CN111524803B - 一种用于高温传感的多层复合薄膜电极及其制备方法 - Google Patents

一种用于高温传感的多层复合薄膜电极及其制备方法 Download PDF

Info

Publication number
CN111524803B
CN111524803B CN202010197074.4A CN202010197074A CN111524803B CN 111524803 B CN111524803 B CN 111524803B CN 202010197074 A CN202010197074 A CN 202010197074A CN 111524803 B CN111524803 B CN 111524803B
Authority
CN
China
Prior art keywords
aluminum oxide
film
metal film
temperature metal
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010197074.4A
Other languages
English (en)
Other versions
CN111524803A (zh
Inventor
董树荣
宋心雨
金浩
骆季奎
许红升
卢雷贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010197074.4A priority Critical patent/CN111524803B/zh
Publication of CN111524803A publication Critical patent/CN111524803A/zh
Application granted granted Critical
Publication of CN111524803B publication Critical patent/CN111524803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种用于高温传感的多层复合薄膜电极及制备方法,包括衬底,在所述衬底1表面从下至上依次包括第一氧化铝薄膜2a、第一高温金属薄膜3a、第二氧化铝薄膜2b、第二高温金属薄膜3b,还包括包裹所述第一氧化铝薄膜2a、第一高温金属薄膜3a、第二氧化铝薄膜2b、第二高温金属薄膜3b和衬底1裸露表面的表面氧化铝薄膜2c;所述第一高温金属薄膜3a和所述第二高温金属薄膜3b的材料为铂、铑、铱中的一种或者任意至少2种形成的高熵合金;所述第一高温金属薄膜3a和所述第二高温金属薄膜3b为采用多靶共溅、再结晶退火形成的大晶粒结构。该多层复合薄膜电极耐高温,满足在1300℃下工作的需求。

Description

一种用于高温传感的多层复合薄膜电极及其制备方法
技术领域
本发明属于传感电极领域,具体涉及一种用于高温传感的多层复合薄膜电极及其制备方法。
背景技术
工业上很多机械部件工作在高温环境,例如冶炼坩埚、高温轧辊、动力燃气轮机、电厂燃烧室、化工高温合成等,工作温度在800-1200℃以上,这些高温环境制造环节往往又是产品制造的最关键环节,所以对高温制造过程实施在线连续监控非常重要,这样做不但可以维持设备的不停机健康监测、而且可以实时管控调整产品制造质量。高温制造过程的连续稳定的监控,要求传感器在高温环境能够正常工作,但这其中存在着许多技术挑战,特别是在1000℃以上工作的传感器性能稳定性问题。传感器中常常使用在敏感陶瓷材料上光刻特殊微纳尺度的电极结构的方法来形成敏感结构,传感器在高温下工作时,微纳尺度的电极很容易发生团聚、缩孔或剥离脱落,使得传感器无法在高温环境稳定工作。例如声表面波(SAW)传感器,利用衬底的压电效应谐振工作,具有无线无源的优点,但高温下存在着电极很容易发生金属电极团聚现象,导致电极断裂,器件无法正常工作。
团聚是特定温度下材料表面张力作用的结果。对于越细小的线条,其表面张力就越大,通过收缩团聚可以有效降低表面自由能,使得材料处于最低能量的稳定状态。微纳尺度的线条在室温能够保持较好的外观,但是随着温度增加,提供给收缩团聚的能量增加,使得原子有能力移动扩散,包括缺陷的融合、晶界的融合长大等,例如面缺陷边界或尖角的钝化、融合和收缩成球状,最终导致电极收缩团聚,电极的微纳线条发生扭曲变形、收缩后的遗留的孔洞或球化材料堆积、甚至断开。温度越高或升温越快,这种融合收缩团聚越快,电极线条变形越厉害。晶粒越小或者缺陷越多(微细的电极线条边界也越多,边界就是缺陷),融合收缩团聚的余地就越大,越容易出现孔洞和团聚球化。
给金属电极添加保护层和阻挡层也是有效的方法,保护层一方面可以起到金属电极高温防氧化作用,一方面通过保护层覆盖降低微纳电极的表面自由能,提高团聚发生温度,阻挡层一方面在金属和衬底之间形成原子扩散的阻挡势垒,使得扩散需要更高的能量,避免电极金属扩散到衬底,也避免衬底原子扩散进金属形成化合物,最终避免了电极电阻的下降,另一方面阻挡层还可以钉扎金属的缺陷,包括晶界等,避免晶界的融合和电极的团聚。氧化铝被发现可以提供良好的高温保护和杂质阻挡作用。它具有很高的熔点(2054℃),高温中不易与金属电极反应或形成熔融态,能够阻挡来自于衬底的杂质原子向电极中的扩散,从而保护了金属电极层的稳定结构,抑制了团聚的发生。氧化铝层的厚度越大,对电极的保护作用和阻挡作用越强。但是过厚的氧化铝会影响器件的灵敏度,甚至使器件丧失原本的功能,所以需要选择合适厚度的氧化铝薄膜以及膜层结构。
发明内容
本发明的目的是提供一种用于高温传感的多层复合薄膜电极及其制备方法,该多层复合薄膜电极耐高温,能够解决传感器无法在高温环境稳定工作的问题。
本发明的技术方案为:
一种用于高温传感的多层复合薄膜电极,包括衬底1,其在所述衬底表面从下至上依次包括第一氧化铝薄膜2a、第一高温金属薄膜3a、第二氧化铝薄膜2b、第二高温金属薄膜3b,还包括包裹所述第一氧化铝薄膜2a、第一高温金属薄膜3a、第二氧化铝薄膜2b、第二高温金属薄膜3b和衬底1裸露表面的表面氧化铝薄膜2c;
所述第一高温金属薄膜3a和所述第二高温金属薄膜3b的材料为铂、铑、铱中的一种或者任意至少2种形成的高熵合金;
所述第一高温金属薄膜3a和所述第二高温金属薄膜3b为采用多靶共溅、再结晶退火形成的大晶粒结构。
本发明提供的多层复合薄膜电极中,采用第一高温金属薄膜3a和第二高温金属薄膜3b能够维持高温下低电阻率和热冲击的塑性。第一高温金属薄膜3a和第二高温金属薄膜3b上下外表面采用耐高温的氧化铝薄膜包覆,能够避免金属薄膜高温下熔聚,并维持电极与基体陶瓷材料的结合力。中间夹层的第二氧化铝薄膜2b包覆高温金属大晶粒,能够避免第一高温金属薄膜3a和第二高温金属薄膜3b高温工作时晶界融合再结晶形成孔洞。
氧化铝薄膜作为保护层一方面可以起到金属电极高温防氧化作用,一方面降低微纳电极的表面自由能,提高团聚发生温度。第一氧化铝薄膜作为阻挡层一方面在金属和衬底之间形成原子扩散的阻挡势垒,使得扩散需要更高的能量,避免金属电极与衬底之间原子的相互扩散,最终抑制了电极电阻的下降,另一方面还可以钉扎金属的缺陷,包括晶界,避免晶界的融合和电极的团聚。因氧化铝薄膜越厚,对于电极的保护作用越好,电极耐高温能力越强,但过厚的氧化铝会影响器件的灵敏度,所以所述第一氧化铝薄膜2a、第二氧化铝薄膜2b以及表面氧化铝薄膜2c的厚度分别为10-50nm、2-10nm和30-150nm。
优选地,所述第一氧化铝薄膜2a、第二氧化铝薄膜2b以及表面氧化铝薄膜2c采用原子层沉积方法生长获得。
因高温金属薄膜越厚,表面自由能越低,越不易发生团聚,电极耐高温能力越强,因此所述第一高温金属薄膜3a和第二高温金属薄膜3b的厚度为0.1-10um,线宽为0.1-100um,晶粒尺寸为50-500um。
一种用于高温传感的多层复合薄膜电极的制备方法,包括以下步骤:
(1)准备并清洗衬底1;
(2)在衬底上沉积一层第一氧化铝薄膜2a,所述第一氧化铝薄膜上溅射一层第一高温金属薄膜3a,在所述第一高温金属薄膜沉积一层第二氧化铝薄膜2b,在所述第二氧化铝薄膜上溅射一层第二高温金属薄膜3b,光刻形成微纳尺度线条,最后沉积一层表面氧化铝薄膜2c包裹形成的整个表面;
(3)对步骤(2)形成的电极进行再结晶退火处理,处理条件为:在2-4h时间内从室温升温到800-950℃,保持1-5h后,在2-4h时间内降温到室温。
金属晶粒越大,表面能越低,越不易发生团聚,所以金属电极耐高温能力与其金属晶粒大小呈正相关。再结晶退火过程是晶粒间缓慢的相互融合长大的过程,表面能小的大晶粒吞并表面能大的小晶粒,从而使金属晶粒普遍缓慢变大,使金属或合金处于较稳定的、自由能较低的状态。缓慢的再结晶退火可以让材料缓慢的收缩团聚,同时微纳金属线条维持等比例收缩,有效避免后续高温工作时候的快速团聚球化和孔洞的出现。升温和降温过程都应越慢越好,否则将无法完成再结晶的过程,甚至有可能发生团聚。保持温度应超过对应金属的再结晶温度(一般为熔点2/3处),但不应超过其发生团聚的温度。优选地,电极进行再结晶退火的处理条件为:在3-4h时间内从室温升温到800-900℃,保持2-3h后,在3-4h时间内降温到室温。
优选地,步骤(2)中沉积的第一氧化铝薄膜2a、第二氧化铝薄膜2b以及表面氧化铝薄膜2c的厚度分别为10-50nm、2-10nm和30-150nm。
优选地,步骤(2)中溅射的第一高温金属薄膜3a和第二高温金属薄膜3b的厚度为0.1um-10um,线宽为0.1um-100um,晶粒尺寸为50-500um。进一步优选地,步骤(2)中溅射的第一高温金属薄膜3a和第二高温金属薄膜3b的厚度为0.1um-3um,线宽为0.1um-100um,晶粒尺寸为50-500um
与现有技术相比,本发明具有的有益效果至少包括:
本发明提供的多层复合薄膜电极采用微纳多层膜的复合结构,高温金属薄膜上下被氧化铝薄膜包裹着,且高温金属薄膜经过再结晶退火处理,大大提升了电极的耐高温性,实际测试结果表明:该多层复合薄膜电极在微纳尺度下可以1300℃维持3小时不团聚、缩孔或剥离脱落,可以满足微纳传感器在高温下工作的要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动前提下,还可以根据这些附图获得其他附图。
图1是实施例1制备的多层复合薄膜电极的结构示意图;
图2是实施例1制备得到的30微米宽度的叉指电极的形貌图;
图3是对比例中纯Pt电极在800℃下保持3h后出现大量孔洞的形貌图;
图4是实施例1制备的多层复合薄膜电极在1300℃下保持3h后的形貌图;
图5是实施例1和2制备的多层复合薄膜电极随着温度升高其电阻的变化曲线。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
以下实施例采用的实验设备:
ALD原子层沉积系统美国Lesker公司ALD150LX
匀胶-热板一体机美国CEE,APOGEE
DWL激光直写系统德国HEIDELBERG,DWL66+
磁控溅射系统美国DENTON,DISCOVERY635
实施例1
实施例制备一个如图1所示的用于高温传感的多层复合薄膜电极,制备过程为:
(1)准备并清洗衬底:准备LGS压电材料基片作为衬底,并将该基片依次放在丙酮及无水乙醇溶液中,超声清洗5分钟,去除表面的有机污染物,最后再用去离子水冲洗,将冲洗后的基片用氮气枪吹干;
(2)采用ALD原子层沉积系统在LGS压电材料基片上沉积20nm的第一Al2O3薄膜:
(3)采用磁控溅射系统在步骤(2)所得结构上溅射一层100nm的第一高温金属薄膜铂;
(4)采用ALD原子层沉积系统在步骤(3)所得的结构上沉积3nm的第二Al2O3薄膜;
(5)采用磁控溅射系统再步骤(4)所得的结构上溅射一层100nm的第二高温金属薄膜铂;
(6)在第二高温金属薄膜铂上涂满AZ1500光刻胶,采用匀胶-热板一体机完成匀胶与坚膜,再使用DWL激光直写系统进行光刻,形成掩膜,再使用AZ400k显影液进行显影,显影夜与水3:1混合,将样品放入其中50s,再用去离子水洗涤完成显影;
(7)将步骤(6)所得结构放入适量丙酮中进行超声,15分钟之后,因为丙酮与光刻胶互溶,目标图形以外的多余金属便会从结构上脱落,从而得到目标图形的30微米宽度的叉指电极,如图2所示;
(8)使用ALD原子层沉积系统在在步骤(7)所得结构上沉积40nm的表面Al2O3薄膜,获得多层复合薄膜电极;
(9)将步骤(8)获得的多层复合薄膜电极至于马弗炉内,设定3h从室温升至800℃,800℃保持2h,3h从800℃降至室温的程序,对多层复合薄膜电极进行再结晶退火处理,获得最终的多层复合薄膜电极。
实施例1制备的多层复合薄膜电极经过测试,在1300℃下保持3h仍能维持良好形貌,如图4所示。如3所示的纯Pt电极在800℃下保持3h后出现大量孔洞的形貌图,相比于纯Pt电极,实施例1制备的多层复合薄膜电极相比于耐高温能力较纯Pt电极大大提高。
实施例2
实施例制备用于高温传感的多层复合薄膜电极,制备过程为:
(1)准备并清洗衬底:准备LGS压电材料基片作为衬底,并将该基片依次放在丙酮及无水乙醇溶液中,超声清洗5分钟,去除表面的有机污染物,最后再用去离子水冲洗,将冲洗后的基片用氮气枪吹干;
(2)采用ALD原子层沉积系统在LGS压电材料基片上沉积30nm的第一Al2O3薄膜:
(3)采用磁控溅射系统在步骤(2)所得结构上溅射一层150nm的第一高温金属薄膜铂;
(4)采用ALD原子层沉积系统在步骤(3)所得的结构上沉积5nm的第二Al2O3薄膜;
(5)采用磁控溅射系统再步骤(4)所得的结构上溅射一层150nm的第二高温金属薄膜铂;
(6)在第二高温金属薄膜铂上涂满AZ1500光刻胶,采用匀胶-热板一体机完成匀胶与坚膜,再使用DWL激光直写系统进行光刻,形成掩膜,再使用AZ400k显影液进行显影,显影夜与水3:1混合,将样品放入其中50s,再用去离子水洗涤完成显影;
(7)将步骤(6)所得结构放入适量丙酮中进行超声,15分钟之后,因为丙酮与光刻胶互溶,目标图形以外的多余金属便会从结构上脱落,从而得到目标图形的30微米宽度的叉指电极;
(8)使用ALD原子层沉积系统在在步骤(7)所得结构上沉积50nm的表面Al2O3薄膜,获得多层复合薄膜电极;
(9)将步骤(8)获得的多层复合薄膜电极至于马弗炉内,设定3h从室温升至800℃,800℃保持2h,3h从800℃降至室温的程序,对多层复合薄膜电极进行再结晶退火处理,获得最终的多层复合薄膜电极。
与实施例1不同的是,实施例2使用了更厚的电极结构,图5是实施例1和实施例2的SAW器件的阻抗曲线,可以看出实施例2的SAW器件Q值下降很多,插损提高很多,器件性能变坏,就是因为电极厚度明显增加所致。
Figure BDA0002418013180000091
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种用于高温传感的多层复合薄膜电极,包括衬底1,其特征在于,在所述衬底表面从下至上依次包括第一氧化铝薄膜2a、第一高温金属薄膜3a、第二氧化铝薄膜2b、第二高温金属薄膜3b,还包括包裹所述第一氧化铝薄膜2a、第一高温金属薄膜3a、第二氧化铝薄膜2b、第二高温金属薄膜3b和衬底1裸露表面的表面氧化铝薄膜2c;
所述第一高温金属薄膜3a和所述第二高温金属薄膜3b的材料为铂、铑、铱中的一种或者任意至少2种形成的高熵合金;
所述第一高温金属薄膜3a和所述第二高温金属薄膜3b为采用多靶共溅、再结晶退火形成的大晶粒结构;
所述第一氧化铝薄膜2a、第二氧化铝薄膜2b以及表面氧化铝薄膜的厚度分别为10-50nm、2-10nm和30-150nm;
所述第一高温金属薄膜3a和第二高温金属薄膜3b的厚度为0.1-10um,线宽为0.1-100um,晶粒尺寸为50-500um。
2.如权利要求1所述的用于高温传感的多层复合薄膜电极,其特征在于,所述第一氧化铝薄膜2a、第二氧化铝薄膜2b以及表面氧化铝薄膜2c采用原子层沉积方法生长获得。
3.一种用于高温传感的多层复合薄膜电极的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)准备并清洗衬底1;
(2)在衬底1上沉积一层第一氧化铝薄膜2a,所述第一氧化铝薄膜上溅射一层第一高温金属薄膜3a,在所述第一高温金属薄膜沉积一层第二氧化铝薄膜2b,在所述第二氧化铝薄膜上溅射一层第二高温金属薄膜3b,光刻形成微纳尺度线条,最后沉积一层表面氧化铝薄膜2c包裹形成的整个表面;
(3)对步骤(2)形成的电极进行再结晶退火处理,处理条件为:在2-4h时间内从室温升温到800-950℃,保持1-5h后,在2-4h时间内降温到室温;
其中,所述第一高温金属薄膜3a和所述第二高温金属薄膜3b的材料为铂、铑、铱中的一种或者任意至少2种形成的高熵合金;所述第一高温金属薄膜3a和所述第二高温金属薄膜3b为采用多靶共溅、再结晶退火形成的大晶粒结构;所述第一氧化铝薄膜2a、第二氧化铝薄膜2b以及表面氧化铝薄膜的厚度分别为10-50nm、2-10nm和30-150nm;所述第一高温金属薄膜3a和第二高温金属薄膜3b的厚度为0.1-10um,线宽为0.1-100um,晶粒尺寸为50-500um。
4.如权利要求3所述的用于高温传感的多层复合薄膜电极的制备方法,其特征在于,电极进行再结晶退火的处理条件为:
在3-4h时间内从室温升温到800-900℃,保持2-3h后,在3-4h时间内降温到室温。
CN202010197074.4A 2020-03-19 2020-03-19 一种用于高温传感的多层复合薄膜电极及其制备方法 Active CN111524803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010197074.4A CN111524803B (zh) 2020-03-19 2020-03-19 一种用于高温传感的多层复合薄膜电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010197074.4A CN111524803B (zh) 2020-03-19 2020-03-19 一种用于高温传感的多层复合薄膜电极及其制备方法

Publications (2)

Publication Number Publication Date
CN111524803A CN111524803A (zh) 2020-08-11
CN111524803B true CN111524803B (zh) 2023-04-25

Family

ID=71902211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010197074.4A Active CN111524803B (zh) 2020-03-19 2020-03-19 一种用于高温传感的多层复合薄膜电极及其制备方法

Country Status (1)

Country Link
CN (1) CN111524803B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112935274B (zh) * 2021-01-27 2022-08-05 中国科学院上海微系统与信息技术研究所 一种柔性衬底上生长高熵合金纳米颗粒的方法
CN112924510B (zh) * 2021-01-27 2022-03-15 中国科学院上海微系统与信息技术研究所 一种石墨烯基高熵合金纳米颗粒及其制备方法和应用
CN113178517B (zh) * 2021-03-25 2022-11-04 杭州电子科技大学 一种耐高温的声表面波传感器叉指电极及其制备方法
CN113178516B (zh) * 2021-03-31 2022-11-18 杭州电子科技大学 具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
CN113186528B (zh) * 2021-04-30 2023-06-20 上海铂源微电子有限公司 一种铂金薄膜及其制备方法和用途
CN113862673B (zh) * 2021-09-30 2024-04-26 中国电子科技集团公司第四十八研究所 发动机叶片薄膜传感器用高温绝缘层及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243683A (ja) * 2002-02-21 2003-08-29 Tokai Rubber Ind Ltd 太陽電池用透明電極およびこれを用いた太陽電池
CN101609729A (zh) * 2009-07-13 2009-12-23 浙江大学 一种多层透明导电薄膜及其制备方法
CN102503580A (zh) * 2011-10-21 2012-06-20 浙江大学 热敏陶瓷溅射膜电极的制备方法
CN103928233A (zh) * 2014-03-18 2014-07-16 天津大学 具有稳定电极结构的薄膜电容器及其制备方法
CN105970168A (zh) * 2016-07-04 2016-09-28 电子科技大学 一种薄膜传感器用复合绝缘层及其制备方法
CN108010960A (zh) * 2017-11-01 2018-05-08 华南理工大学 一种氧化物薄膜晶体管栅电极及其制备方法
CN108088610A (zh) * 2017-11-14 2018-05-29 上海交通大学 一种复合保护层的高温薄膜应变计及其制备方法
CN110113021A (zh) * 2019-04-19 2019-08-09 电子科技大学 一种高温稳定性电极及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623459B (zh) * 2012-04-10 2015-01-07 复旦大学 一种薄膜晶体管存储器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243683A (ja) * 2002-02-21 2003-08-29 Tokai Rubber Ind Ltd 太陽電池用透明電極およびこれを用いた太陽電池
CN101609729A (zh) * 2009-07-13 2009-12-23 浙江大学 一种多层透明导电薄膜及其制备方法
CN102503580A (zh) * 2011-10-21 2012-06-20 浙江大学 热敏陶瓷溅射膜电极的制备方法
CN103928233A (zh) * 2014-03-18 2014-07-16 天津大学 具有稳定电极结构的薄膜电容器及其制备方法
CN105970168A (zh) * 2016-07-04 2016-09-28 电子科技大学 一种薄膜传感器用复合绝缘层及其制备方法
CN108010960A (zh) * 2017-11-01 2018-05-08 华南理工大学 一种氧化物薄膜晶体管栅电极及其制备方法
CN108088610A (zh) * 2017-11-14 2018-05-29 上海交通大学 一种复合保护层的高温薄膜应变计及其制备方法
CN110113021A (zh) * 2019-04-19 2019-08-09 电子科技大学 一种高温稳定性电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Armando Ayes,等.Removal of Stress Hillocks from Platinum-Alumina Electrodes Used in High-temperature SAW Devices.《2019 IEEE International Ultrasonics Symposium (IUS)》.2019,第727-730页. *

Also Published As

Publication number Publication date
CN111524803A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN111524803B (zh) 一种用于高温传感的多层复合薄膜电极及其制备方法
JPH0145201B2 (zh)
US20110014400A1 (en) Method and system for making thin metal films
CN103021605B (zh) 片式铂热敏电阻器制作方法
Rairden et al. Interdiffusion in thin conductor films—chromium/gold, nickel/gold and chromium silicide/gold
Bernhardt et al. Performance of Zr and Ti adhesion layers for bonding of platinum metallization to sapphire substrates
US20070032075A1 (en) Deposition method for wiring thin film
KR101304286B1 (ko) 다결정층 제조방법
Pelleg et al. Stress changes in chemical vapor deposition tungsten silicide (polycide) film measured by x-ray diffraction
Anderson et al. Annealing behavior of electroplated permalloy thin films
US6723186B2 (en) Method of manufacturing metallic film consisting of giant single crystal grains
JP4304272B2 (ja) 熱電変換材料薄膜とセンサ素子及びその製造方法
Chin et al. Effect of the tantalum barrier layer on the electromigration and stress migration resistance of physical-vapor-deposited copper interconnect
WO2021082526A1 (zh) 桥接式微纳结构传感单元的阵列传感器的制备方法及产品
WO2001084609A1 (en) Method for low temperature formation of stable ohmic contacts to silicon carbide
EP0033358B1 (en) Process for fabricating thin metal superconducting films of improved thermal cyclability and device
CN113178516B (zh) 具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
KR102054594B1 (ko) 전도율이 향상된 텅스텐 박막 및 이의 제조방법
Tisone et al. Interdiffusion and compound formation in Ta–Au thin‐film couples
JP2862189B2 (ja) 高温熱処理用治具
KR100280429B1 (ko) 반도체소자의확산방지막및그제조방법
Brückner et al. Electrical resistance and mechanical stress in NiCr/Cu/NiCr thin films
JPH0375204A (ja) 酸化物超伝導膜パターン作製法
KR20030001744A (ko) 텅스텐 질화(WNx)막 및 텅스텐(W)막의 증착 방법
JPH06302600A (ja) 半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant