CN111574734A - 一种可自愈固态电解质薄膜及其制备方法和应用 - Google Patents

一种可自愈固态电解质薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN111574734A
CN111574734A CN202010494821.0A CN202010494821A CN111574734A CN 111574734 A CN111574734 A CN 111574734A CN 202010494821 A CN202010494821 A CN 202010494821A CN 111574734 A CN111574734 A CN 111574734A
Authority
CN
China
Prior art keywords
lithium
self
salt
solid electrolyte
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010494821.0A
Other languages
English (en)
Other versions
CN111574734B (zh
Inventor
牛坚
赖文勇
刘晨
李芳�
李冠军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202010494821.0A priority Critical patent/CN111574734B/zh
Publication of CN111574734A publication Critical patent/CN111574734A/zh
Application granted granted Critical
Publication of CN111574734B publication Critical patent/CN111574734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明是一种可自愈固态电解质薄膜,所述可自愈固态电解质薄膜包括如下原料:单体、交联剂、引发剂以及电解质盐,所述交联剂与所述单体的摩尔比为0.1%,所述引发剂与所述单体的摩尔比为1%,所述电解质盐在所有原料的混合溶液中的浓度为0.1mol/L‑0.9mol/L。该薄膜的制备方法,包括如下步骤:(1)量取单体,再分别加入交联剂,引发剂及电解质盐,搅拌使其充分溶解得到透明溶液;(2)将步骤1中的溶液置于片状模具中,在紫外光下照射使其中单体交联固化,即可得到可自愈固态电解质薄膜。本发明所述的高拉伸、可自愈的固态电解质薄膜制备性能良好,工艺简单,在柔性可拉伸电子器件领域具有广阔的应用前景。

Description

一种可自愈固态电解质薄膜及其制备方法和应用
技术领域
本发明属于固态电解质制备技术领域,具体的说是涉及一种可自愈固态电解质薄膜及其制备方法和应用。
背景技术
近年来,诸如电子皮肤、智能织物、植入式医疗器械等柔性可穿戴电子器件受到日益广泛的关注,因此对可穿戴的柔性电子器件的需求也随之增高,可穿戴的柔性电子器件要求相关的器件具备优异的柔性和稳定性,但是,作为柔性电子器件中重要的组成部分,柔性、可拉伸、可自愈的电解质薄膜的制备依然面对很大的挑战。目前电解质薄膜中研究较多的以水凝胶电解质薄膜为主,水凝胶电解质具有良好的电导率,然而水凝胶电解质弹性模量较小,且其中水分易挥发,较易造成相关柔性电子器件的失效,与水凝胶电解质相比,固态电解质内部不含有液态组分,具有很好的环境稳定性。
固态电解质薄膜具有良好的机械性能、柔性以及很好的可组装性,其中聚氧化乙烯(PEO)应用较为广泛,然而,聚合物的共性问题是结晶程度较高,导致其电导率较低,且不具备可穿戴电子器件所需要的可拉伸性,因此,降低聚合物的结晶度,进而增加相关固态电解质薄膜的电导率和拉伸性成为制备具有优良性质的固态电解质的研究热点。一般的途径是在体系中加入增塑剂,或者采用与其他聚合物共聚等方法对固态电解质进行改性,但是以上制备方法成膜性较差,导致电化学性能不稳定。
作为一种可穿戴的器件,柔性电子器件的发展要求其中各单元具有一定的自愈性,自愈性的引入会提高相关器件使用的安全性和稳定性,然而以PEO为代表的固态电解质因为内部聚合物链段上并不包含相关基团,不能引入动态非共价键作用,从而不能有效的获得自愈功能。
发明内容
为了解决上述问题,本发明提供了一种一种可自愈固态电解质薄膜及其制备方法和应用,该可自愈固态电解质薄膜由单体聚合得到,其中所述单体为液态丙烯酸酯小分子,可作为溶剂溶解交联剂,引发剂及电解质盐,溶解及混合均匀后在紫外光照下聚合得到固态电解质薄膜。经由单体聚合得到的聚合物链上包含氨基甲酸酯基团,可在聚合物链间形成氢键,因为氢键为一动态可逆非共价键,所以聚合得到具有良好自愈性质的固态电解质薄膜。
为了达到上述目的,本发明是通过以下技术方案实现的:
本发明是一种可自愈固态电解质薄膜,所述可自愈固态电解质薄膜包括如下原料:单体、交联剂、引发剂以及电解质盐,所述交联剂与所述单体的摩尔比为0.1%,所述引发剂与所述单体的摩尔比为1%,所述电解质盐在所有原料的混合溶液中的浓度为0.1mol/L-0.9mol/L。
本发明的进一步改进在于:所述单体为丙烯酸酯,所述交联剂为聚二丙烯酸酯或聚乙二醇二丙烯酸酯,所述引发剂为1-羟基环己基苯基酮,所述电解质盐为锂盐、钠盐、钾盐或铵盐。
本发明的进一步改进在于:单体丙烯酸酯为液态,可作为溶剂溶解其余组分,液态丙烯酸酯类单体中包含氨基甲酸酯基团,氨基甲酸酯基团是一种可自愈基团,所述锂盐为双三氟甲基磺酰亚胺锂、三氟甲磺酰-全氟丁基磺酰亚胺锂、三氟甲磺酰-全氟丙基磺酰亚胺锂、双氟磺酰亚胺锂、六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂、草酸二氟硼酸锂、二氟磷酸锂、4,5-二氰基-2-三氟甲基咪哩锂、高氯酸锂或氯化锂,所述钠盐为双三氟甲磺酰亚胺钠、高氯酸钠、双氟磺酰亚胺钠、氯化钠、硝酸钠、氟硅酸钠或邻苯二甲酸钠,所述钾盐为双氟磺酰亚胺钾、氯化钾、硝酸钾或邻苯二甲酸氢钾,所述铵盐为四氟硼酸四乙基铵、氯化铵或硝酸铵。
本发明是一种可自愈固态电解质薄膜的制备方法,所述制备方法包括如下步骤:
(1)量取一定量的单体,再分别加入交联剂,引发剂及电解质盐,搅拌使其充分溶解得到透明溶液;
(2)将步骤1中配置好的溶液置于片状模具中,在紫外光下照射使其中单体交联固化,即可得到所述可自愈固态电解质薄膜。
本发明的进一步改进在于:所述步骤(1)中,所述交联剂与所述单体的摩尔比为0.1%,所述引发剂与所述单体的摩尔比为1%,所述电解质盐在所有原料的混合溶液中的浓度为0.1mol/L-0.9mol/L。
本发明的进一步改进在于:所述单体为丙烯酸酯,单体丙烯酸酯为液态,液态丙烯酸酯类单体中包含氨基甲酸酯基团,所述交联剂为聚二丙烯酸酯或聚乙二醇二丙烯酸酯,所述引发剂为1-羟基环己基苯基酮,所述电解质盐为锂盐、钠盐、钾盐或铵盐。
本发明的进一步改进在于:所述锂盐为双三氟甲基磺酰亚胺锂、三氟甲磺酰-全氟丁基磺酰亚胺锂、三氟甲磺酰-全氟丙基磺酰亚胺锂、双氟磺酰亚胺锂、六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂、草酸二氟硼酸锂、二氟磷酸锂、4,5-二氰基-2-三氟甲基咪哩锂、高氯酸锂或氯化锂,所述钠盐为双三氟甲磺酰亚胺钠、高氯酸钠、双氟磺酰亚胺钠、氯化钠、硝酸钠、氟硅酸钠或邻苯二甲酸钠,所述钾盐为双氟磺酰亚胺钾、氯化钾、硝酸钾或邻苯二甲酸氢钾,所述铵盐为四氟硼酸四乙基铵、氯化铵或硝酸铵。
本发明的进一步改进在于:所述步骤(2)中,在采用紫外光照射进行光固化时,所采用的紫外光波长为365 nm,照射功率为400 W,照射时间为1-60min。
一种可自愈固态电解质薄膜的应用,所述可自愈固态电解质薄膜用于柔性可拉伸传感器的电解质,所述柔性可拉伸传感器由可自愈固态电解质薄膜和连接在可自愈固态电解质薄膜两端的金属电极组成。
本发明的有益效果是:本发明所制备的固态电解质薄膜不仅具有良好的导电性和较高的拉伸性,而且表现出优异的可重复的自愈合性能,并且愈合后的固态电解质薄膜可保持和原有薄膜一致的力学性质和电化学行为;本发明所构建的柔性可拉伸传感器具有很好的柔性和可重复弯曲性;本发明所构建的柔性可拉伸传感器表现出了较好的敏感性和分辨不同种类外部刺激的能力。
本发明所述的高拉伸、可自愈的固态电解质薄膜制备性能良好,工艺简单,在柔性可拉伸电子器件领域具有广阔的应用前景。
附图说明
图1是本发明实施例1中固态电解质薄膜的应力-应变曲线。
图2是本发明实施例1中固态电解质薄膜的阻抗谱曲线。
图3是本发明实施例1中固态电解质薄膜在不同温度下重量变化曲线。
图4是本发明实施例1中固态电解质薄膜的自愈合照片。
图5是本发明实施例1-5中固态电解质薄膜的阻抗谱曲线。
图6是本发明实施例6中柔性可拉伸传感器的结构示意图。
图7是本发明实施例6中柔性可拉伸传感器在不同种类外部刺激下的阻抗谱曲线。
具体实施方式
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。
本发明是一种可自愈固态电解质薄膜,该可自愈固态电解质薄膜包括如下原料:单体、交联剂、引发剂以及电解质盐,所述交联剂与所述单体的摩尔比为0.1%,所述引发剂与所述单体的摩尔比为1%,所述电解质盐在所有原料的混合溶液中的浓度为0.1mol/L-0.9mol/L,所述单体为丙烯酸酯,所述交联剂为聚二丙烯酸酯或聚乙二醇二丙烯酸酯,所述引发剂为1-羟基环己基苯基酮,所述电解质盐为锂盐、钠盐、钾盐或铵盐,单体丙烯酸酯为液态,可作为溶剂溶解其余组分,液态丙烯酸酯类单体中包含氨基甲酸酯基团,氨基甲酸酯基团是一种可自愈基团,所述锂盐为双三氟甲基磺酰亚胺锂、三氟甲磺酰-全氟丁基磺酰亚胺锂、三氟甲磺酰-全氟丙基磺酰亚胺锂、双氟磺酰亚胺锂、六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂、草酸二氟硼酸锂、二氟磷酸锂、4,5-二氰基-2-三氟甲基咪哩锂、高氯酸锂或氯化锂,所述钠盐为双三氟甲磺酰亚胺钠、高氯酸钠、双氟磺酰亚胺钠、氯化钠、硝酸钠、氟硅酸钠或邻苯二甲酸钠,所述钾盐为双氟磺酰亚胺钾、氯化钾、硝酸钾或邻苯二甲酸氢钾,所述铵盐为四氟硼酸四乙基铵、氯化铵或硝酸铵。
该可自愈固态电解质薄膜的制备方法包括如下步骤:
(1)量取2 mL的2-[[(丁基氨基)羰基]氧代]丙烯酸乙酯,再分别加入0.0056克聚二丙烯酸酯或聚乙二醇二丙烯酸酯,0.02克1-羟基环己基苯基酮 及一定量的电解质盐双三氟甲烷磺酰亚胺锂,搅拌使其充分溶解得到透明溶液A;
(2)将步骤1中的溶液A注入到间隔为500μm~1500μm的玻璃模具中,紫外光照射条件下聚合1-60 min,得到可自愈固态电解质薄膜。
本发明的可自愈固态电解质薄膜用于柔性可拉伸传感器的电解质,所述柔性可拉伸传感器由可自愈固态电解质薄膜和连接在可自愈固态电解质薄膜两端的金属电极组成。
实施例1
本发明的可自愈固态电解质薄膜的制备方法包括如下步骤:
(1)量取2 mL的2-[[(丁基氨基)羰基]氧代]丙烯酸乙酯,再分别加入0.0056克聚二丙烯酸酯或聚乙二醇二丙烯酸酯,0.02克1-羟基环己基苯基酮 及0.0574克的电解质盐双三氟甲烷磺酰亚胺锂,搅拌使其充分溶解得到透明溶液A;
(2)将步骤1中的溶液A注入到间隔为500μm~1500μm的玻璃模具中,紫外光照射条件下聚合1-60 min,得到可自愈固态电解质薄膜。
实施例2
本发明的可自愈固态电解质薄膜的制备方法包括如下步骤:
(1)量取2 mL的2-[[(丁基氨基)羰基]氧代]丙烯酸乙酯,再分别加入0.0056克聚二丙烯酸酯或聚乙二醇二丙烯酸酯,0.02克1-羟基环己基苯基酮 及0.1723克的电解质盐双三氟甲烷磺酰亚胺锂,搅拌使其充分溶解得到透明溶液A;
(2)将步骤1中的溶液A注入到间隔为500μm~1500μm的玻璃模具中,紫外光照射条件下聚合1-60 min,得到可自愈固态电解质薄膜。
实施例3
本发明的可自愈固态电解质薄膜的制备方法包括如下步骤:
(1)量取2 mL的2-[[(丁基氨基)羰基]氧代]丙烯酸乙酯,再分别加入0.0056克聚二丙烯酸酯或聚乙二醇二丙烯酸酯,0.02克1-羟基环己基苯基酮 及0.2871克的电解质盐双三氟甲烷磺酰亚胺锂,搅拌使其充分溶解得到透明溶液A;
(2)将步骤1中的溶液A注入到间隔为500μm~1500μm的玻璃模具中,紫外光照射条件下聚合1-60 min,得到可自愈固态电解质薄膜。
实施例4
本发明的可自愈固态电解质薄膜的制备方法包括如下步骤:
(1)量取2 mL的2-[[(丁基氨基)羰基]氧代]丙烯酸乙酯,再分别加入0.0056克聚二丙烯酸酯或聚乙二醇二丙烯酸酯,0.02克1-羟基环己基苯基酮 及0.4019克的电解质盐双三氟甲烷磺酰亚胺锂,搅拌使其充分溶解得到透明溶液A;
(2)将步骤1中的溶液A注入到间隔为500μm~1500μm的玻璃模具中,紫外光照射条件下聚合1-60 min,得到可自愈固态电解质薄膜。
实施例5
本发明的可自愈固态电解质薄膜的制备方法包括如下步骤:
(1)量取2 mL的2-[[(丁基氨基)羰基]氧代]丙烯酸乙酯,再分别加入0.0056克聚二丙烯酸酯或聚乙二醇二丙烯酸酯,0.02克1-羟基环己基苯基酮 及0.5168克的电解质盐双三氟甲烷磺酰亚胺锂,搅拌使其充分溶解得到透明溶液A;
(2)将步骤1中的溶液A注入到间隔为500μm~1500μm的玻璃模具中,紫外光照射条件下聚合1-60 min,得到可自愈固态电解质薄膜。
实施例6
本发明的可自愈固态电解质薄膜的制备方法包括如下步骤:
(1)量取2 mL的2-[[(丁基氨基)羰基]氧代]丙烯酸乙酯,再分别加入0.0056克聚二丙烯酸酯或聚乙二醇二丙烯酸酯,0.02克1-羟基环己基苯基酮 及0.2871克的电解质盐双三氟甲烷磺酰亚胺锂,搅拌使其充分溶解得到透明溶液A;
(2)将步骤1中的溶液A注入到间隔为500μm~1500μm的玻璃模具中,紫外光照射条件下聚合1-60 min,得到可自愈固态电解质薄膜。
(3)在步骤2制备所得的可自愈固态电解质薄膜两端贴上导电铜胶带作为电极得到柔性可拉伸传感器。
本发明所制备的可自愈固态电解质薄膜具有良好的导电性和可拉伸性,同时还具有可自愈的性能,以其为电解质制备的柔性可拉伸传感器,不仅具有高拉伸能力,还具有区分不同种类外部刺激的能力,在柔性电子器件中具有广阔的应用前景。
以上所述仅为本发明的实施方式而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理的内所作的任何修改、等同替换、改进等,均应包括在本发明的权利要求范围之内。

Claims (10)

1.一种可自愈固态电解质薄膜,其特征在于:所述可自愈固态电解质薄膜包括如下原料:单体、交联剂、引发剂以及电解质盐,所述交联剂与所述单体的摩尔比为0.1%,所述引发剂与所述单体的摩尔比为1%,所述电解质盐在所有原料的混合溶液中的浓度为0.1mol/L-0.9mol/L。
2.根据权利要求1所述一种可自愈固态电解质薄膜,其特征在于:所述单体为丙烯酸酯,所述交联剂为聚二丙烯酸酯或聚乙二醇二丙烯酸酯,所述引发剂为1-羟基环己基苯基酮,所述电解质盐为锂盐、钠盐、钾盐或铵盐。
3.根据权利要求2所述一种可自愈固态电解质薄膜,其特征在于:单体丙烯酸酯为液态,液态丙烯酸酯类单体中包含氨基甲酸酯基团,所述锂盐为双三氟甲基磺酰亚胺锂、三氟甲磺酰-全氟丁基磺酰亚胺锂、三氟甲磺酰-全氟丙基磺酰亚胺锂、双氟磺酰亚胺锂、六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂、草酸二氟硼酸锂、二氟磷酸锂、4,5-二氰基-2-三氟甲基咪哩锂、高氯酸锂或氯化锂,所述钠盐为双三氟甲磺酰亚胺钠、高氯酸钠、双氟磺酰亚胺钠、氯化钠、硝酸钠、氟硅酸钠或邻苯二甲酸钠,所述钾盐为双氟磺酰亚胺钾、氯化钾、硝酸钾或邻苯二甲酸氢钾,所述铵盐为四氟硼酸四乙基铵、氯化铵或硝酸铵。
4.一种可自愈固态电解质薄膜的制备方法,其特征在于:所述制备方法包括如下步骤:
(1)量取一定量的单体,再分别加入交联剂,引发剂及电解质盐,搅拌使其充分溶解得到透明溶液;
(2)将步骤1中配置好的溶液置于片状模具中,在紫外光下照射使其中单体交联固化,即可得到所述可自愈固态电解质薄膜。
5.根据权利要求4所述一种可自愈固态电解质薄膜的制备方法,其特征在于:所述步骤(1)中,所述交联剂与所述单体的摩尔比为0.1%,所述引发剂与所述单体的摩尔比为1%,所述电解质盐在所有原料的混合溶液中的浓度为0.1mol/L-0.9mol/L。
6.根据权利要求4所述一种可自愈固态电解质薄膜的制备方法,其特征在于:所述单体为丙烯酸酯,单体丙烯酸酯为液态,液态丙烯酸酯类单体中包含氨基甲酸酯基团,所述交联剂为聚二丙烯酸酯或聚乙二醇二丙烯酸酯,所述引发剂为1-羟基环己基苯基酮,所述电解质盐为锂盐、钠盐、钾盐或铵盐。
7.根据权利要求4所述一种可自愈固态电解质薄膜的制备方法,其特征在于:所述锂盐为双三氟甲基磺酰亚胺锂、三氟甲磺酰-全氟丁基磺酰亚胺锂、三氟甲磺酰-全氟丙基磺酰亚胺锂、双氟磺酰亚胺锂、六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂、草酸二氟硼酸锂、二氟磷酸锂、4,5-二氰基-2-三氟甲基咪哩锂、高氯酸锂或氯化锂,所述钠盐为双三氟甲磺酰亚胺钠、高氯酸钠、双氟磺酰亚胺钠、氯化钠、硝酸钠、氟硅酸钠或邻苯二甲酸钠,所述钾盐为双氟磺酰亚胺钾、氯化钾、硝酸钾或邻苯二甲酸氢钾,所述铵盐为四氟硼酸四乙基铵、氯化铵或硝酸铵。
8.根据权利要求4所述一种可自愈固态电解质薄膜的制备方法,其特征在于:所述步骤(2)中,在采用紫外光照射进行光固化时,所采用的紫外光波长为365 nm,照射功率为400W,照射时间为1-60min。
9.一种如权利要求1所述一种可自愈固态电解质薄膜的应用,其特征在于:
所述可自愈固态电解质薄膜用于柔性可拉伸传感器的电解质。
10.根据权利要求8所述一种可自愈固态电解质薄膜的应用,其特征在于:所述柔性可拉伸传感器由可自愈固态电解质薄膜和连接在可自愈固态电解质薄膜两端的金属电极组成。
CN202010494821.0A 2020-06-03 2020-06-03 一种可自愈固态电解质薄膜及其制备方法和应用 Active CN111574734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010494821.0A CN111574734B (zh) 2020-06-03 2020-06-03 一种可自愈固态电解质薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010494821.0A CN111574734B (zh) 2020-06-03 2020-06-03 一种可自愈固态电解质薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111574734A true CN111574734A (zh) 2020-08-25
CN111574734B CN111574734B (zh) 2022-10-04

Family

ID=72110572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010494821.0A Active CN111574734B (zh) 2020-06-03 2020-06-03 一种可自愈固态电解质薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111574734B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113238A (zh) * 2021-03-22 2021-07-13 南京理工大学 超分子离子液凝胶电解质及其制备方法与应用
CN113363087A (zh) * 2021-05-27 2021-09-07 上海应用技术大学 一种耐低温自愈水凝胶电解质及其制备方法和应用
CN113675467A (zh) * 2021-09-26 2021-11-19 珠海冠宇电池股份有限公司 一种固态电解质及包括该固态电解质的固态电池
CN113707883A (zh) * 2021-09-26 2021-11-26 珠海冠宇电池股份有限公司 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池
CN114824285A (zh) * 2022-04-08 2022-07-29 南京邮电大学 一种本征高拉伸多功能聚合物离子导体及其制备方法与应用
CN116041881A (zh) * 2023-01-18 2023-05-02 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 柔性可穿戴离子导电弹性体以及肌电传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952126A (en) * 1996-07-30 1999-09-14 Samsung Electronics Co., Ltd. Polymer solid electrolyte and lithium secondary cell adopting the same
US5965300A (en) * 1997-04-10 1999-10-12 Samsung Electroonics Co., Ltd. Polymer solid electrolyte, method for manufacturing polymer solid electrolyte, and lithium secondary cell adopting polymer solid electrolyte
JP2003068138A (ja) * 2001-08-23 2003-03-07 Nippon Kayaku Co Ltd 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP2003086250A (ja) * 2001-07-06 2003-03-20 Nippon Nyukazai Kk 新規な高分子電解質及びリチウム二次電池
US20050221194A1 (en) * 2001-01-31 2005-10-06 Byung-Won Cho Uv-cured multi-component polymer blend electrolyte, lithium secondary battery and their fabrication method
US20170229735A1 (en) * 2014-10-02 2017-08-10 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same
CN109546220A (zh) * 2018-10-15 2019-03-29 华中科技大学 一种具有双重网络的自愈合聚合物电解质及其制备与应用
CN110265232A (zh) * 2019-06-11 2019-09-20 南京邮电大学 一种可自愈水凝胶电解质薄膜及其制备方法和应用
WO2020026702A1 (ja) * 2018-07-31 2020-02-06 株式会社日本触媒 電解質組成物、電解質膜及び電解質膜の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952126A (en) * 1996-07-30 1999-09-14 Samsung Electronics Co., Ltd. Polymer solid electrolyte and lithium secondary cell adopting the same
US5965300A (en) * 1997-04-10 1999-10-12 Samsung Electroonics Co., Ltd. Polymer solid electrolyte, method for manufacturing polymer solid electrolyte, and lithium secondary cell adopting polymer solid electrolyte
US20050221194A1 (en) * 2001-01-31 2005-10-06 Byung-Won Cho Uv-cured multi-component polymer blend electrolyte, lithium secondary battery and their fabrication method
JP2003086250A (ja) * 2001-07-06 2003-03-20 Nippon Nyukazai Kk 新規な高分子電解質及びリチウム二次電池
JP2003068138A (ja) * 2001-08-23 2003-03-07 Nippon Kayaku Co Ltd 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
US20170229735A1 (en) * 2014-10-02 2017-08-10 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same
WO2020026702A1 (ja) * 2018-07-31 2020-02-06 株式会社日本触媒 電解質組成物、電解質膜及び電解質膜の製造方法
CN109546220A (zh) * 2018-10-15 2019-03-29 华中科技大学 一种具有双重网络的自愈合聚合物电解质及其制备与应用
CN110265232A (zh) * 2019-06-11 2019-09-20 南京邮电大学 一种可自愈水凝胶电解质薄膜及其制备方法和应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113238A (zh) * 2021-03-22 2021-07-13 南京理工大学 超分子离子液凝胶电解质及其制备方法与应用
CN113113238B (zh) * 2021-03-22 2022-04-19 南京理工大学 超分子离子液凝胶电解质及其制备方法与应用
CN113363087A (zh) * 2021-05-27 2021-09-07 上海应用技术大学 一种耐低温自愈水凝胶电解质及其制备方法和应用
CN113675467A (zh) * 2021-09-26 2021-11-19 珠海冠宇电池股份有限公司 一种固态电解质及包括该固态电解质的固态电池
CN113707883A (zh) * 2021-09-26 2021-11-26 珠海冠宇电池股份有限公司 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池
CN113707883B (zh) * 2021-09-26 2023-12-26 珠海冠宇电池股份有限公司 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池
CN113675467B (zh) * 2021-09-26 2024-01-16 珠海冠宇电池股份有限公司 一种固态电解质及包括该固态电解质的固态电池
CN114824285A (zh) * 2022-04-08 2022-07-29 南京邮电大学 一种本征高拉伸多功能聚合物离子导体及其制备方法与应用
CN114824285B (zh) * 2022-04-08 2024-03-19 南京邮电大学 一种本征高拉伸多功能聚合物离子导体及其制备方法与应用
CN116041881A (zh) * 2023-01-18 2023-05-02 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 柔性可穿戴离子导电弹性体以及肌电传感器
CN116041881B (zh) * 2023-01-18 2024-08-09 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 柔性可穿戴离子导电弹性体以及肌电传感器

Also Published As

Publication number Publication date
CN111574734B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN111574734B (zh) 一种可自愈固态电解质薄膜及其制备方法和应用
CN110265232B (zh) 一种可自愈水凝胶电解质薄膜及其制备方法和应用
CN103509153B (zh) 一种聚合物单离子电解质及其制备方法
JP4741140B2 (ja) ポリマー電解質、ポリマー電解質を含むバッテリーセル、およびポリマー電解質の製造方法
US9711823B2 (en) Electrolyte having eutectic mixture of hetero cyclic compound and lithium salt and electrochemical device containing the same
CN111490289B (zh) 一种无溶剂下原位光聚合的聚离子液体电解质
CN111647111A (zh) 一种双网络结构水凝胶电解质薄膜及其制备方法与应用
CN107819150B (zh) 一种锂离子电池凝胶电解液及其制备方法
JP4497456B2 (ja) ゲル状電解質およびそれを用いた電気化学素子
JP2002110245A (ja) ポリマー固体電解質リチウムイオン2次電池
CN108341964B (zh) 一种功能聚合物、锂电池用聚合物电解质及制备方法、聚合物电解质膜、锂离子电池
KR102026621B1 (ko) 이중 가교 고분자 네트워크 및 이온성 액체를 포함하는 겔 전해질, 이의 제조방법 및 이를 포함하는 에너지 저장 장치
CN116365019A (zh) 一种锂离子电池阻燃凝胶电解质及其制备方法与应用
KR100325876B1 (ko) 아크릴레이트계 모노머가 중합된 고분자 전해질 조성물 및이를 포함하는 리튬 2차 전지
JP4985959B2 (ja) 有機固体電解質及びこれを用いた2次電池
JPH10223044A (ja) ゲル状高分子固体電解質
JP3843505B2 (ja) 高分子電解質及び電池
CN113964380A (zh) 一种可原位热聚合的自修复聚合物电解质及其制备方法
CN111540947A (zh) 固态聚合物电解质、包含它的固态电池及其制备方法
CN111342122B (zh) 一种自愈合互穿网络聚合物电解质及其制备方法和应用
CN113707935B (zh) 一种多氟化基团聚合物固态电解质材料及其制备方法
KR100637000B1 (ko) 극성 시아나이드기가 측쇄형으로 된 고체형 고분자전해질용 폴리실록산 및 그 제조법.
KR101014111B1 (ko) 공융혼합물을 포함하는 전해질 및 이를 구비한 전기화학소자
KR100440830B1 (ko) 리튬 이온 고분자 전지용 겔형 고분자 전해질의 구조
CN117886991A (zh) 一种可相变、高导电率的离子凝胶复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant