CN113862673B - 发动机叶片薄膜传感器用高温绝缘层及其制备方法 - Google Patents

发动机叶片薄膜传感器用高温绝缘层及其制备方法 Download PDF

Info

Publication number
CN113862673B
CN113862673B CN202111161291.9A CN202111161291A CN113862673B CN 113862673 B CN113862673 B CN 113862673B CN 202111161291 A CN202111161291 A CN 202111161291A CN 113862673 B CN113862673 B CN 113862673B
Authority
CN
China
Prior art keywords
film
layer
temperature
insulating layer
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111161291.9A
Other languages
English (en)
Other versions
CN113862673A (zh
Inventor
张�浩
余浪
周国方
丁玎
何峰
曾庆平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 48 Research Institute
Original Assignee
CETC 48 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 48 Research Institute filed Critical CETC 48 Research Institute
Priority to CN202111161291.9A priority Critical patent/CN113862673B/zh
Publication of CN113862673A publication Critical patent/CN113862673A/zh
Application granted granted Critical
Publication of CN113862673B publication Critical patent/CN113862673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种发动机叶片薄膜传感器用高温绝缘层及其制备方法,该高温绝缘层包括由下至上依次设置的叶片基底层、高温氧化层、Al2O3薄膜层、Ta2O5薄膜层和Si3N4薄膜层,制备方法包括真空热处理及高温氧化、Al2O3薄膜层的制备、Ta2O5薄膜层的制备、Si3N4薄膜层的制备和高温热处理。本发明的高温绝缘层薄膜致密、缺陷少,能减少高温下因薄膜缺陷导致的漏电流,制备方法简单易行,成本较低。

Description

发动机叶片薄膜传感器用高温绝缘层及其制备方法
技术领域
本发明属于薄膜传感器技术领域,具体涉及一种发动机叶片薄膜传感器用高温绝缘层及其制备方法。
背景技术
随着近代航空发动机推比的提高和重型燃气轮机动力的提升,其机组涡轮叶片的转速和工作温度越来越高,叶片工作参数(温度、应变、热流等)的测量已成为叶片设计验证必要的基础试验内容。为解决高旋曲面叶片的高温工作参数测量问题,我国还只能采用高温胶将传感器(如热偶丝)粘贴到叶片上测温,由于粘贴的传感器凸出叶片表面,干扰叶片周围的热流和温度场,而且存在脱落而损害涡轮系统的风险,为此,迫切需要开展发动机叶片原位制造薄膜传感器的研究工作。
公开号为CN106498355A的中国专利文献公开了一种高温薄膜传感器用抗氧化复合防护层及其制造方法,该方案采用的薄膜制备方法及膜层结构为:直流溅射NiCrAlY+真空析铝氧化Al2O3+蒸发或溅射沉积Al2O3+射频溅射BN+射频溅射ZrB2基复合陶瓷层+反应溅射Al2O3覆盖层。但是,该技术方法的缺点在于:(1)膜层结构复杂,导致高温应力较大,容易发生薄膜脱落,耐高温性能较差,膜层结构中BN热膨胀系数为41ppm/℃,而氧化铝热膨胀系数约为8ppm/℃,这两种薄膜材料结合在一起在高温下必然会导致应力过大而开裂;(2)薄膜制备工艺多采用蒸发和磁控溅射,制备的薄膜致密性较差,高温下容易产生漏电流,导致薄膜传感器与叶片基底之间的导通而引入较大测量误差。
公开号为CN109536892A的中国专利文献公开了一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法,该方案采用的薄膜制备方法及膜层结构为:直流溅射NiCrAlY+热生长Al2O3+直流反应溅射YZrAlO+电子束蒸发Al2O3。该方法的缺点在于制备的Al2O3薄膜致密性较差,在高温下容易产生漏电流,降低薄膜的高温绝缘性能。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种薄膜致密、缺陷少,能减少高温下因薄膜缺陷导致漏电流发生的发动机叶片薄膜传感器用高温绝缘层及其制备方法。
为解决上述技术问题,本发明采用以下技术方案。
一种发动机叶片薄膜传感器用高温绝缘层,其特征在于,包括由下至上依次设置的叶片基底层、高温氧化层、Al2O3薄膜层、Ta2O5薄膜层和Si3N4薄膜层。
上述的发动机叶片薄膜传感器用高温绝缘层,优选的,所述高温氧化层的厚度为0.2μm~1μm,所述Al2O3薄膜层的厚度为0.5μm~2μm,所述Ta2O5薄膜层的厚度为2μm~10μm,所述Si3N4薄膜层的厚度为2μm~10μm。
上述的发动机叶片薄膜传感器用高温绝缘层,优选的,所述发动机叶片薄膜传感器用高温绝缘层在800℃~1500℃范围内可正常工作。
上述的发动机叶片薄膜传感器用高温绝缘层,优选的,所述Al2O3薄膜层通过原子层沉积方法制得,所述Ta2O5薄膜层通过离子束溅射镀膜制得,所述Si3N4薄膜层通过离子束溅射镀膜制得。
作为一个总的技术构思,本发明还提供一种上述的发动机叶片薄膜传感器用高温绝缘层的制备方法,包括以下步骤:
S1、真空热处理及高温氧化:将叶片基底在真空条件下升温至800℃~1000℃保温3h~8h,然后降温至700℃~900℃,通入高纯氧气2h~6h,降至室温,在叶片基底上得到高温氧化层;
S2、Al2O3薄膜层的制备:通过原子层沉积方法制备Al2O3薄膜,其中,前驱体为三甲基铝,氧化剂为水,沉积温度为120℃~180℃,经沉积后,在所述高温氧化层上得到Al2O3薄膜层;
S3、Ta2O5薄膜层的制备:通过离子束溅射镀膜制备Ta2O5薄膜,其中,靶材采用Ta2O5靶材,溅射电压为500V~600V,溅射电流为50mA~60mA,经溅射后,在所述Al2O3薄膜层上得到Ta2O5薄膜层;
S4、Si3N4薄膜层的制备:通过离子束溅射镀膜制备Si3N4薄膜,其中,靶材采用Si3N4靶材,溅射电压为400V~500V,溅射电流为35mA~45mA,经溅射后,在所述Ta2O5薄膜层上得到Si3N4薄膜层;
S5、高温热处理:将步骤S4所得材料进行退火、冷却,得到发动机叶片薄膜传感器用高温绝缘层。
上述的发动机叶片薄膜传感器用高温绝缘层的制备方法,优选的,步骤S1中,所述叶片基底先进行预处理,再高温氧化,所述预处理包括以下过程:将叶片基底先分别用目数为2000#、3000#、5000#的金相砂纸各研磨0.5h~3h,然后用Al2O3抛光膏抛光不少于15min,再用丙酮超声清洗5min~15min、酒精超声清洗5min~15min、水超声清洗5min~15min,于100℃~150℃烘干20min~60min。
上述的发动机叶片薄膜传感器用高温绝缘层的制备方法,优选的,步骤S5中,所述退火的温度为1300℃~1400℃,所述退火的时间为2h~4h。
上述的发动机叶片薄膜传感器用高温绝缘层的制备方法,优选的,步骤S1中,所述高纯氧气的纯度为99.99%。
上述的发动机叶片薄膜传感器用高温绝缘层的制备方法,优选的,步骤S3中,所述Ta2O5靶材的纯度为99.99%。
上述的发动机叶片薄膜传感器用高温绝缘层的制备方法,优选的,步骤S4中,所述Si3N4靶材的纯度为99.99%。
与现有技术相比,本发明的优点在于:
(1)本方法针对粘贴式传感器缺点,设计了一种薄膜传感器(薄膜温度、薄膜热流、薄膜应变等)通用的耐高温绝缘层。针对现有技术的缺陷,改进了膜层结构和制备工艺,保障传感器在高温下电气绝缘性能。本发明设计的膜层结构应力匹配较好,在1300℃以上的高温环境中,薄膜应力较小,不会发生因应力集中导致的薄膜脱落、皲裂等问题。
(2)本发明的制备方法采用原子层沉积技术(ALD)来沉积Al2O3薄膜,制备的薄膜致密、缺陷少,能减少高温下因薄膜缺陷导致的漏电流,采用离子束溅射的Ta2O5薄膜、Si3N4薄膜同样具有致密度高,缺陷少的优点。本设计方案采用热膨胀系数相近的绝缘层材料Al2O3、Ta2O5、Si3N4,这三种材料的热膨胀系数分别为8ppm/℃、4.5ppm/℃、3.2ppm/℃,极大地减少了各层之间的应力。ALD沉积的Al2O3薄膜具有良好的填充间隙性能,能够弥补叶片基底的大部分微观缺陷,离子束溅射的Ta2O5薄膜、Si3N4薄膜的厚度范围为2μm~10μm,如果薄膜厚度太薄在高温下容易产生漏电流,导致绝缘性能降低,薄膜厚度太厚则会导致各层薄膜之间应力过大,从而产生薄膜脱落、皲裂等问题。
附图说明
图1为本发明实施例1中发动机叶片薄膜传感器用高温绝缘层的结构示意图。
图2为本发明实施例1中发动机叶片薄膜传感器用高温绝缘层的制备工艺流程图。
图例说明:
1、叶片基底层;2、高温氧化层;3、Al2O3薄膜层;4、Ta2O5薄膜层;5、Si3N4薄膜层。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。
实施例1:
一种本发明的发动机叶片薄膜传感器用高温绝缘层,包括由下至上依次设置的叶片基底层1、高温氧化层2、Al2O3薄膜层3、Ta2O5薄膜层4和Si3N4薄膜层5。
本实施例中,高温氧化层2的厚度为1μm,Al2O3薄膜层3的厚度为1μm,Ta2O5薄膜层4的厚度为2μm,Si3N4薄膜层5的厚度为3μm。
本实施例中,发动机叶片薄膜传感器用高温绝缘层在800℃~1500℃内可正常工作。
一种本实施例的发动机叶片薄膜传感器用高温绝缘层的制备方法,包括以下步骤:
S1、基底材料表面研磨抛光处理:使用2000#、3000#、5000#金相砂纸分别研磨1h,然后使用粒径1.5μm Al2O3抛光膏抛光15min,再用丙酮超声清洗10min,酒精超声清洗10min,去离子水超声清洗10min,100℃烘干30min。
S2、真空热处理及高温氧化:将叶片基底置于管式真空退火炉中,升温到1000℃保温5h,然后降温到800℃,停止抽真空并通入99.99%高纯氧气2h,随退火炉降至室温后取出样品,在叶片基底上得到高温氧化层2,高温氧化层的厚度为1μm。
S3、Al2O3薄膜层3的制备:采用原子层沉积方法制备Al2O3薄膜,前驱体为三甲基铝,使用超纯水作为氧化剂,沉积温度为150℃,循环周期8333周,直至薄膜厚度约为1μm,在高温氧化层2上得到Al2O3薄膜层3。
S4、Ta2O5薄膜层4的制备:采用离子束溅射镀膜制备Ta2O5薄膜,靶材使用纯度为99.99%的Ta2O5靶材,溅射参数为550V,55mA,溅射厚度为2μm,在Al2O3薄膜层3上得到Ta2O5薄膜层4。
S5、Si3N4薄膜层5的制备:同样采用离子束溅射镀膜制备Si3N4薄膜,靶材使用纯度为99.99%的Si3N4靶材,溅射参数为450V,40mA,溅射厚度为3μm,在Ta2O5薄膜层4上得到Si3N4薄膜层5。
S6、高温热处理:将步骤S5所得样品置于1300℃空气常压环境中高温退火3h,随炉冷却至室温后,取出样品,即得到发动机叶片薄膜传感器用高温绝缘层。
按照本实施例的方案制备的高温绝缘层在1300℃高温下可以达到绝缘电阻不小于100KΩ,保证了薄膜温度、薄膜热流、薄膜应变等传感器功能层与基底叶片的电气绝缘,避免了传感器因与基片导通而导致的功能失效。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (8)

1.一种发动机叶片薄膜传感器用高温绝缘层,其特征在于,包括由下至上依次设置的叶片基底层(1)、高温氧化层(2)、Al2O3薄膜层(3)、Ta2O5薄膜层(4)和Si3N4薄膜层(5);
所述高温氧化层(2)的厚度为0.2μm~1μm,所述Al2O3薄膜层(3)的厚度为0.5μm~2μm,所述Ta2O5薄膜层(4)的厚度为2μm~10μm,所述Si3N4薄膜层(5)的厚度为2μm~10μm;
所述Al2O3薄膜层(3)通过原子层沉积方法制得,所述Ta2O5薄膜层(4)通过离子束溅射镀膜制得,所述Si3N4薄膜层(5)通过离子束溅射镀膜制得。
2.根据权利要求1所述的发动机叶片薄膜传感器用高温绝缘层,其特征在于,所述发动机叶片薄膜传感器用高温绝缘层在800℃~1500℃范围内可正常工作。
3.一种如权利要求1或2所述的发动机叶片薄膜传感器用高温绝缘层的制备方法,其特征在于,包括以下步骤:
S1、真空热处理及高温氧化:将叶片基底在真空条件下升温至800℃~1000℃保温3h~8h,然后降温至700℃~900℃,通入高纯氧气2h~6h,降至室温,在叶片基底上得到高温氧化层(2);
S2、Al2O3薄膜层(3)的制备:通过原子层沉积方法制备Al2O3薄膜,其中,前驱体为三甲基铝,氧化剂为水,沉积温度为120℃~180℃,经沉积后,在所述高温氧化层(2)上得到Al2O3薄膜层(3);
S3、Ta2O5薄膜层(4)的制备:通过离子束溅射镀膜制备Ta2O5薄膜,其中,靶材采用Ta2O5靶材,溅射电压为500V~600V,溅射电流为50mA~60mA,经溅射后,在所述Al2O3薄膜层(3)上得到Ta2O5薄膜层(4);
S4、Si3N4薄膜层(5)的制备:通过离子束溅射镀膜制备Si3N4薄膜,其中,靶材采用Si3N4靶材,溅射电压为400V~500V,溅射电流为35mA~45mA,经溅射后,在所述Ta2O5薄膜层(4)上得到Si3N4薄膜层(5);
S5、高温热处理:将步骤S4所得材料进行退火、冷却,得到发动机叶片薄膜传感器用高温绝缘层。
4.根据权利要求3所述的发动机叶片薄膜传感器用高温绝缘层的制备方法,其特征在于,步骤S1中,所述叶片基底先进行预处理,再高温氧化,所述预处理包括以下过程:将叶片基底先分别用目数为2000#、3000#、5000#的金相砂纸各研磨0.5h~3h,然后用Al2O3抛光膏抛光不少于15min,再用丙酮超声清洗5min~15min、酒精超声清洗5min~15min、水超声清洗5min~15min,于100℃~150℃烘干20min~60min。
5.根据权利要求3或4所述的发动机叶片薄膜传感器用高温绝缘层的制备方法,其特征在于,步骤S5中,所述退火的温度为1300℃~1400℃,所述退火的时间为2h~4h。
6.根据权利要求3或4所述的发动机叶片薄膜传感器用高温绝缘层的制备方法,其特征在于,步骤S1中,所述高纯氧气的纯度为99.99%。
7.根据权利要求3或4所述的发动机叶片薄膜传感器用高温绝缘层的制备方法,其特征在于,步骤S3中,所述Ta2O5靶材的纯度为99.99%。
8.根据权利要求3或4所述的发动机叶片薄膜传感器用高温绝缘层的制备方法,其特征在于,步骤S4中,所述Si3N4靶材的纯度为99.99%。
CN202111161291.9A 2021-09-30 2021-09-30 发动机叶片薄膜传感器用高温绝缘层及其制备方法 Active CN113862673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111161291.9A CN113862673B (zh) 2021-09-30 2021-09-30 发动机叶片薄膜传感器用高温绝缘层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111161291.9A CN113862673B (zh) 2021-09-30 2021-09-30 发动机叶片薄膜传感器用高温绝缘层及其制备方法

Publications (2)

Publication Number Publication Date
CN113862673A CN113862673A (zh) 2021-12-31
CN113862673B true CN113862673B (zh) 2024-04-26

Family

ID=79001290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111161291.9A Active CN113862673B (zh) 2021-09-30 2021-09-30 发动机叶片薄膜传感器用高温绝缘层及其制备方法

Country Status (1)

Country Link
CN (1) CN113862673B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911663A (ja) * 1982-07-12 1984-01-21 Nec Corp 半導体装置用キヤパシタの製造方法
KR20010045566A (ko) * 1999-11-05 2001-06-05 윤종용 원자층 증착법을 이용한 박막 형성방법
CN103262207A (zh) * 2010-06-22 2013-08-21 Vtt技术研究中心 多层衬底结构及其制造方法
CN103486961A (zh) * 2013-05-31 2014-01-01 电子科技大学 带有薄膜传感器的构件及制备方法
CN104726862A (zh) * 2015-03-10 2015-06-24 电子科技大学 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN104934514A (zh) * 2015-07-06 2015-09-23 天津宝坻紫荆科技有限公司 一种复合绝缘层及制备方法
CN106206747A (zh) * 2016-09-20 2016-12-07 上海华力微电子有限公司 一种ono多晶硅间介质层结构及制备方法
CN106498355A (zh) * 2016-10-20 2017-03-15 电子科技大学 一种高温薄膜传感器用抗氧化复合防护层及其制造方法
CN106756848A (zh) * 2016-12-21 2017-05-31 电子科技大学 一种金属基高温组合绝缘层及其制备方法
CN107142477A (zh) * 2017-04-28 2017-09-08 电子科技大学 一种抗热冲击的高温复合绝缘层及制备方法
CN109338290A (zh) * 2018-11-02 2019-02-15 中国航空工业集团公司上海航空测控技术研究所 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN109536892A (zh) * 2019-01-17 2019-03-29 电子科技大学 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
CN111524803A (zh) * 2020-03-19 2020-08-11 浙江大学 一种用于高温传感的多层复合薄膜电极及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911663A (ja) * 1982-07-12 1984-01-21 Nec Corp 半導体装置用キヤパシタの製造方法
KR20010045566A (ko) * 1999-11-05 2001-06-05 윤종용 원자층 증착법을 이용한 박막 형성방법
CN103262207A (zh) * 2010-06-22 2013-08-21 Vtt技术研究中心 多层衬底结构及其制造方法
CN103486961A (zh) * 2013-05-31 2014-01-01 电子科技大学 带有薄膜传感器的构件及制备方法
CN104726862A (zh) * 2015-03-10 2015-06-24 电子科技大学 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN104934514A (zh) * 2015-07-06 2015-09-23 天津宝坻紫荆科技有限公司 一种复合绝缘层及制备方法
CN106206747A (zh) * 2016-09-20 2016-12-07 上海华力微电子有限公司 一种ono多晶硅间介质层结构及制备方法
CN106498355A (zh) * 2016-10-20 2017-03-15 电子科技大学 一种高温薄膜传感器用抗氧化复合防护层及其制造方法
CN106756848A (zh) * 2016-12-21 2017-05-31 电子科技大学 一种金属基高温组合绝缘层及其制备方法
CN107142477A (zh) * 2017-04-28 2017-09-08 电子科技大学 一种抗热冲击的高温复合绝缘层及制备方法
CN109338290A (zh) * 2018-11-02 2019-02-15 中国航空工业集团公司上海航空测控技术研究所 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN109536892A (zh) * 2019-01-17 2019-03-29 电子科技大学 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
CN111524803A (zh) * 2020-03-19 2020-08-11 浙江大学 一种用于高温传感的多层复合薄膜电极及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
禹庆荣,陈特超.离子束溅射制备的氧化钽层的绝缘特性.微细加工技术.2002,(第04期), *
高温绝缘薄膜及其在薄膜传感器中的应用;王岩磊;中国优秀硕士学位论文全文数据库工程科技Ⅱ辑(第2期);第C031-555页 *

Also Published As

Publication number Publication date
CN113862673A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN104726862B (zh) 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN103266320B (zh) 一种抗高温氧化薄膜传感器及其生产方法
CN102212823B (zh) 在合金基板上设置薄膜传感器的方法
CN104149416B (zh) 一种金属基高温绝缘层及其制备方法
CN107574415B (zh) 一种金属基薄膜传感器用渐变过渡层及制备方法
CN110606740A (zh) 高熵稀土铪酸盐陶瓷材料及其制备方法
CN114349502B (zh) 一种低热膨胀的热/环境障涂层用钛掺杂铪酸镧陶瓷及其制备方法
CN105970168B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
CN107012425B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
JP4612955B2 (ja) 断熱被覆
CN110129729A (zh) 镍基合金表面NiCrAlY/NiCrAlY-YSZ/YSZ热障涂层及其制备方法
Liu et al. Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments
CN113981366B (zh) 热障涂层的制备方法、热障涂层和涡轮转子叶片
CN113512702B (zh) 一种单相β-NiAl粘结层及其制备方法
CN113862673B (zh) 发动机叶片薄膜传感器用高温绝缘层及其制备方法
CN107244944A (zh) 一种带抗氧化涂层的炭/炭复合材料及其制备方法和应用
CN113373408B (zh) 一种镝掺锆酸钆热障涂层材料及涂层的制备方法
CN109536892B (zh) 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
CN104789926A (zh) 一种金属基薄膜传感器的制备方法
CN108106748B (zh) 一种柔性烧蚀电阻薄膜及其制备方法
CN115198271B (zh) 一种高热匹配性热障涂层及其制备方法与应用
CN113755793B (zh) 一种薄膜传感器用抗氧化自修复防护层及其制备方法
CN115305443B (zh) 一种锆基非晶多组元氧化物涂层的制备方法及应用
CN106756848B (zh) 一种金属基高温组合绝缘层及其制备方法
CN103921500A (zh) 一种薄膜应变计及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant