GaN薄膜31,具有成分梯度的InxGa1-xN缓冲层32,然后生长n型掺硅InxGa1-xN层33,外延层的厚度约为5μm,其载流子的浓度为1×1019cm-3。接着生长InxGa1-xN多量子阱层34,厚度约为300nm,其包括In0.2Ga0.8N阱层和In0.08Ga0.92N垒层,周期数为20,其中In0.2Ga0.8N阱层为3nm,In0.08Ga0.92N垒层为10nm。再生长Mg掺杂的p型InxGa1-xN层35,厚度约为200nm,其载流子浓度为2×1016cm-3,最后电子束蒸发形成欧姆接触。在此基础上通过在N2气氛下退火,提高了p型InGaN薄膜35的载流子浓度和迁移率。所制备的InGaN太阳能电池器件。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

1.一种生长在金属Al衬底上的GaN薄膜,其特征在于:其包括Al衬底,Al(111)面衬底上生长的Al2O3保护层以及在Al2O3保护层上外延生长的GaN薄膜层,其中Al2O3保护层与GaN薄膜层晶体外延取向关系为GaN(0001)//Al2O3(0001)//Al(111)。
2.根据权利要求1所述的生长在金属Al衬底上的GaN薄膜,其特征在于:所述Al2O3保护层的厚度为15-25nm。
3.一种如权利要求1或2所述的生长在金属Al衬底上的GaN薄膜的制备方法,其特征在于,其包括如下步骤:
1)衬底的处理:选择金属Al做衬底,并对衬底表面抛光、清洗、退火处理;
2)保护层生长:采用Al衬底的(111)面为外延面,在经过步骤1)处理后的金属Al衬底上铺一层Al层,待衬底温度为650-750℃时通入O2至形成Al2O3层,保温,获得一层Al2O3保护层;
3)外延生长GaN薄膜:采用脉冲激光沉积在Al2O3保护层表面生长出GaN薄膜,其中,Al2O3保护层与GaN薄膜层晶体外延取向关系为GaN(0001)//Al2O3(0001)//Al(111)。
4.根据权利要求3所述的制备方法,其特征在于,步骤1)中,抛光具体工艺为:将Al衬底表面用金刚石泥浆进行抛光,配合显微镜观察衬底表面,当没有划痕后,再采用化学机械抛光的方法对衬底再进行抛光处理。
5.根据权利要求3所述的制备方法,其特征在于,步骤1)中,清洗工艺为将衬底放入去离子水中室温下超声清洗5分钟,去除Al衬底表面粘污颗粒,再依次经过盐酸、丙酮、乙醇洗涤,去除表面有机物;清洗后的衬底用纯度为99.9999%(v%)的干燥氮气吹干。
6.根据权利要求3所述的制备方法,其特征在于,步骤1)中,退火的具体 过程为:将衬底Al放在压强为2×10-10Torr的UHV-PLD的生长室内,在450-550℃下高温烘烤1h以除去衬底表面的污染物,然后空冷至室温。
7.根据权利要求3所述的制备方法,其特征在于,所述步骤2)中衬底上的Al层的厚度为1-2nm。
8.根据权利要求3所述的制备方法,其特征在于,步骤2)保温的时间为25-35分钟。
9.根据权利要求3所述的制备方法,其特征在于,步骤3)中,采用脉冲激光沉积在Al2O3保护层表面生长出GaN薄膜的具体工艺为:将衬底温度降至450-550℃,用能量为3.0J/cm2以及重复频率为20Hz、λ=248nm的KrF准分子激光PLD烧蚀Ga靶材,Ga靶材纯度为99.9999%;其中,反应室压力为10mTorr,N2的体积百分比为99.9999%,Ⅴ/Ⅲ比为50-60,控制GaN生长速度为0.4-0.6ML/s。
10.如权利要求1所述的生长在金属Al衬底上的GaN薄膜在制备声波谐振器、逻辑电路、光电薄膜器件中的应用。
CN201410240783.0A 2014-05-30 2014-05-30 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用 Active CN103996611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410240783.0A CN103996611B (zh) 2014-05-30 2014-05-30 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410240783.0A CN103996611B (zh) 2014-05-30 2014-05-30 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103996611A CN103996611A (zh) 2014-08-20
CN103996611B true CN103996611B (zh) 2017-01-25

Family

ID=51310731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410240783.0A Active CN103996611B (zh) 2014-05-30 2014-05-30 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103996611B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779954A (zh) * 2016-03-02 2016-07-20 三峡大学 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用
CN106057640A (zh) * 2016-05-27 2016-10-26 清华大学 半导体结构以及制备半导体结构的方法
CN108873172A (zh) * 2018-06-29 2018-11-23 中国科学院上海光学精密机械研究所 一种片上电可调高品质薄膜微光学器件的制备方法
CN108847434B (zh) * 2018-06-27 2020-06-30 湘能华磊光电股份有限公司 一种减少外延片翘曲的led外延生长方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164510A (ja) * 1998-11-26 2000-06-16 Sony Corp 窒化物系iii−v族化合物半導体基板およびその製造方法ならびに半導体装置およびその製造方法
CN102386287A (zh) * 2011-08-29 2012-03-21 协鑫光电科技(张家港)有限公司 图形化衬底及其制备方法和发光二极管
CN103035794A (zh) * 2012-12-11 2013-04-10 广州市众拓光电科技有限公司 一种生长在Si衬底上的LED外延片及其制备方法
CN204130574U (zh) * 2014-05-30 2015-01-28 广州市众拓光电科技有限公司 一种生长在金属Al衬底上的GaN薄膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164510A (ja) * 1998-11-26 2000-06-16 Sony Corp 窒化物系iii−v族化合物半導体基板およびその製造方法ならびに半導体装置およびその製造方法
CN102386287A (zh) * 2011-08-29 2012-03-21 协鑫光电科技(张家港)有限公司 图形化衬底及其制备方法和发光二极管
CN103035794A (zh) * 2012-12-11 2013-04-10 广州市众拓光电科技有限公司 一种生长在Si衬底上的LED外延片及其制备方法
CN204130574U (zh) * 2014-05-30 2015-01-28 广州市众拓光电科技有限公司 一种生长在金属Al衬底上的GaN薄膜

Also Published As

Publication number Publication date
CN103996611A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
CN102945898B (zh) 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用
CN102945899B (zh) 生长在金属Ag衬底上的GaN单晶薄膜及其制备方法、应用
CN104037284A (zh) 一种生长在Si衬底上的GaN薄膜及其制备方法和应用
CN104037288B (zh) 一种生长在Si衬底上的LED外延片及其制备方法
CN108807625A (zh) 一种AlN缓冲层结构及其制备方法
CN106784224B (zh) 生长在玻璃衬底上的led外延片及其制备方法
CN103996764B (zh) 生长在Ag衬底的LED外延片及其制备方法和应用
CN103996611B (zh) 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用
CN203950831U (zh) 生长在Cu衬底的LED外延片
CN103996758A (zh) 生长在Cu衬底的LED外延片及其制备方法和应用
CN204130574U (zh) 一种生长在金属Al衬底上的GaN薄膜
CN203895486U (zh) 生长在Ag衬底上的LED外延片
CN203895485U (zh) 一种生长在金属Al衬底上的LED外延片
CN103996612B (zh) 一种生长在金属Al衬底上的AlN薄膜及其制备方法和应用
CN204067411U (zh) 生长在W衬底上的GaN薄膜
CN204067412U (zh) 生长在W衬底上的AlN薄膜
CN104157756A (zh) 生长在Zr衬底上的LED外延片及其制备方法
CN203983319U (zh) 生长在w衬底上的led外延片
CN106299068B (zh) 基于Os衬底的外延结构及其制作方法
CN206422089U (zh) 生长在玻璃衬底上的GaN薄膜
CN204067413U (zh) 生长在W衬底上的InGaN/GaN多量子阱
CN105742424B (zh) 一种在金属Al衬底上外延生长的GaN薄膜及其制备方法
CN103996763B (zh) 一种生长在金属Al衬底上的LED外延片及其制备方法和应用
CN104157754B (zh) 生长在W衬底上的InGaN/GaN多量子阱及其制备方法
CN204130576U (zh) 生长在Zr衬底上的GaN薄膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant