CN111544011B - 用于探测来自植入传感器的光信号的设备和方法 - Google Patents

用于探测来自植入传感器的光信号的设备和方法 Download PDF

Info

Publication number
CN111544011B
CN111544011B CN202010410590.0A CN202010410590A CN111544011B CN 111544011 B CN111544011 B CN 111544011B CN 202010410590 A CN202010410590 A CN 202010410590A CN 111544011 B CN111544011 B CN 111544011B
Authority
CN
China
Prior art keywords
light
lens
detectors
light source
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010410590.0A
Other languages
English (en)
Other versions
CN111544011A (zh
Inventor
G·J·肯兹
W·A·麦克米伦
N·A·维希涅夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Profusa Inc
Original Assignee
Profusa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Profusa Inc filed Critical Profusa Inc
Priority to CN202010410590.0A priority Critical patent/CN111544011B/zh
Publication of CN111544011A publication Critical patent/CN111544011A/zh
Application granted granted Critical
Publication of CN111544011B publication Critical patent/CN111544011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0017Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system transmitting optical signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Abstract

本公开内容涉及用于探测来自植入传感器的光信号的设备和方法。文中描述的一些实施例涉及一种设备,其包括被配置为向植入传感器发射激励光信号的光源和被配置为探测从植入传感器发射的分析物相关光信号的探测器。所述设备可以包括被配置为将分析物相关光信号的至少一部分聚焦到探测器上的透镜。

Description

用于探测来自植入传感器的光信号的设备和方法
本申请是于2014年6月6日提交的、题为“用于探测来自植入传感器的光信号的设备和方法”的国际申请号为PCT/US2014/041284、国家申请号为201480031998.X的专利申请的分案申请。
相关申请的交叉引用
本申请根据35U.S.C.§119(e)要求2013年6月6日提交的发明名称为“Detectionof Implant Optical Signals with Off-Axis Light Restriction”的临时美国专利申请No.61/832065和2013年6月6日提交的发明名称为“Detection of Implant OpticalSignals with Large Ratio of Surface Area”的临时美国专利申请No.61/832078的优先权,通过引用将每个的公开内容全文并入本文。
背景技术
文中描述的一些实施例涉及用于监测植入物的设备和方法,尤其涉及用于采用离轴光的限制探测植入物发射的光信号的设备和方法。
文中描述的一些实施例涉及用于监测植入物的设备和方法,尤其涉及用于通过相对于激励光信号的提供所通过的组织表面区域而言的相对较大的组织表面区域探测光信号的设备和方法。
对于某些个人而言,对其体内的诸如葡萄糖、乳酸盐、氧等的分析物的水平或浓度进行监测对其健康是重要的。葡萄糖或其他分析物的水平高或低都可能产生不利影响或者指示特定的健康状态。葡萄糖的监测对于患有糖尿病的人尤其重要,其中的一部分人必须要确定何时需要胰岛素以降低其体内的葡萄糖水平,何时需要额外的葡萄糖以提升其体内的葡萄糖水平。
很多糖尿病患者采用的监测其血糖水平的常规技术包括定期抽取血液,将该血液涂到测试条上,并采用热量测定、电化学或光度测定检测确定血糖水平。这种技术不允许连续或自动监测体内的葡萄糖水平,而是通常必须在周期性的基础上人工执行监测。令人遗憾的是,葡萄糖水平检测的一致性在个体之间存在很宽的变动。很多糖尿病患者认为周期性测试不方便,他们有时会忘记测试其葡萄糖水平,或者没有时间进行正确的测试。此外,一些个体希望避免与测试相关的疼痛。不经监测的葡萄糖可能导致高血糖或低血糖事件。监测个体分析物水平的植入传感器使个体能够更容易地监测其葡萄糖或其他分析物的水平。
一些已知装置就地监测各种组织的血流或组织液内的分析物(例如,葡萄糖)。这些装置中有很多采用插入到血管或者患者皮下的传感器。但是,从这样的已知和/或推荐的装置传送和/或检索数据可能存在困难。例如,植入传感器或许能够采用射频(RF)传输与探测器或接收器通信。但是,这样的传感器可能需要电子设备、电池、天线和/或其他通信硬件,它们可能增大植入传感器的体积,可能需要频繁的不方便的充电和/或可能降低植入物的寿命或可靠性。
因此,需要一种用于探测来自植入传感器的光信号的设备和方法,从而能够采用荧光传感器。荧光传感器可以不需要充电和/或传输电子装置。但是,这样的植入传感器可能难以读取或者进行光学监测,因为皮肤条件(例如,血液水平和水合作用)的动态变化所导致的高散射使得荧光水平低。皮肤存在高度散射,所述散射可以支配光传播。散射是由组织内的折射率变化导致的,皮肤内的散射的主要分量(main component)归因于脂质、胶原质以及其他生物学成分。主要吸收是由血液、黑色素、水以及其他成分导致的。
文中描述的装置和设备适于通过在这样的低信号、高散射环境下监测可植入传感器而提供对分析物的准确、一致的测量。
发明内容
文中描述的一些实施例涉及一种设备,其包括被配置为向植入传感器发射激励光信号的光源和被配置为探测从植入传感器发射的分析物相关光信号的探测器。所述设备可以包括被配置为将分析物相关光信号的至少一部分聚焦到探测器上的透镜。
文中描述的一些实施例涉及透镜阵列。可以将来自透镜阵列的每个透镜配置为使来自植入传感器的分析物相关光信号传输至探测器。可以将多个光阻挡元件设置到透镜阵列的基板内。可以将来自光阻挡元件阵列的每个光阻挡元件配置为避免或阻止具有大于预定入射角的入射角的光子通过所述基板。
文中描述的一些实施例涉及包括被配置为探测来自植入传感器的分析物相关光信号的探测器的设备。可以将透镜配置为将分析物相关光信号的至少一部分聚焦到所述探测器上。可以将滤光器配置为使具有短于分析物相关光信号的波长的光衰减。
文中描述的一些实施例涉及能够响应于至少一个激励波长范围内的激励光发射至少一个处于至少一个发射波长范围内的分析物相关光信号的植入物。可以将包括至少一个光源的装置布置为发射贯穿植入物周围的组织的激励光。所述装置可以包括至少一个被布置为探测从植入传感器发射并且通过所述组织传输的处于发射波长范围内的光的探测器。所述装置还可以包括与光圈阵列布置到一起的透镜阵列,以限制离轴光传输至探测器。可以相对于探测器对透镜阵列和光圈阵列定位,从而根据发射光的入射角限制从组织发射的向探测器传播的光。可以将至少一层光控制膜与所述透镜阵列和光圈阵列结合布置,从而基于发射光相对于所述膜的入射角限制从组织发射的向探测器传播的光。所述装置还可以包括至少一个滤光器,其被置于将向探测器的光传输限制为基本上处于发射波长范围内的波长。
文中描述的一些实施例涉及一种用于监测嵌入在哺乳动物身体组织内的植入物的光学探测装置。所述植入物能够响应于处于至少一个激励波长范围内的激励光发射至少一个处于至少一个发射波长范围内的分析物相关光信号。所述装置可以包括至少一个被布置为通过组织向植入物发射激励光的光源。将至少一个探测器布置为探测从组织发射的处于发射波长范围内的光。所述装置还可以包括与光圈阵列布置到一起的透镜阵列,以限制离轴光传输至探测器。相对于探测器对透镜阵列和光圈阵列定位,从而根据发射光的入射角限制从组织发射的向探测器传播的光。将光阻挡元件布置到光圈之间,以阻挡入射光线通过光圈的传播。将所述光阻挡元件设置为根据光线相对于光圈光轴的入射角的提高而阻挡入射光线。所述装置还包括至少一个滤光器,其被布置为将发射光向探测器的传输限制为基本上处于发射波长范围内的波长。
文中描述的一些实施例涉及一种用于监测哺乳动物身体组织内嵌入的植入物的方法。所述植入物能够响应于处于至少一个激励波长范围内的激励光发射至少一个处于至少一个发射波长范围内的分析物相关光信号。所述方法可以包括通过所述组织向植入物发射激励光以及探测从所述组织发射的处于发射波长范围内的光。使发射波长范围内的光穿过透镜阵列和光圈阵列传输,所述透镜阵列和光圈阵列被布置为根据发射光的入射角限制从组织发射的向至少一个探测器传播的光。使发射波长范围内的光通过与所述透镜阵列和光圈阵列结合布置的至少一层光控制膜来输,从而根据发射光相对于所述膜的入射角限制组织发射的向探测器传播的光。还使处于发射波长范围内的光通过至少一个滤光器传输,所述滤光器被设置为将向探测器的光传输限制为基本上处于发射波长范围内的波长。
文中描述的一些实施例涉及一种用于监测哺乳动物身体组织内嵌入的植入物的方法。所述植入物能够响应于处于至少一个激励波长范围内的激励光发射至少一个处于至少一个发射波长范围内的分析物相关光信号。所述方法可以包括通过所述组织向植入物发射激励光以及探测从所述组织发射的处于发射波长范围内的光。与透镜阵列结合布置的光圈阵列根据发射光的入射角限制从组织发射的向至少一个探测器传播的光。所述方法还可以包括采用置于光圈之间的光阻挡元件阻挡入射光线通过所述光圈的传播,从而基于例如光圈的光轴来阻挡入射角大于阈值入射角的入射光线。所述方法还可以包括将发射光过滤为基本上处于发射波长范围内的波长。
文中描述的一些实施例涉及用于监测嵌入到皮肤下面的组织内的植入物的光学探测装置。所述植入物能够响应于处于至少一个激励波长范围内的激励光发射至少一个处于至少一个发射波长范围内的分析物相关光信号。所述装置可以包括至少一个被布置为通过皮肤的第一表面区域向嵌入在组织内的植入物发射激励光的光源。可以将一个或多个探测器布置为探测从皮肤的至少第二表面区域发射的光,其中,所述光源以及所述一个或多个探测器被布置为使探测光在其向所述一个或多个探测器传播时所通过的皮肤表面积与激励光的传输所通过的皮肤表面积之比至少为4:1。
文中描述的一些实施例涉及用于监测嵌入到皮肤下面的组织内的植入物的方法。所述植入物能够响应于处于至少一个激励波长范围内的激励光发射至少一个处于至少一个发射波长范围内的分析物相关光信号。所述方法还可以包括通过皮肤的第一表面区域向嵌入在组织内的植入物发射激励光以及探测从皮肤的至少第二表面区域发射的光。探测光在其向一个或多个探测器传播时所通过的皮肤表面积与激励光的传输所通过的皮肤表面积之比为至少4:1。
附图说明
图1是根据实施例的用于监测植入物的光探测装置的示意性侧视图。
图2是根据实施例的用于监测植入物的光探测装置的示意性侧视图。
图3是根据实施例的光圈阵列的平面图。
图4是根据实施例的光学探测装置的示意性平面图。
图5是根据实施例的光学探测装置的示意性分解图。
图6是根据实施例的用于监测植入物的光探测装置的示意性侧视图。
图7是根据实施例的用于监测植入物的光探测装置的示意性侧视图。
图8A-8D示出了根据实施例的处于各制造阶段内的具有光阻挡元件的透镜及光圈阵列。
图9是根据实施例的光学探测装置的示意性平面图。
图10是根据实施例的光学探测装置的示意性平面图。
图11是根据实施例的光学探测装置的示意性平面图。
具体实施方式
根据文中描述的一些实施例,提供了一种用于监测哺乳动物身体的组织内嵌入的植入物的光学探测装置。所述植入物可以包括能够响应于至少一个激励波长范围内的激励光发射至少一个处于至少一个发射波长范围内的分析物相关光信号的带有荧光基团标签的目标。所述光学探测装置可以用于采用波长内容落在吸收带内的光照射植入物和/或收集波长内容处于发射带内的光。
所述光学探测装置可以包括具有光源和/或光学装置的激励光学装置,所述光源和/或光学装置用于生成处于吸收带内的照射。所述光学探测装置还可以包括用于收集来自植入物的荧光发射的发射光学装置。由于在一些情况下,可能难以获得、设计和/或实施具有刚好匹配每个荧光基团吸收带的光谱内容(即波长范围)的光源,因而可以将一个或多个光学滤光器或者滤光器(通常是带通滤光器)与所述光源一起使用,从而将照射波长的范围限制为吸收带的范围和/或减少发射带的照射波长。类似地,发射光学装置可以包括另外的一个或多个滤光器,该另外的一个或多个滤光器可操作地只允许波长处于发射带内的光抵达探测器和/或衰减其他波长的光(例如,处于吸收带内的光)。类似地,所述光学探测装置可以包括用于基本上只允许波长处于吸收带内的光子抵达目标,并且基本上只允许波长处于发射带内的光子抵达探测器的光学系统设计。如果没有适当的光学装置,那么来自光源的光子可以抵达探测器,并引起测量误差。
在能够探测到的发射荧光的量比由中间表面(例如,处于光学探测装置和植入物之间的皮肤或组织)散射的激励光(例如,未被吸收的)的量低得多的情况下,可能使光学探测装置的光学系统的适当设计复杂化。一个挑战在于,抵达植入物的激励光的量可能因被各种身体部分(例如,皮肤、组织等)导致的吸收和散射而很低。所述的低发射荧光量还会在离开身体朝探测器传输的时候进一步因吸收和散射降低。可以在(10-6)的量级上提供对不需要的光子的剔除的现有滤光器技术可能不足以在这些情况下胜任。另一种挑战在于激励和探测波长之间的差异(例如,斯托克斯频移)可能相当小。另一项挑战在于分色滤光器(dichroic filter)引起滤光器波长的频移(例如,“蓝移”),该频移随着通过滤光器传输的光线的角度而变化。由于存在这些挑战,标准的荧光方法将允许高背景水平,从而导致低信号背景比(SBR)和低信噪比(SNR)。
文中描述的一些实施例涉及能够准确地并且一致地监测植入传感器的紧凑装置。用户基本上可以连续地佩戴这样的装置,并且/或者这样的装置基本上可以不限制用户的运动或活动。装置和传感器可以一起实现对分析物的连续和/或自动监测,并且能够在分析物的水平处于或接近阈值水平时对人发出警告。例如,如果葡萄糖是分析物,那么可以将所述监测装置配置为对人发出当前或即将发生高血糖或低血糖的警告。因而人可以采取适当措施。
在文中包含的描述当中,应当理解,所有的所记载的结构之间的连接都可以是直接操作连接或者通过中间结构的间接操作连接。元件组包括一个或多个元件。对于元件的任何记载都应被理解为是指至少一个元件。多个元件包括至少两个元件。除非另行指出,否则所描述的任何方法步骤都未必按照具体的或者所示的顺序执行。从第二元件导出的第一元件(例如,数据)包括等于第二元件的第一元件,以及通过处理第二元件以及任选的其他数据生成的第一元件。根据参数做出确定或判定包括根据所述参数以及任选地根据其他数据做出确定或判定。除非另行指出,否则对某一量/数据的指示可以是所述量/数据本身或者可以是不同于所述量/数据本身的指示。文中描述的一些实施例涉及波长,例如,激励波长或发射波长。除非另行明确指出,否则应当将波长理解为描述包括所述波长在内的波段。在本发明的一些实施例中描述的计算机程序可以是独立的软件实体或者其他计算机程序的子实体(例如,子程序、代码对象)。计算机可读介质包括诸如磁、光、半导体存储介质(例如硬盘驱动器、光盘、闪速存储器、DRAM)的非暂态介质以及诸如电缆和光纤链路的通信链路。根据一些实施例,本发明尤其提供了一种计算机系统,该计算机系统包括被编程为执行文中描述的方法硬件(例如一个或多个处理器和相关存储器)以及执行文中描述的方法的计算机可读介质编码指令。
下述说明通过举例方式而未必通过限定方式对本发明的实施例给出了例示。
图1是根据实施例的用于监测植入传感器或植入物12的光学探测装置10的示意性侧视图。植入物12被嵌入到哺乳动物身体的组织15(在各种实施例中该组织15可以是一块附着至或者不附着至身体其余部分的组织)内。植入物12可以被嵌入到皮肤14的表面下。植入物12可以被嵌入和/或置于皮下组织内(例如,皮肤14表面下1到4mm的范围内)。植入物12能够响应于激励波长范围内的激励光发射至少一个处于发射波长范围内的分析物相关光信号。例如,所述分析物可以是葡萄糖或者组织15内的其他分析物。适当的光信号包括但不限于发光、生物发光、磷光、自发发光以及漫反射信号。在一些实施例中,植入物12包括一种或多种发光染料(例如,荧光染料),其光发射强度根据个体体内(例如,组织15内)的目标分析物的量或存在而变化。
光源18被布置为从皮肤14的表面通过组织15向植入物12发射处于激励波长范围内的激励光。适当的光源包括但不限于激光器、半导体激光器、发光二极管(LED)和有机LED。探测器16、20被与光源18一起布置,以探测组织发射的处于发射波长范围内的光。适当的探测器包括但不限于光电二极管、互补金属氧化物半导体(CMOS)探测器或电荷耦合器件(CCD)探测器。尽管示出了多个探测器,但是可以采用单个和/或通用探测器。
探测器16、20可以被过滤(例如,采用分色滤光器或其他适当滤光器),以测量所发射的处于所述波长范围内的光信号。例如,对葡萄糖浓度敏感的适当发光染料是响应于处于大约600到650nm(吸收峰647nm)的范围内的激励光(吸收)并处于大约670到750nm的发射波长范围(具有大约680nm的发射峰)内的Alexa
Figure BDA0002493033060000091
647。因而,在传感器包括Alexa
Figure BDA0002493033060000092
647的实施例中,可以为探测器16、20滤除具有短于大约650nm的波长或者短于大约670nm的波长的光。
在一些实施例中,植入物12还能够响应于第二激励波长范围内的激励光发射至少一个处于第二发射波长范围内的分析物无关光信号。例如,植入物12可以含有分析物无关发光染料,该分析物无关发光染料作用在于控制指示器染料的非分析物物理或化学作用(例如,光致漂白或pH)。可以采用多个染料。所述分析物无关光信号不受存在于组织15内的分析物的调制,其提供用于归一化、偏移校正或内部校准的数据。所述分析物独立信号可以补偿化学、生理(例如,氧气、pH、氧化还原条件)或光学(例如,水、光吸收/散射混合、血红蛋白)的非分析物作用。或者,可以通过植入物12内的稳定参考染料提供分析物无关信号。适当的稳定参考材料包括但不限于镧化物掺杂晶体、镧化物掺杂纳米颗粒、量子点、螯合镧化物染料以及金属(例如,金或银)纳米颗粒。稳定的参考染料可以为其他信号提供基准信号(例如,以确定光致漂白)。
在装置10的操作中,激活光源18,从而从皮肤14的表面通过组织15向植入物12发射处于激励波长范围内的激励光。植入物中的染料吸收一些激励光,并发射取决于葡萄糖或其他分析物特性的荧光。植入物12可以朝所有方向发射光,所述光受到组织15的散射。植入物12发射的一些光通过组织15投射,并被探测器16、20的至少其中之一探测到。其能够提供原始分析物相关光信号。在采用参考光信号进行归一化的实施例中,对光源18(或者第二光源)进行激励,从而从皮肤14的表面向植入物12发射第二激励光。探测器16、20的至少其中之一响应于第二激励光测量组织15发射的通过皮肤14的表面的第二光信号。
可以采用第二光信号对用于散射由植入物12发射的光的所述原始分析物相关光信号进行归一化。可以根据测得的光信号计算至少一个校正信号值。在一个范例中,可以通过植入物12发出的分析物无关光信号使来自植入物的原始分析物相关信号归一化。在执行分析物相关信号和/或分析物无关信号的光学读取之前,可以实施暗读取,以考虑背景或环境光,可以采用这一读数进一步校正所述信号,例如,通过减去背景。
在一些实施例中,可以由分析物相关信号和/或包括一个或多个参考信号的多个光信号的比值确定分析物值(例如,葡萄糖浓度)。在一个范例中,通过来自葡萄糖不敏感荧光基团(例如,Alexa
Figure BDA0002493033060000101
700)的信号使来自葡萄糖敏感荧光基团(例如,Alexa/>
Figure BDA0002493033060000102
647)的信号归一化。一种用于分析物无关信号的适当的染料是Alexa/>
Figure BDA0002493033060000103
750,Alexa
Figure BDA0002493033060000104
750响应于处于大约700到760nm(激励峰750nm)的激励波长范围内的激励光,并且具有大约770到850nm的发射波长范围,其发射峰约为780nm。
可以采用(例如)查找表格或校准曲线基于所述光信号确定分析物值。可以通过软件(在处理器上运行)和/或硬件实施对于分析物值的确定。例如,光学装置10可以包括微处理器。在一些实施例中,微处理器被编程为将测得的光信号值存储到存储器内并且/或者计算归一化的信号值和分析物浓度。或者,可以在单独的处理器或者与光学装置10通信的外部计算机内执行这些功能。所述外部处理器或计算机可以接收表示测得光信号的数据并计算校正信号值和分析物浓度。或者,可以提供多个处理器,例如,在所述光学装置内提供一个或多个与所述一个或多个外部处理器或计算机(无线或有线)通信的处理器。
在一些利用两种植入物染料(例如,发光染料)的实施例中,有可能的是所述植入物染料可以共享或者重叠激励(吸收)或发射波长范围。在一个范例中,提供分析物相关发光信号的第一染料的发射波长范围共享用于提供分析物无关发光信号的第二染料的激励波长范围或与之重叠。在另一实施例中,所述第一染料和第二染料可以共享激励波长范围或者使所述激励波长范围重叠(从而可以采用公共光源),并发射处于不同发射波长范围内的光信号。在另一实施例中,所述第一染料和第二染料可以被处于不同激励波长范围内的光来激励,并发射处于相同或重叠发射波长范围内的光信号。
可以将植入物12嵌入到皮下组织内(例如,皮肤14表面下1到4mm的范围内)。在一些实施例中,注入12包括嵌有葡萄糖感测纳米球的水凝胶承架(hydrogel scaffold)。植入物12的设计可以采用可注射、可组织结合的血管化承架作为传感器。嵌入的纳米球发射响应于分析物(例如,填隙葡萄糖(interstitial glucose))的存在或浓度而改变强度和寿命的光。探测器16、20的每个与光源18之间的间隔距离决定用于探测来自植入物12的光信号的相应光路的深度。激光光源和探测带的组合为光通路。可以将光源18和探测器16、20布置为使得激励光的发射所通过的皮肤14的表面区域基本上位于探测光在从组织15向一个或多个探测器16、20传输时所通过的周围的皮肤14的表面区域之间。
尽管图1仅示出了一个光源18和两个探测器16、20,但是在一些实施例中,光学装置10可以具有任何数量的光源以及任何数量的探测器。光学装置10可以具有处于多个光源和探测器之间的多个可能的间隔距离的组合。这样的多光源和/或多探测器实现可以允许提高光学装置10的灵活性。例如,由于植入物12的深度可以是因应用而异的,因而可以将具有多个光源和/或多个探测器的光学装置10用于多种应用。
可以将光学装置10配置为确保基本上只有波长处于激励波长范围内的光子才能抵达植入物12,并且只有波长处于发射波长范围内的光子才能抵达探测器16、20的至少其中之一。这样的布置能够使得从光源18抵达探测器16、20的可能导致测量误差的光子降至最低。
图2是根据实施例的用于监测植入物的光探测装置的示意性侧视图。透镜22的阵列与光圈24的阵列对准,以限制离轴光(off-axis light)向探测器16的传输。基于发射光相对于光圈的光轴30的入射角θ(文中又称为入射角),相对于探测器16对透镜阵列22和光圈阵列24定位,从而总体地限制从组织发射的向探测器16传播的光。光圈的光轴30可以基本上垂直于探测器16的表面。光圈阵列24的每个光圈可以基本上与透镜阵列22的透镜对准。也就是说,光圈的光轴30可以基本上与透镜的中心和/或轴同轴。例如,可以使光圈阵列24的基本上不透明的部分位于透镜边缘的下面。
至少一层光控制膜26被与透镜阵列22和光圈阵列24布置到一起。光控制膜26可以基于发射光相对于膜26的入射角来限制从组织发射的光进入透镜阵列22和/或光圈阵列24。在一个范例中,光控制膜26是可在市场上从3MTM买到的VikutiTM光度微天窗私密膜,其能够阻挡穿过膜26的相对于垂直线具有大于期望的(例如,大于24度的)入射角的光。该私密膜包括微天窗组,其将避免大入射角的光抵达透镜阵列22。在其他实施例中,膜26包括按照类似于百叶窗的方式布置的交替的透明层和不透明层。以大于期望入射角的角度传播的光能够被吸收和/或反射。
设置至少一个滤光器(例如,分色滤光器或介质滤光器),从而将向探测器16传输的光限制为基本上处于期望发射波长范围以内的波长。由于光信号的探测是由相对于激励光具有低水平的返回信号主导的,因而滤光器28可以避免散射激励光蒙蔽探测器16。适当的滤光器包括带通、低通和高通滤光器,具体取决于应用所期望的发射波长范围。一些现代化滤光器由于改进了涂覆技术从而表现出了10-9的光剔除。此外,光学探测系统(例如,透镜阵列22、光圈阵列24等)的中间层可以包括抗反射涂层,以减少或者避免泄漏光通往探测器16。
由于分色滤光器的基本特性的原因,保持高光剔除水平需要仔细的设计。分色滤光器的一个有损于光剔除的特性是随着入射角变化的“蓝移”,其中,分色滤光器的透射波长随着入射角而变化。对于植入物发射的探测光而言,在入射角和绝对光信号之间存在折衷。离开组织的光受到高度散射,并且在其到抵达皮肤表面时可以形成朗伯分布。发射光的收集效率与~NA2成比例,其中,NA=数值孔径=n sinθ,θ为入射角。为了提高收集效率,可以提高可容许的入射角θ,而又不使所述角度提高到允许激励光通过滤光器28的程度。
透镜阵列22和光圈阵列24控制传播至探测器16的光的入射角θ。透镜阵列22和光圈阵列24将光限制为低于θ的入射角,在一些实施例中,将入射角选择为+/-20度。可以通过改变光圈的尺寸以及透镜阵列22内的微透镜的焦距而控制入射角θ。光圈越小,入射角θ越小。焦距越长,入射角θ越小。尽管未示出,但是可以采用间隔体来保持光圈阵列24的表面和透镜阵列22之间的间隔。
图3是具有多个光圈25的光圈阵列24的平面图。在一些实施例中,通过对硅探测器,例如,图2所示的探测器16的表面上构图金属掩膜而构造光圈阵列24。可以将透镜阵列22制作为蚀刻璃或模制塑料。在一些实施例中,透镜阵列22是可从JENOPTIK OpticalSystems购买到的常规微透镜阵列。
图4是根据实施例的光学探测装置的示意性平面图。将图4的光学探测装置配置为贴片32。将至少一个光源(图4未示出)和探测器38布置到光读取器内,从而将贴片32配置为置于皮肤上。将光源布置为通过贴片32内的中央通孔34发射激励光,单个通用探测器38基本上围绕中央通孔34。在其他实施例中,可以采用多个探测器代替单个探测器38,例如,所述多个探测器基本上环绕中央通孔34,以探测处于多个发射波长范围内的光。在一些实施例中,所述光学探测装置包括至少一个处于中央通孔34内的光导部件36。所述光导部件36,例如,波导或光纤被布置为将激励光引导至皮肤。在一些实施例中,多个光源(图4中出于清晰起见未示出)被布置为通过中央通孔34(例如,利用一个或多个波导或光纤)发射处于多个不同激励波长范围内的激励光。
作为一个可能的例子,一个或多个光源可以被布置为通过具有圆形截面的中央通孔34向皮肤发射激励光,从而通过皮肤的具有大约1mm的直径以及大约0.8mm2的对应激励表面积的基本上为圆形的表面区域发射激励光。探测器38具有方形截面积,该探测器38被设置为探测从皮肤的基本为方形的表面区域发射的光,其中,所述区域是探测光向探测器38传播时所经过的区域。所述探测表面区域基本上是具有10mm的边长的方形,因而总探测表面积为(10mm×10mm)-1mm2=99mm2。因此,在本范例中,探测表面积与激励表面积之比大于120:1。
图5是贴片32的示意性分解图。贴片32包括多个层。贴片32的尺寸可以是(例如)大约16mm的直径和大约1.6mm的厚度T。在一些实施例中,层可以包括具有大约200um的厚度的塑料盖40、具有大约100um的厚度的光控制膜26、具有大约200um的厚度的滤光器28、具有大约100um的厚度的透镜阵列22以及在具有大约200um的厚度的硅探测器层48上图案化的光圈阵列24。所述层还可以包括具有大约400um的厚度的印刷电路板(PCB)50、具有大约300um的厚度的电池52以及具有大约200um的厚度的外壳54。PCB 50可以包括一个或多个光源。PCB 50还可以包括处理电子装置和/或微处理器,其与探测器层48内的一个或多个探测器通信以接收表示处于发射波长范围内的探测光的数据,并且被编程为依据所述数据确定至少一个分析物值。可以贯穿层的堆叠形成中央通孔34(例如,在组装过程中蚀穿或者钻透所述堆叠)。
图6是根据实施例的示出探测光学装置60的布置的用于监测植入物的光学探测装置的示意性侧视图。在该实施例中,由植入物和组织发射的处于发射波长范围内的光通过至少两层光控制膜62、64透射。所述的两层光控制膜62、64可以基于发射光相对于膜62、64的入射角来限制从组织发射的光进入透镜阵列22和/或光圈阵列。在一个范例中,光控制膜62包括具有与百叶窗类似的布置的交替透明层和不透明层。吸收以大于期望入射角的角度传播的光。光控制膜64可以包括可在市场上从3MTM买到的VikutiTM光度微型天窗私密膜,其阻挡具有相对于贯穿膜64的垂直线的大于期望入射角(例如,大于24度的)的光。
在一些实施例中,光控制膜62和/或64可以基于入射角和方位角的组合来限制从组织发射的光进入透镜阵列22和/或光圈阵列24。例如,在光控制膜62和/或64包括多个微天窗的实施例中,光控制膜62和/或64可以在阻挡具有基本上垂直于微天窗的方位角的高入射角光方面是有效的,但是在阻挡具有基本上平行于微天窗的方位角的高入射角光方面相对无效。在一些这样的实施例中,两层光控制膜62、64可以是交叉排线的(crosshatched),或者可以以其他方式设置使得天窗与其他光控制元件不平行,由此使得光控制膜62、64合在一起对阻挡具有不同方位角的高入射角光有效。
在一些实施例中,膜62、64可以基本上彼此相同,或者包括不同类型的私密膜。此外,可以将滤光器28(例如,分色滤光器或介质滤光器)置于光圈阵列24和探测器16之间,从而将向探测器16透射的发射光局限至基本上处于发射波长范围内的波长。图6的实施例的操作可以与前面描述的图1-2的实施例的操作类似。
图7是用于监测植入物的光探测装置的示意性侧视图。透镜122的阵列被与光圈24的阵列对准,以限制向探测器16透射的离轴光。相对于探测器16对透镜阵列122和光圈阵列24定位,从而根据发射光相对于光圈的光轴30的入射角θ限制从组织发射的向探测器16传播的光。光圈的光轴30可以基本上垂直于探测器16的表面。
透镜阵列122包括光阻挡元件72。可以将光阻挡元件72设置到光圈25之间以阻挡离轴光线74、76通过光圈25的传播。光阻挡元件72可以包括淀积在所设置的透镜阵列122的基板123的穴内的树脂、金属和/或金属膜。设置至少一个滤光器28,从而将向探测器16透射的发射光限制为基本上处于发射波长范围以内的波长。任选地,在这一实施例中可以包含一层或多层光控制膜。图7的实施例的操作可以与前面描述的图1-2的实施例的操作类似。
图8A-8D示出了根据实施例的处于各制造阶段内的具有光阻挡元件的透镜阵列122。图8A示出了可以制作为蚀刻玻璃或模制塑料的透镜阵列122的侧视图。在一些实施例中,透镜阵列122是可从JENOPTIK Optical Systems购买到的微透镜阵列。图8B示出了可以(例如)蚀刻或者整体模制到透镜阵列122的基板部分123内的穴78。如图8C所示,可以采用基本上不透明的材料填充穴78,以形成光阻挡元件72。所述光阻挡元件72可以由(例如)黑色树脂、金属和/或金属膜构成。如图8D所示,可以将光圈阵列24置于与透镜阵列122相邻的位置(在一些实施例中具有间隔体),从而将光阻挡元件72置于光圈25之间。在一些实施例中,通过在硅探测器的表面上构图金属掩膜而构造出光圈阵列24,并将具有光圈阵列24的探测器设置为与具有光阻挡元件72的透镜阵列122相邻,从而使得光阻挡元件72位于光圈25之间。
图9是根据实施例的光学探测装置210的示意性平面图。光学探测装置210包括四个探测器216、220、222、224以及光源218。光学探测装置210具有相对较大的探测器表面积与光源表面积的比值(文中又称为“表面积比”)。在植入物被嵌入到皮下组织内(例如,皮肤表面下1-4mm的范围内)时,所述大表面积比可以改善植入物信号的探测。具体而言,将光源218和四个探测器216、220、222、224布置为使得探测光在向探测器216、220、222、224传播时所通过的皮肤表面积与激励光的传输所通过的皮肤表面积之比至少为4:1。例如,在一个实施例中,光源218具有圆形截面,并且被设置为通过皮肤的基本为圆形的表面区域发射光,所述表面区域具有大约3mm的直径,大约1.5mm的半径以及大约7mm2的激励表面积。四个探测器216、220、222、224具有方形截面,并且被设置为探测从皮肤的四个基本上为方形的表面区域发射的光,所述四个基本上为方形的表面区域是探测光在向探测器传播时所通过的区域。所述四个探测表面区域的每个基本上是具有3mm的边长的方形,因而总的探测表面积为4×9mm2=36mm2。因此,在本范例中,探测表面积与激励表面积之比略大于5:1。
在一些实施例中,可以将光学探测装置210配置为在至少两倍于植入物的深度的横向距离上探测植入物信号。例如,探测器216、220、222、224的至少其中之一的至少一部分沿横向与植入物的距离可以至少是该部分从远端地与植入物距离的两倍。例如,在嵌入到组织内4mm深的植入物的上方居中设置光源218的情况下,探测器216、220、222、224的至少其中之一的至少一部分可以距光源218的中心8mm。也就是说,探测器216、220、222、224的至少其中之一的最外边或拐角与光源218的中心的距离可以至少是植入物深度的两倍。在备选实施例中,例如,在具有单个或通用探测器的实施例中,探测器可以具有至少是植入物深度的两倍的半径。在其他实施例中,可以将光学探测装置210配置为在植入物深度的至少三倍、至少五倍或者任何其他适当倍数的横向距离上探测植入物信号。可操作以在距植入物相对较大的横向距离上探测植入物信号的光探测器装置210可以能够探测到发射信号的更大部分,尤其是在高散射环境内。俘获发射信号的更大部分能够改善探测准确度。
图10是根据实施例的光学探测装置310的示意性平面图。与光学探测装置210相比,在这一实施例中,四个探测器316、320、322、324被置于更加接近光源318的位置,从而使其包围或围绕光源318,并且探测表面积与激励表面积之比更大。例如,光源318可以具有圆形截面,并且被设置为通过皮肤的基本为圆形的表面区域发射光,所述表面区域具有大约2mm的直径,大约1mm的半径以及大约3.14mm2的激励表面积。四个探测器316、320、322、324具有方形截面,并且被设置为探测从皮肤的四个基本上为方形的表面区域发射的光,所述四个基本上为方形的表面区域是探测光在向探测器传播时所通过的区域。所述四个探测表面区域的每个基本上是具有6mm的边长的方形,因而总的探测表面积为4×36mm2=144mm2。因此,在本范例中,探测表面积与激励表面积之比略大于45:1。
图11是根据另一实施例的光学探测装置410的方面的示意性平面图。在这一实施例中,五个圆形探测器428A、428B、428C、428D、428E围绕或者环绕中央通孔434。中央通孔434可以是装置410内的孔。将多个光源426布置为通过中央通孔434发射处于多个不同波长范围内的激励光。作为一个可能的例子,可以将光源426布置为通过具有圆形截面的中央通孔434向皮肤发射激励光,从而通过皮肤的具有大约3mm的直径以及大约7mm2的对应激励表面积的基本上为圆形的表面区域发射激励光。五个探测器428A、428B、428C、428D、428E具有圆形截面,并且被设置为探测从皮肤的五个基本上为圆形的表面区域发射的光,五个基本上为圆形的表面区域是探测光向探测器传播时所通过的区域。五个探测表面区域的每个基本上是具有5mm的直径的圆形,因为总的探测表面积为5×19.6mm=98mm2。因此,在本范例中,探测表面积与激励表面积之比略大于13:1。
本领域技术人员将清楚,在不背离本发明的范围的情况下可以通过很多种方式改变上面的实施例。例如,可以采用一个或多个光源、一个或多个探测器、滤光器和/或连接光学部件的光导元件的很多种不同的排列或布置实现本发明的装置和方法。例如,备选实施例可以具有不同尺寸和/或波长。实施例可以包括有线或无线手提读取器、无线皮肤贴片读取器、台式仪器、成像系统、智能电话附件和应用或者任何其他利用所公开的光学装置和算法的配置。
在文中描述的一些实施例中,监测装置可操作地同时发射激励光信号和探测发射信号。例如,可以采用光圈、光阻挡元件、滤光器、光控制膜等为这样的监测装置的探测器遮挡反射或者后向散射激励光。在其他实施例中,监测装置可操作地在一个时间周期内发射激励光信号,在另一停用激励光信号的时间周期内探测发射信号。
在一些情况下,组织的光学不均匀性可能很显著。因而,可以有利地利用单个光源和单个探测器确保每个颜色穿过相同的光路来通过组织。在一个实施例中,可以将光源设置为在光源和皮肤表面之间具有可移动滤光器组。类似地,可以利用单个光探测器代替单独的分立探测器元件。可以通过利用可移动或可更换滤光器,来使用所述探测器探测不同波长范围,从而实现多波长测量。可以通过控制转盘的机械致动器、滤光器条带或其他装置来实现滤光器的更换或移动。或者,可以用材料来涂覆光学滤光器,使得当其经受电流、电势、温度或者其他可控影响时,改变滤光特性,从而使单个光探测器能够起到探测多个波长范围的作用。
在一些实施例中,本发明的装置和方法利用率基于晶片的微光学装置。这些系统是通过平版印刷建立的,因而能够以低成本复制。所述技术允许对光学装置和探测器的层进行晶片级接合,之后将其划片成单个探测器系统。适当的部件包括蚀刻折射透镜,聚合物复制折射透镜、蚀刻二元(etched binary)透镜、复制二元透镜、复制全息图和复制体积全息图。
在一些实施例中,可以采用互补金属氧化物半导体(CMOS)探测器作为光学系统的集成部分。CMOS传感器的优点是将探测、激励和数字滤波电路集成到单片硅内的能力。最近宣布了一项新的技术sCMOS,研究人员通过这种技术能够将CMOS探测器当中的噪声极大地降至与电荷耦合器件(CCD)探测器相当的程度。CMOS集成解决方案的另一优点在于能够对信号执行锁定探测和数字滤波,以减少或消除环境光的影响。
尽管上文已经描述了各种实施例,但是应当理解,这些实施例只是以举例方式给出的,而非构成限制,可以做出各种形式和细节的变化。除了互斥的组合之外可以按照任何组合方式对文中描述的设备和/或方法的任何部分进行组合。文中描述的实施例可以包括所描述的不同实施例的功能、部件和/或特征的各种组合和/或亚组合。

Claims (12)

1.一种设备,包括:
平坦基底;
光源,耦合至平坦基底,并且被配置为通过皮肤的第一表面区域向植入传感器发送激励光信号;
一个或多个探测器,耦合至平坦基底,并且被配置为探测响应于植入传感器受到激励光信号的照射而从植入传感器发射通过皮肤的第二表面区域的分析物相关光信号;
来自透镜阵列的第一透镜,第一透镜被配置为将分析物相关光信号的至少一部分聚焦到所述一个或多个探测器中的至少一个上,第一透镜定义第一透镜轴;以及
来自透镜阵列的第二透镜,第二透镜被配置为将分析物相关光信号的至少一部分聚焦到所述一个或多个探测器中的至少一个上,第二透镜定义第二透镜轴,第二透镜轴基本上平行于第一透镜轴并且与第一透镜轴非共轴。
2.根据权利要求1所述的设备,还包括:
光圈,光圈、第一透镜和所述一个或多个探测器中的至少一个探测器一起被配置为阻止入射角大于预定入射角的光子撞击该探测器。
3.根据权利要求1所述的设备,其中,透镜阵列是整体形成的透镜阵列。
4.根据权利要求1所述的设备,还包括:
光圈阵列,来自光圈阵列的每个光圈基本上与来自透镜阵列的透镜的中心对准。
5.根据权利要求1所述的设备,还包括:
滤光器,被配置为衰减具有与光源相关的波长的光信号。
6.根据权利要求1所述的设备,还包括:
滤光器,被配置为衰减具有与光源相关的波长的光信号,所述滤光器被配置为基本上无衰减地透射分析物相关光信号。
7.根据权利要求1所述的设备,还包括:
分色滤光器,被配置为衰减具有与光源相关的波长的光信号,所述分色滤光器被配置为根据入射角朝着与光源相关的波长蓝移分析物相关光信号,所述一个或多个探测器未被配置为探测已蓝移的分析物相关光信号。
8.根据权利要求7所述的设备,其中,激励光信号的一部分被围绕植入物的组织散射,所述设备还包括:
光圈,(1)光圈、(2)透镜阵列和(3)分色滤光器一起被配置为阻止激励光信号的所述部分进入所述一个或多个探测器中的所述至少一个。
9.根据权利要求1所述的设备,其中,所述一个或多个探测器定义开口,光源被配置为通过所述开口向植入传感器发送激励光信号。
10.根据权利要求1所述的设备,其中:
所述一个或多个探测器包括多个探测器;以及
所述平坦基底定义开口,光源被配置为通过所述开口向植入传感器发送激励光信号,所述多个探测器耦合至平坦基底并且基本上围绕所述开口。
11.一种系统,所述系统包括根据权利要求1所述的设备,所述系统还包括:
所述植入传感器,被配置为设置在皮肤下方的一深度处,探测器的至少一部分与光源相隔一横向距离,所述横向距离至少是所述深度的两倍。
12.一种系统,所述系统包括根据权利要求1所述的设备,所述系统还包括:
所述植入传感器,被配置为植入在身体中一深度处,
所述光源,直接设置在植入传感器的上方,探测器的至少一部分与光源相隔一距离,所述距离至少是所述深度的两倍。
CN202010410590.0A 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法 Active CN111544011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010410590.0A CN111544011B (zh) 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361832078P 2013-06-06 2013-06-06
US201361832065P 2013-06-06 2013-06-06
US61/832,078 2013-06-06
US61/832,065 2013-06-06
PCT/US2014/041284 WO2014197786A2 (en) 2013-06-06 2014-06-06 Apparatus and methods for detecting optical signals from implanted sensors
CN201480031998.XA CN105307559B (zh) 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法
CN202010410590.0A CN111544011B (zh) 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480031998.XA Division CN105307559B (zh) 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法

Publications (2)

Publication Number Publication Date
CN111544011A CN111544011A (zh) 2020-08-18
CN111544011B true CN111544011B (zh) 2023-06-06

Family

ID=52006018

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010410590.0A Active CN111544011B (zh) 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法
CN201480031998.XA Active CN105307559B (zh) 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201480031998.XA Active CN105307559B (zh) 2013-06-06 2014-06-06 用于探测来自植入传感器的光信号的设备和方法

Country Status (8)

Country Link
US (3) US10219729B2 (zh)
EP (2) EP3777656A1 (zh)
JP (3) JP2016523608A (zh)
CN (2) CN111544011B (zh)
AU (1) AU2014274784B2 (zh)
BR (1) BR112015029988A2 (zh)
CA (1) CA2913474C (zh)
WO (1) WO2014197786A2 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701654B1 (en) 2003-12-18 2016-11-09 Metronom Health, Inc. Implantable biosensor and methods of use thereof
US9517023B2 (en) 2009-06-01 2016-12-13 Profusa, Inc. Method and system for directing a localized biological response to an implant
US10463287B2 (en) 2010-10-06 2019-11-05 Profusa, Inc. Tissue-integrating sensors
US10010272B2 (en) 2010-05-27 2018-07-03 Profusa, Inc. Tissue-integrating electronic apparatus
US10292784B2 (en) * 2010-12-10 2019-05-21 Illumix Surgical Canada Inc. Illuminating surgical device
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US10045722B2 (en) 2013-03-14 2018-08-14 Profusa, Inc. Method and device for correcting optical signals
CN111544011B (zh) 2013-06-06 2023-06-06 普罗菲尤萨股份有限公司 用于探测来自植入传感器的光信号的设备和方法
US10575766B2 (en) 2014-03-31 2020-03-03 Sony Corporation Measurement device, measurement method, program, and recording medium
CN106163399B (zh) * 2014-03-31 2019-07-12 索尼公司 测量装置、测量方法、程序和记录介质
JP2016205954A (ja) * 2015-04-21 2016-12-08 ルネサスエレクトロニクス株式会社 磁気計測装置
BR112017028113A2 (pt) * 2015-06-25 2018-08-28 Profusa Inc leitora transcutânea para uso com sensores de analito transplantáveis
US11553879B2 (en) * 2015-09-02 2023-01-17 Metronom Health, Inc. Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10687717B1 (en) * 2015-09-30 2020-06-23 Apple Inc. PPG sensor having light arrival angle control at detector
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US10082387B2 (en) * 2016-03-09 2018-09-25 UbiQD, Inc. Fluorescent liquid penetrants and methods of nondestructive testing
JP2017213040A (ja) * 2016-05-30 2017-12-07 セイコーエプソン株式会社 生体情報取得装置及び生体情報取得方法
CN115505280A (zh) 2016-12-21 2022-12-23 普罗菲尤萨股份有限公司 可聚合的近红外染料
WO2018119400A1 (en) 2016-12-22 2018-06-28 Profusa, Inc. System and single-channel luminescent sensor for and method of determining analyte value
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US10792378B2 (en) 2017-04-28 2020-10-06 Medtronics Minimed, Inc. Using a blue-shifted reference dye in an optical glucose assay
CN110662511B (zh) 2017-04-28 2022-03-29 爱德华兹生命科学公司 具有可折叠保持器的假体心脏瓣膜
DE102017110216B4 (de) * 2017-05-11 2023-03-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Sensormodul und Verfahren zur Herstellung eines optoelektronischen Sensormoduls
CN110831547B (zh) 2017-06-21 2022-07-15 爱德华兹生命科学公司 双丝型件有限扩张心脏瓣膜
JP2020526740A (ja) 2017-06-29 2020-08-31 プロフサ,インコーポレイテッド マルチ検体検出組織融合センサー
EP3473172A1 (en) * 2017-10-20 2019-04-24 Universität Zürich Apparatus for measuring optical parameters in scattering media
CN109717876B (zh) * 2017-10-31 2023-12-26 心脏起搏器股份公司 用于化学传感器的结构式扩散隔膜
EP3729059B1 (en) * 2017-12-19 2023-05-03 The Research Foundation for the State University of New York System for detecting biomarkers comprising an implantable spr sensor
JP2021508548A (ja) * 2017-12-28 2021-03-11 プロフサ,インコーポレイテッド 生化学センサデータを解析するシステム及び方法
KR102620446B1 (ko) * 2018-06-22 2024-01-03 삼성전자주식회사 반사 속성을 갖는 제1 광학 부재 및 제1 광학 부재에서 반사된 광을 흡수할 수 있는 흡수 속성을 갖는 제2 광학 부재를 포함하는 센서 및 그를 포함하는 전자 장치
US11864906B2 (en) * 2019-06-20 2024-01-09 International Business Machines Corporation LIDAR implantable biosensor for imaging biological tissue
CN114269245A (zh) 2019-08-20 2022-04-01 普罗菲尤萨股份有限公司 用于改善带外波长的光学抑制的光学滤波器设备、系统和方法
CN114641263A (zh) 2019-12-16 2022-06-17 爱德华兹生命科学公司 具有缝合线成环保护的瓣膜保持器组件
US11561345B2 (en) * 2020-02-14 2023-01-24 Google Llc Apertures for reduced dynamic crosstalk and stray light control
WO2021168208A1 (en) * 2020-02-19 2021-08-26 Profusa, Inc. Optical filter device, system, and methods for improved optical rejection of high angle of incidence (aoi) light
US20220225006A1 (en) * 2021-01-14 2022-07-14 Apple Inc. Electronic Devices With Skin Sensors
CN116802480A (zh) * 2021-02-03 2023-09-22 美国西门子医学诊断股份有限公司 高灵敏度化学发光检测系统和方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975581A (en) * 1989-06-21 1990-12-04 University Of New Mexico Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids
WO1997002781A1 (en) * 1995-07-10 1997-01-30 Allan Rosencwaig Apparatus for non-invasive analyses of biological compounds
US6352502B1 (en) * 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
CN1800831A (zh) * 2004-12-17 2006-07-12 安捷伦科技有限公司 具有集成光探测器和/或光源的传感器
CN1802122A (zh) * 2003-05-08 2006-07-12 博世创医疗公司 同时进行实时多模式成像和它的光谱学使用
CN101057134A (zh) * 2004-09-20 2007-10-17 3M创新有限公司 用于生物检测的系统和方法及其微共振传感器
CN101115986A (zh) * 2004-12-09 2008-01-30 科学技术设备委员会 对次表面组织和液体的拉曼光谱分析
CN101300478A (zh) * 2005-11-03 2008-11-05 霍夫曼-拉罗奇有限公司 分析多光谱光学探测系统
CN101351153A (zh) * 2006-03-22 2009-01-21 松下电器产业株式会社 生物传感器和成分浓度测量装置
CN101490533A (zh) * 2006-07-20 2009-07-22 皇家飞利浦电子股份有限公司 多色生物传感器
CN101653354A (zh) * 2001-02-23 2010-02-24 马尔西奥·马克·阿布雷乌 化学物质的无创测量
CN101917899A (zh) * 2007-11-05 2010-12-15 生物传感器公司 用于测定分析物浓度的光学传感器
CN101947115A (zh) * 2010-10-14 2011-01-19 天津大学 基于光纤衰减全反射的植入式人体血糖浓度连续监测系统
CN102196769A (zh) * 2008-10-02 2011-09-21 视觉股份公司 可植入的传感元件
CN102227625A (zh) * 2008-12-02 2011-10-26 皇家飞利浦电子股份有限公司 用于通过受抑全内反射来探测目标颗粒的传感器装置
CN102333478A (zh) * 2008-12-24 2012-01-25 葡萄糖传感器公司 可植入的光学葡萄糖感测
CN102395873A (zh) * 2009-04-13 2012-03-28 奥林巴斯株式会社 荧光传感器、针式荧光传感器以及测量分析物的方法
CN102575976A (zh) * 2009-09-28 2012-07-11 皇家飞利浦电子股份有限公司 物质确定设备
CN102946794A (zh) * 2010-06-22 2013-02-27 森斯派克有限公司 用于测定并监视测量介质的含量或特性的装置和方法,特别地用于测定并监视生理血液值
CN103134586A (zh) * 2011-11-29 2013-06-05 马克西姆综合产品公司 具有透镜的光感测装置

Family Cites Families (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189828A (ja) 1983-04-08 1984-10-27 萩原 文二 肝機能経皮測定装置
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US6040194A (en) 1989-12-14 2000-03-21 Sensor Technologies, Inc. Methods and device for detecting and quantifying substances in body fluids
US5342789A (en) 1989-12-14 1994-08-30 Sensor Technologies, Inc. Method and device for detecting and quantifying glucose in body fluids
US5094958A (en) 1990-08-30 1992-03-10 Fiberchem Inc. Method of self-compensating a fiber optic chemical sensor
US5284140A (en) 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
IL107396A (en) * 1992-11-09 1997-02-18 Boehringer Mannheim Gmbh Method and apparatus for analytical determination of glucose in a biological matrix
US5462880A (en) 1993-09-13 1995-10-31 Optical Sensors Incorporated Ratiometric fluorescence method to measure oxygen
US5882494A (en) 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
JPH08304741A (ja) 1995-05-09 1996-11-22 Olympus Optical Co Ltd 回折光学素子を含む光学系
AU708051B2 (en) 1995-06-09 1999-07-29 Conmed Israel Ltd Sensor, method and device for optical blood oximetry
US6104945A (en) * 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays
JP3350918B2 (ja) * 1996-03-26 2002-11-25 株式会社高岳製作所 2次元配列型共焦点光学装置
JP2000500656A (ja) * 1995-11-22 2000-01-25 ミニメッド インコーポレイティド 化学的増幅及び光学センサーを用いる生物分子の検出
US6002954A (en) 1995-11-22 1999-12-14 The Regents Of The University Of California Detection of biological molecules using boronate-based chemical amplification and optical sensors
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US6766183B2 (en) 1995-11-22 2004-07-20 Medtronic Minimed, Inc. Long wave fluorophore sensor compounds and other fluorescent sensor compounds in polymers
WO1997027469A1 (de) * 1996-01-26 1997-07-31 Boehringer Mannheim Gmbh Verfahren und vorrichtung zur bestimmung eines analyten in einer streuenden matrix
AUPN814496A0 (en) 1996-02-19 1996-03-14 Monash University Dermal penetration enhancer
GB9616896D0 (en) 1996-08-12 1996-09-25 British Tech Group Pharmaceutical compositions
WO1998022820A1 (en) 1996-11-21 1998-05-28 Lawrence Livermore National Laboratory Detection of biological molecules using boronate-based chemical amplification and optical sensors
US6043437A (en) 1996-12-20 2000-03-28 Alfred E. Mann Foundation Alumina insulation for coating implantable components and other microminiature devices
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
JP4272347B2 (ja) 1997-08-01 2009-06-03 プレセンス プレシジョン センシング ゲーエムベーハー 蛍光強度のシグナルを基準化するための方法および装置
US5895658A (en) 1997-09-17 1999-04-20 Fossel; Eric T. Topical delivery of L-arginine to cause tissue warming
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
GB9814506D0 (en) 1998-07-03 1998-09-02 Stanley Christopher J Optical sensor for insitu measurement of analytes
WO2000001294A1 (en) 1998-07-04 2000-01-13 Whitland Research Limited Non-invasive measurement of blood analytes
US6013122A (en) 1998-08-18 2000-01-11 Option Technologies, Inc. Tattoo inks
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US6330464B1 (en) 1998-08-26 2001-12-11 Sensors For Medicine & Science Optical-based sensing devices
US6602678B2 (en) 1998-09-04 2003-08-05 Powderject Research Limited Non- or minimally invasive monitoring methods
US20030099682A1 (en) 1998-11-20 2003-05-29 Francis Moussy Apparatus and method for control of tissue/implant interactions
US6366794B1 (en) 1998-11-20 2002-04-02 The University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6783937B1 (en) 1999-02-25 2004-08-31 Pall Corporation Negatively charged membrane
US8346363B2 (en) 1999-03-05 2013-01-01 Metacure Limited Blood glucose level control
US6475750B1 (en) 1999-05-11 2002-11-05 M-Biotech, Inc. Glucose biosensor
US6366793B1 (en) 1999-09-10 2002-04-02 Beckman Coulter, Inc. Minimally invasive methods for measuring analtes in vivo
US20050119737A1 (en) 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
EP2083015B1 (en) 2000-02-11 2016-04-06 The Texas A & M University System Biosensor compositions and methods of use
DE10011284B4 (de) 2000-03-08 2007-06-28 Disetronic Licensing Ag Vorrichtung für eine In-vivo Messung der Konzentration eines Inhaltsstoffs einer Körperflüssigkeit
AU2001253193A1 (en) 2000-04-04 2001-10-15 The Regents Of The University Of California Fluorescent lifetime assays for non-invasive quantification of analytes
JP2001320034A (ja) 2000-05-09 2001-11-16 Sony Corp 固体撮像素子及びその製造方法
US6565960B2 (en) 2000-06-01 2003-05-20 Shriners Hospital Of Children Polymer composite compositions
US20020048577A1 (en) 2000-08-01 2002-04-25 University Of Washington Methods and devices to modulate the wound response
EP1557422B1 (en) 2000-08-04 2013-12-25 Senseonics, Incorporated Detection of analytes in aqueous environments
GB0025147D0 (en) 2000-10-13 2000-11-29 Torsana Diabetes Diagnostics A Optical sensor for in situ measurement of analytes
DE10054382A1 (de) 2000-10-27 2002-05-08 Attomol Gmbh Molekulare Diagno Verfahren und Testkit zum Nachweis von Analyten in einer Probe
US6642015B2 (en) 2000-12-29 2003-11-04 Minimed Inc. Hydrophilic polymeric material for coating biosensors
US8069254B2 (en) 2001-02-28 2011-11-29 Sharp Laboratories Of America, Inc. Communication period management in a communication system
US6694158B2 (en) 2001-04-11 2004-02-17 Motorola, Inc. System using a portable detection device for detection of an analyte through body tissue
EP1385423B1 (en) 2001-04-27 2007-11-21 EyeSense AG Kit for measuring blood glucose concentrations
FI20010898A0 (fi) 2001-04-30 2001-04-30 Ylae Herttuala Seppo Ekstrasellulaarinen superoksididismutaasi (EC-SOD) geeniterapia restenoosoin ehkäisemiseksi
AU2002305313A1 (en) 2001-04-30 2002-11-11 Medtronic, Inc. Implantable medical device and patch system
US6844028B2 (en) 2001-06-26 2005-01-18 Accelr8 Technology Corporation Functional surface coating
GB0116853D0 (en) 2001-07-10 2001-09-05 Torsana Diabetes Diagnostics A Optical sensor containing particles for in SITU measurement of analytes
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US7061622B2 (en) * 2001-08-03 2006-06-13 Case Western Reserve University Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
JP2003054025A (ja) 2001-08-09 2003-02-26 Nippon Sheet Glass Co Ltd 画像伝達装置
US20050043606A1 (en) 2001-09-25 2005-02-24 Eliahu Pewzner Multiparametric apparatus for monitoring multiple tissue vitality parameters
US7096053B2 (en) 2001-10-02 2006-08-22 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Internal biochemical sensing device
KR100903761B1 (ko) 2001-11-27 2009-06-19 타키론 가부시기가이샤 임플란트 재료 및 이의 제조방법
US7202947B2 (en) 2001-12-19 2007-04-10 Wisconsin Alumni Research Foundation Depth-resolved fluorescence instrument with angled excitation
JP4122787B2 (ja) 2002-01-30 2008-07-23 岩崎通信機株式会社 電子画像変換装置
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
GB0204640D0 (en) 2002-02-27 2002-04-10 Torsana Diabetes Diagnostics A Injection apparatus
US7738945B2 (en) * 2002-04-19 2010-06-15 University Of Washington Method and apparatus for pseudo-projection formation for optical tomography
US7813780B2 (en) 2005-12-13 2010-10-12 Medtronic Minimed, Inc. Biosensors and methods for making and using them
US7153265B2 (en) 2002-04-22 2006-12-26 Medtronic Minimed, Inc. Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
US20030208166A1 (en) 2002-05-06 2003-11-06 Schwartz Anthony H. Implantable device with free-flowing exit and uses thereof
JP2005525911A (ja) 2002-05-20 2005-09-02 オーバス メディカル テクノロジーズ インク. 移植可能な薬物溶出医療用デバイス
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20050118726A1 (en) 2002-08-26 2005-06-02 Schultz Jerome S. System and method for detecting bioanalytes and method for producing a bioanalyte sensor
US7162289B2 (en) 2002-09-27 2007-01-09 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
US20040106951A1 (en) 2002-11-22 2004-06-03 Edman Carl Frederick Use of electric fields to minimize rejection of implanted devices and materials
US20040143221A1 (en) 2002-12-27 2004-07-22 Shadduck John H. Biomedical implant for sustained agent release
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US20040133079A1 (en) 2003-01-02 2004-07-08 Mazar Scott Thomas System and method for predicting patient health within a patient management system
EP1599131B1 (en) 2003-02-14 2007-07-25 EyeSense AG Apparatus for measuring an analyte concentration from an ocular fluid
ATE440112T1 (de) 2003-02-28 2009-09-15 Eyesense Ag Biomoleküle enthaltende copolymere
JP2004267613A (ja) 2003-03-11 2004-09-30 Olympus Corp グルコース濃度測定装置
WO2005016396A1 (en) 2003-08-13 2005-02-24 Poly-Med, Inc. Biocompatible controlled release coatings for medical devices and related methods
US6965791B1 (en) 2003-03-26 2005-11-15 Sorenson Medical, Inc. Implantable biosensor system, apparatus and method
US6828572B2 (en) 2003-04-01 2004-12-07 Axcelis Technologies, Inc. Ion beam incident angle detector for ion implant systems
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US20070010702A1 (en) 2003-04-08 2007-01-11 Xingwu Wang Medical device with low magnetic susceptibility
US7186789B2 (en) 2003-06-11 2007-03-06 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings
US20040259270A1 (en) 2003-06-19 2004-12-23 Wolf David E. System, device and method for exciting a sensor and detecting analyte
WO2005015184A1 (en) 2003-07-30 2005-02-17 Novartis Ag Reflection hologram sensor in contact lens
US20050027175A1 (en) 2003-07-31 2005-02-03 Zhongping Yang Implantable biosensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US8131333B2 (en) 2003-08-07 2012-03-06 Eyesense Ag Ophthalmic sensor
WO2005032418A2 (en) 2003-10-01 2005-04-14 University Of Washington Novel porous biomaterials
WO2005041767A2 (en) 2003-11-03 2005-05-12 Microchips, Inc. Medical device for sensing glucose
AU2004293463A1 (en) 2003-11-20 2005-06-09 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US7496392B2 (en) 2003-11-26 2009-02-24 Becton, Dickinson And Company Fiber optic device for sensing analytes
US20050148003A1 (en) 2003-11-26 2005-07-07 Steven Keith Methods of correcting a luminescence value, and methods of determining a corrected analyte concentration
US7433042B1 (en) 2003-12-05 2008-10-07 Surface Optics Corporation Spatially corrected full-cubed hyperspectral imager
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
EP1701654B1 (en) 2003-12-18 2016-11-09 Metronom Health, Inc. Implantable biosensor and methods of use thereof
GB0329849D0 (en) 2003-12-23 2004-01-28 Precisense As Fluorometers
US20060002969A1 (en) 2004-01-27 2006-01-05 University Of Washington Methods for reducing the foreign body reaction
US7450980B2 (en) 2004-03-31 2008-11-11 Terumo Kabushiki Kaisha Intracorporeal substance measuring assembly
US20050245799A1 (en) 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
CA2565624A1 (en) 2004-05-04 2005-11-17 University Of Rochester Implantable bio-electro-physiologic interface matrix
GB0411162D0 (en) 2004-05-19 2004-06-23 Precisense As Optical sensor for in vivo detection of analyte
WO2006004595A2 (en) 2004-05-28 2006-01-12 Georgia Tech Research Corporation Methods and devices for thermal treatment
CA2572191A1 (en) 2004-06-02 2005-12-22 Carl Frederick Edman Use of electric fields to minimize rejection of implanted devices and materials
EP1758500B1 (en) 2004-06-14 2009-11-04 EyeSense AG Combined apparatus for measuring the blood glucose level from an ocular fluid
US20070004046A1 (en) 2005-07-01 2007-01-04 Platypus Technologies, Llc Detection of analytes
US7968085B2 (en) 2004-07-05 2011-06-28 Ascendis Pharma A/S Hydrogel formulations
GB0416732D0 (en) 2004-07-27 2004-09-01 Precisense As A method and apparatus for measuring the phase shift induced in a light signal by a sample
CA2578227A1 (en) 2004-08-24 2006-11-30 University Of South Florida Epoxy enhanced polymer membrane to increase durability of biosensors
US20060241364A1 (en) * 2004-10-01 2006-10-26 Academisch Medisch Centrum Of The University Van Amsterdam System and method for imaging the reflectance of a substrate
US7166680B2 (en) 2004-10-06 2007-01-23 Advanced Cardiovascular Systems, Inc. Blends of poly(ester amide) polymers
US7248907B2 (en) 2004-10-23 2007-07-24 Hogan Josh N Correlation of concurrent non-invasively acquired signals
GB0426822D0 (en) 2004-12-07 2005-01-12 Precisense As Sensor for detection of glucose
US7282694B2 (en) * 2004-12-15 2007-10-16 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Optical navigation system having a ring pixel array
CN101180093B (zh) 2005-03-21 2012-07-18 雅培糖尿病护理公司 用于提供结合的药剂输液以及分析物监测系统的方法和系统
CA2602259A1 (en) 2005-03-29 2006-10-05 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
US20060229508A1 (en) 2005-03-30 2006-10-12 Kermani Mahyar Z Adhesive fluorescence measurement patch
US20060270919A1 (en) 2005-05-11 2006-11-30 Mytek, Llc Biomarkers sensing
JP2008541881A (ja) 2005-05-27 2008-11-27 ジョンソン・アンド・ジョンソン・コンシューマー・カンパニーズ・インコーポレイテッド ウィルス性疾患用の孤立パッチ
US20070038046A1 (en) 2005-08-09 2007-02-15 Hayter Paul G Kinematic fluorescence measurement band
US7704704B2 (en) 2005-09-28 2010-04-27 The Texas A&M University System Implantable system for glucose monitoring using fluorescence quenching
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8114269B2 (en) 2005-12-30 2012-02-14 Medtronic Minimed, Inc. System and method for determining the point of hydration and proper time to apply potential to a glucose sensor
US8135450B2 (en) 2006-01-20 2012-03-13 Esenaliev Rinat O Noninvasive glucose sensing methods and systems
EP1989531B1 (en) 2006-02-15 2022-01-05 Li-Cor, Inc. Fluorescence filtering system and method for molecular imaging
US20070232873A1 (en) 2006-03-16 2007-10-04 The Board Of Regents Of The University Of Texas Syatem Noninvasive, accurate glucose monitoring with oct by using tissue warming and temperature control
EP2004241B1 (en) 2006-03-28 2013-08-07 Glusense Ltd. Implantable sensor
US7809441B2 (en) * 2006-05-17 2010-10-05 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor and related methods
JP2009540936A (ja) 2006-06-22 2009-11-26 ユニバーシティー オブ サウス フロリダ コラーゲン足場、それを伴う医療用埋植物、およびその使用方法
EP1882446B1 (de) 2006-07-24 2008-11-12 EyeSense AG Vorrichtung zur Messung eines Analyten in einer Augenflüssigkeit
US8326389B2 (en) 2006-12-07 2012-12-04 The Ohio State University Research Foundation System for in vivo biosensing based on the optical response of electronic polymers
US20080139903A1 (en) 2006-12-08 2008-06-12 Isense Corporation Method and apparatus for insertion of a sensor using an introducer
DE102007003341B4 (de) 2007-01-17 2018-01-04 Eyesense Ag Okularsensor und Messsystem zum Nachweis eines Analyten in einer Augenflüssigkeit
KR101636750B1 (ko) 2007-01-17 2016-07-06 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 프린팅­기반 어셈블리에 의해 제조되는 광학 시스템
CA2686065A1 (en) 2007-05-10 2008-11-20 Glumetrics, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
DE102007024642A1 (de) 2007-05-24 2008-11-27 Eyesense Ag Hydrogel-Implantat für Sensorik von Metaboliten am Auge
US20080306434A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
GB0717150D0 (en) 2007-09-04 2007-10-17 Univ Warwick Apparatus and method
JP5631215B2 (ja) 2007-11-21 2014-11-26 メドトロニック ミニメド インコーポレイテッド 血糖管理維持システム
EP2252196A4 (en) 2008-02-21 2013-05-15 Dexcom Inc SYSTEMS AND METHOD FOR PROCESSING, TRANSMITTING AND DISPLAYING SENSOR DATA
GB0803492D0 (en) 2008-02-26 2008-04-02 Glysure Ltd Fibre optic sensor
US8080821B2 (en) 2008-03-18 2011-12-20 The University Of Connecticut Thyristor radiation detector array and applications thereof
US8452402B2 (en) 2008-04-23 2013-05-28 Medtronic, Inc. Optical sensing device for use in a medical device
EP2174587B1 (de) 2008-10-02 2011-05-04 EyeSense AG Implantationsvorrichtung für Metabolitsensoren
US8385998B2 (en) 2008-10-24 2013-02-26 Jin Zhang Contact lens integrated with a biosensor for the detection of glucose and other components in tears
US20100160749A1 (en) 2008-12-24 2010-06-24 Glusense Ltd. Implantable optical glucose sensing
CA2647953A1 (en) 2008-12-29 2010-06-29 Sqi Diagnostics Systems Inc. Multiplex analyte detection
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
ES2571135T3 (es) 2009-05-18 2016-05-24 Lightship Medical Ltd Método de calibración de sensor de glucosa
US9517023B2 (en) 2009-06-01 2016-12-13 Profusa, Inc. Method and system for directing a localized biological response to an implant
US20110028806A1 (en) 2009-07-29 2011-02-03 Sean Merritt Reflectance calibration of fluorescence-based glucose measurements
EP2314608A1 (de) 2009-10-26 2011-04-27 EyeSense AG Stabilisierung von Biosensoren für in vivo Anwendungen
WO2011115643A1 (en) 2010-03-17 2011-09-22 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
JP2013515528A (ja) * 2009-12-23 2013-05-09 デルタ、ダンスク・エレクトリニク、リス・オ・アクスティク モニタリングデバイス
WO2011101627A2 (en) 2010-02-19 2011-08-25 Glysure Ltd Fluorescence measurement
WO2011101624A1 (en) 2010-02-19 2011-08-25 Glysure Ltd Indicator system for fibre optic sensor
EP2537032A1 (en) 2010-02-19 2012-12-26 Lightship Medical Limited Subcutaneous glucose sensor
US20130072768A1 (en) 2010-02-19 2013-03-21 Barry Colin Crane Intravascular glucose sensor
US8579879B2 (en) 2010-02-19 2013-11-12 Medtronic Minimed, Inc. Closed-loop glucose control startup
US9357956B2 (en) * 2010-03-05 2016-06-07 Seiko Epson Corporation Spectroscopic sensor and electronic apparatus
EP2555810B1 (en) 2010-04-08 2018-08-22 Healionics Corporation Implantable medical devices having microporous surface layers and method for reducing foreign body response to the same
US8235897B2 (en) 2010-04-27 2012-08-07 A.D. Integrity Applications Ltd. Device for non-invasively measuring glucose
US10463287B2 (en) 2010-10-06 2019-11-05 Profusa, Inc. Tissue-integrating sensors
US10010272B2 (en) 2010-05-27 2018-07-03 Profusa, Inc. Tissue-integrating electronic apparatus
US8543354B2 (en) 2010-06-23 2013-09-24 Medtronic Minimed, Inc. Glucose sensor signal stability analysis
JP2012095803A (ja) 2010-11-01 2012-05-24 Nara Institute Of Science & Technology 生体光双方向情報交換システム及び該システムの制御方法
US20120123276A1 (en) 2010-11-16 2012-05-17 Assaf Govari Catheter with optical contact sensing
US9167138B2 (en) * 2010-12-06 2015-10-20 Apple Inc. Pattern projection and imaging using lens arrays
CN103328980B (zh) 2010-12-17 2016-01-20 视觉股份公司 具有提高的敏感性的竞争性生物传感器
CN103370623B (zh) 2010-12-17 2016-05-04 视觉股份公司 水凝胶在具有提高的灵敏度的生物传感器中的用途
US20120172692A1 (en) 2011-01-05 2012-07-05 Janet Tamada Sensing Fluid Concentration for Continuous Glucose Monitoring
US20120245445A1 (en) 2011-03-21 2012-09-27 Michael Darryl Black Glucose Monitoring System
WO2012140708A1 (ja) 2011-04-12 2012-10-18 パナソニック株式会社 生体に含有される生体成分の濃度を測定する方法
US9008744B2 (en) 2011-05-06 2015-04-14 Medtronic Minimed, Inc. Method and apparatus for continuous analyte monitoring
US9037205B2 (en) 2011-06-30 2015-05-19 Glusense, Ltd Implantable optical glucose sensing
EP2744399B1 (en) 2011-08-15 2017-07-12 University of Connecticut Control of biofouling in implantable biosensors
US9642568B2 (en) 2011-09-06 2017-05-09 Medtronic Minimed, Inc. Orthogonally redundant sensor systems and methods
EP3505064B8 (en) 2011-09-23 2020-08-12 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
JP5970785B2 (ja) 2011-11-16 2016-08-17 ソニー株式会社 生体計測装置、生体計測方法、プログラムおよび記録媒体
JP2013103094A (ja) 2011-11-16 2013-05-30 Sony Corp 測定装置、測定方法、プログラム及び記録媒体
US20130158413A1 (en) 2011-12-15 2013-06-20 Nellcor Puritan Bennett Llc Optical measurement of physiological blood parameters
US8891088B2 (en) 2012-01-20 2014-11-18 The Curators Of The University Of Missouri Total internal reflection photoacoustic spectroscopy
DE102012201892A1 (de) 2012-02-09 2013-08-14 Robert Bosch Gmbh Bestimmung des Blutzuckerspiegels eines Patienten unter Verwendung eines implantierbaren Sensors und eines elektrischen Funktionspflasters
US9693714B2 (en) 2012-02-10 2017-07-04 Senseonics, Incorporated Digital ASIC sensor platform
US8869588B2 (en) 2012-02-21 2014-10-28 Symbol Technologies, Inc. Ultrasonic positioning system with reverberation and flight time compensation
WO2013132400A1 (en) 2012-03-08 2013-09-12 Koninklijke Philips N.V. Apparatus for determining a property of a tissue
US10045722B2 (en) 2013-03-14 2018-08-14 Profusa, Inc. Method and device for correcting optical signals
CN108852368B (zh) 2013-03-14 2024-01-12 普罗菲尤萨股份有限公司 氧传感器
CN111544011B (zh) 2013-06-06 2023-06-06 普罗菲尤萨股份有限公司 用于探测来自植入传感器的光信号的设备和方法
BR112017028113A2 (pt) 2015-06-25 2018-08-28 Profusa Inc leitora transcutânea para uso com sensores de analito transplantáveis

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975581A (en) * 1989-06-21 1990-12-04 University Of New Mexico Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids
WO1997002781A1 (en) * 1995-07-10 1997-01-30 Allan Rosencwaig Apparatus for non-invasive analyses of biological compounds
US5657754A (en) * 1995-07-10 1997-08-19 Rosencwaig; Allan Apparatus for non-invasive analyses of biological compounds
US6352502B1 (en) * 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
CN101653354A (zh) * 2001-02-23 2010-02-24 马尔西奥·马克·阿布雷乌 化学物质的无创测量
CN1802122A (zh) * 2003-05-08 2006-07-12 博世创医疗公司 同时进行实时多模式成像和它的光谱学使用
CN101057134A (zh) * 2004-09-20 2007-10-17 3M创新有限公司 用于生物检测的系统和方法及其微共振传感器
CN101115986A (zh) * 2004-12-09 2008-01-30 科学技术设备委员会 对次表面组织和液体的拉曼光谱分析
CN1800831A (zh) * 2004-12-17 2006-07-12 安捷伦科技有限公司 具有集成光探测器和/或光源的传感器
CN101300478A (zh) * 2005-11-03 2008-11-05 霍夫曼-拉罗奇有限公司 分析多光谱光学探测系统
CN101351153A (zh) * 2006-03-22 2009-01-21 松下电器产业株式会社 生物传感器和成分浓度测量装置
CN101490533A (zh) * 2006-07-20 2009-07-22 皇家飞利浦电子股份有限公司 多色生物传感器
CN101917899A (zh) * 2007-11-05 2010-12-15 生物传感器公司 用于测定分析物浓度的光学传感器
CN102196769A (zh) * 2008-10-02 2011-09-21 视觉股份公司 可植入的传感元件
CN102227625A (zh) * 2008-12-02 2011-10-26 皇家飞利浦电子股份有限公司 用于通过受抑全内反射来探测目标颗粒的传感器装置
CN102333478A (zh) * 2008-12-24 2012-01-25 葡萄糖传感器公司 可植入的光学葡萄糖感测
CN102395873A (zh) * 2009-04-13 2012-03-28 奥林巴斯株式会社 荧光传感器、针式荧光传感器以及测量分析物的方法
CN102575976A (zh) * 2009-09-28 2012-07-11 皇家飞利浦电子股份有限公司 物质确定设备
CN102946794A (zh) * 2010-06-22 2013-02-27 森斯派克有限公司 用于测定并监视测量介质的含量或特性的装置和方法,特别地用于测定并监视生理血液值
CN101947115A (zh) * 2010-10-14 2011-01-19 天津大学 基于光纤衰减全反射的植入式人体血糖浓度连续监测系统
CN103134586A (zh) * 2011-11-29 2013-06-05 马克西姆综合产品公司 具有透镜的光感测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
邓立新,冯莹,魏立安,柳珑.基于倏逝波的光纤生物传感器研究.光子学报.2005,(第11期),1688-1692. *
陈锡明.生物医学中的光纤维传感器.大自然探索.1985,(第01期),117-118. *

Also Published As

Publication number Publication date
EP3003131B1 (en) 2020-05-27
JP2019164169A (ja) 2019-09-26
JP7350526B2 (ja) 2023-09-26
CN105307559A (zh) 2016-02-03
AU2014274784B2 (en) 2018-12-06
US20140364707A1 (en) 2014-12-11
EP3003131A4 (en) 2017-01-18
WO2014197786A3 (en) 2015-01-29
AU2014274784A1 (en) 2015-11-26
WO2014197786A2 (en) 2014-12-11
US10219729B2 (en) 2019-03-05
JP2023001120A (ja) 2023-01-04
US20200008716A1 (en) 2020-01-09
CA2913474A1 (en) 2014-12-11
CA2913474C (en) 2023-04-18
US11504035B2 (en) 2022-11-22
EP3003131A2 (en) 2016-04-13
CN111544011A (zh) 2020-08-18
JP2016523608A (ja) 2016-08-12
BR112015029988A2 (pt) 2017-07-25
CN105307559B (zh) 2020-06-05
US20230337951A1 (en) 2023-10-26
EP3777656A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
CN111544011B (zh) 用于探测来自植入传感器的光信号的设备和方法
US20220095960A1 (en) Method and device for correcting optical signals
US9498156B2 (en) Opacity consistent polymer graft for optical sensor
US20220160263A1 (en) Optical filter device, system, and method for improved optical rejection of out-of-band wavelengths

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant