CN113755793B - 一种薄膜传感器用抗氧化自修复防护层及其制备方法 - Google Patents

一种薄膜传感器用抗氧化自修复防护层及其制备方法 Download PDF

Info

Publication number
CN113755793B
CN113755793B CN202110993606.XA CN202110993606A CN113755793B CN 113755793 B CN113755793 B CN 113755793B CN 202110993606 A CN202110993606 A CN 202110993606A CN 113755793 B CN113755793 B CN 113755793B
Authority
CN
China
Prior art keywords
film
sputtering
protective layer
thickness
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110993606.XA
Other languages
English (en)
Other versions
CN113755793A (zh
Inventor
赵晓辉
梁玉婷
刘洋
蒋洪川
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110993606.XA priority Critical patent/CN113755793B/zh
Publication of CN113755793A publication Critical patent/CN113755793A/zh
Application granted granted Critical
Publication of CN113755793B publication Critical patent/CN113755793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种薄膜传感器用抗氧化自修复防护层,属于薄膜传感器技术领域。所述自修复防护层包括依次设置于敏感功能层之上的Y‑Al‑O薄膜、Si3N4薄膜和Al2O3薄膜;其中,所述Y‑Al‑O薄膜的厚度为50‑500nm,Si3N4薄膜的厚度为0.5‑2.0μm,Al2O3薄膜的厚度为1‑5μm。本发明利用Y‑Al‑O/Si3N4薄膜在高温下形成Y‑Al‑Si‑O‑N玻璃相陶瓷的自修复效应,在1200℃以上的高温环境中对传感器防护层薄膜产生的微裂纹、空洞以及其他晶体缺陷进行修复,提升高温环境下传感器的抗氧化、抗蠕变、抗热震和抗热蚀性能。

Description

一种薄膜传感器用抗氧化自修复防护层及其制备方法
技术领域
本发明属于薄膜传感器技术领域,具体涉及一种薄膜传感器用抗氧化自修复防护层,特别是关于测量航空航天领域热端部件表面状态参数用薄膜传感器的高温防护技术。
背景技术
随着航空航天飞行器性能的不断提升,其核心热端部件,如高超音速飞行器的热结构、鼻锥,航空发动机燃烧室内壁及涡轮叶片等,其工作温度不断提升,最高工作温度往往达到1200℃以上,并且温度急剧升高的过程中同时承受着复杂的应变,严重影响着飞行器的性能及安全。因此,在现代航空航天飞行器设计和试验研究中,准确测量核心热端部件表面温度及应变等性能参数对飞行器的研制至关重要。
与传统的线性或者块材型的传感器相比,薄膜传感器直接沉积在部件的表面,具有与部件一体化集成、尺寸小、质量轻、热容小、响应速度快、对待测部件与环境影响较小等优点,在工作温度较高的热端部件设计验证试验中具有极大的应用前景。当前常采用热电偶材料体系作为主要的航空发动机传感器测温技术所用材料体系,其中主要有中、低温的NiCr/NiSi系K型热电偶;1000~1200℃高温测试有PtRh/Pt系S型、R型热电偶;在1400℃超高温条件下,主要材料体系为WRe系热电偶;在测试应变的技术上,常采用NiCr、PdCr合金及TaN氮化物等材料制作应变计。这些敏感功能材料对氧都十分敏感,在高温、高压的富氧化环境中,均容易发生氧化反应,导致敏感性能衰减,从而使器件的可靠性和使用寿命下降。
薄膜传感器防护层可以在高温恶劣环境下保护薄膜传感器,有效阻挡外部的氧扩散,显著降低敏感功能薄膜的氧化速率。常用的防护层材料是氧化铝薄膜,但其也存在一些不足,因为Al2O3的热膨胀系数与敏感薄膜相差较大,在高温环境下容易因为热应变导致应力集中,从而产生微裂纹,同时,在Al2O3薄膜内部存在的大角度晶界、空洞及其他晶体缺陷。这些裂纹和缺陷形成了元素扩散的快速通道,从而使防护层的高温氧扩散阻挡效果急剧下降。并且单一Al2O3防护层在高温环境中所产生的裂纹和缺陷是不可修复的,最终使得防护层不能对敏感功能层进行有效的防护,所以无法满足航空发动机薄膜传感器更高的发展需求。由于单一防护层技术的不足,复合保护层目前受到了很大关注,例如ZrB2和Al2O3复合防护层,增强了传感器抗氧化和耐腐蚀的性能,但是防护层与敏感功能薄膜之间仍存在一定晶体缺陷、热失配,在高温环境下应力释放可能诱导产生微裂纹,形成氧扩散通道使得敏感功能材料被氧化。还有公开号CN105675160A公开的Al2O3薄膜和非晶碳化硅薄膜复合保护层,增加了薄膜传感器的使用寿命,但在室温下,碳化硅能与钨发生反应生成硅化钨和碳化钨,高温时反应更为明显,并且在1400℃以上,碳化硅电阻率变得较小而具有导电性,同时Al2O3薄膜高温电阻特性无法满足绝缘要求,无法满足高温条件下对薄膜传感器的保护需求。因此,目前的复合防护层也存在高温环境下应力释放诱导产生微裂纹、空洞以及其他缺陷,并且产生的缺陷是不可修复的,最终导致敏感功能材料被氧化,存在防护效果不足的问题。
发明内容
本发明的目的在于,针对背景技术存在的不足,提出了一种薄膜传感器用抗氧化自修复防护层及其制备方法。本发明利用Y-Al-O/Si3N4薄膜在高温下形成Y-Al-Si-O-N玻璃相陶瓷的自修复效应,在1200℃以上的高温环境中对传感器防护层薄膜产生的微裂纹、空洞以及其他晶体缺陷进行修复,提升高温环境下传感器的抗氧化、抗蠕变、抗热震和抗热蚀性能。
为实现上述目的,本发明采用的技术方案如下:
一种薄膜传感器用抗氧化自修复防护层,其特征在于,所述自修复防护层包括依次设置于敏感功能层之上的Y-Al-O薄膜、Si3N4薄膜和Al2O3薄膜;其中,所述Y-Al-O薄膜的厚度为50-500nm,Si3N4薄膜的厚度为0.5-2.0μm,Al2O3薄膜的厚度为1-5μm。
一种薄膜传感器用抗氧化自修复防护层的制备方法,其特征在于,包括以下步骤:
步骤1、在敏感功能层上通过磁控溅射沉积一层Y-Al-O非晶薄膜;
将溅射腔体抽真空至真空度为8×10-4Pa以下,以纯度不低于99.99wt.%的Y-Al合金靶作为溅射靶材,Y和Al的质量比为1:(2~6),溅射功率为100W-120W,溅射气体为氩气和氧气的混合气体,溅射气压为0.35Pa-0.5Pa,其中,氩气气体流量为23-48sccm,氧气气体流量为0.8-2sccm,溅射完成后,得到厚度为50-500nm的Y-Al-O薄膜;
步骤2、在步骤1制备的Y-Al-O薄膜上,采用离子束增强沉积法(IBED)制备Si3N4薄膜;
以氮气作为离子注入源,硅作为电子束加热的蒸发源,注入束流能量为40KeV-220KeV,硅的蒸发速率为
Figure BDA0003233107390000031
离子数量比N+:N2 +=(0.7-1):1,沉积时间为2h-6h,沉积完成后,得到厚度为0.5-2.0μm的Si3N4薄膜;
步骤3、在步骤2制得的Si3N4薄膜上制备Al2O3薄膜;
以纯度不低于99.99wt.%的高纯Al靶为靶材,采用反应溅射的方法,在真空度为8×10-4Pa以下的条件下向真空室内通入O2和Ar的混合溅射气体,氩气气体流量为23-48sccm,氧气气体流量为0.8-2sccm,溅射气压为0.35Pa-0.5Pa,制备得到覆盖的Al2O3层;之后将其放置于真空退火炉中,在8.0×10-4Pa以下的真空环境中进行退火处理,退火温度为1000℃-1300℃,退火时间为2h,即可在Si3N4薄膜上形成厚度为1-5μm的Al2O3薄膜,得到所述抗氧化自修复防护层。
与现有技术相比,本发明的有益效果为:
1、本发明提出了一种薄膜传感器用抗氧化自修复防护层结构,自下而上依次为Y-Al-O薄膜、Si3N4薄膜和Al2O3薄膜。其中,Y-Al-O薄膜热膨胀系数与钨铼、铂铑等敏感材料较为接近,因此具有较好的热匹配,在高温环境下热应力较小,可以增强防护层的附着力。同时,Y-Al-O薄膜的非晶结构可以消除薄膜内部的大角度晶界,从而有效阻挡敏感层与外界环境之间的原子扩散。此外,Y与Al价态相同,所形成的氧化物缺陷较少。同时,Y-Al-O薄膜和Si3N4薄膜在1200℃以上的高温下发生化学反应形成Y-Al-Si-O-N玻璃陶瓷,该玻璃相陶瓷在高温下具有一定的流动性,可以有效填补防护层薄膜内部的空洞、微裂纹等缺陷。并且Y-Al-Si-O-N玻璃陶瓷的这种自修复效应可以显著提升传感器高温抗氧化、抗蠕变、抗热震和抗热蚀性能。
2、本发明薄膜传感器用抗氧化自修复防护层中,Si3N4薄膜不仅耐高温,而且热导性很好,对传感单元温度应变测试影响较小。本发明采用IBED制备氮化硅薄膜有以下优点:较高真空下沉积得到的薄膜氧化程度低;在界面区存在混合层,使得膜的结合强度明显提高,增强薄膜的附着力,提高薄膜的稳定性;膜厚不受离子能量的限制,虽然该方法制备的氮化硅薄膜存在较多缺陷,但这也使得氮化硅薄膜较容易在高温下与Y-Al-O薄膜形成Y-Al-Si-O-N玻璃相陶瓷。这种方法制备的薄膜高温抗蠕能力强、耐腐蚀、抗氧化,可有效抵御航空航天部件工作时腐蚀性气体对薄膜传感器的侵蚀,延长薄膜传感器的使用寿命。
3、本发明薄膜传感器用抗氧化自修复防护层中的Al2O3薄膜可阻挡高温环境下外界向薄膜传感器内部的氧扩散,大幅度减缓其氧化速度;其次,可有效抑制Y-Al-O薄膜和Si3N4薄膜在高温条件下反应生成Y-Al-Si-O-N玻璃陶瓷随着温度升高而产生的挥发,并且氧化铝与氮化硅热膨胀系数接近,能够保证防护层内部界面的结合力,有效提高氮化硅及Y-Al-O薄膜高温结构稳定性,从而提高防护层的使用寿命。
附图说明
图1为实施例提供的一种基于本发明抗氧化自修复防护层的薄膜传感器的结构示意图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例
如图1所示,为实施例提供的基于本发明抗氧化自修复防护层的薄膜传感器的结构示意图;自下而上依次为陶瓷基板、ITO-Pt薄膜热电偶正负热电极、Y-Al-O薄膜、Si3N4薄膜、Al2O3薄膜。
实施例提供的基于本发明抗氧化自修复防护层的陶瓷基底薄膜传感器的制备方法,具体包括以下步骤:
步骤1、陶瓷基板的表面处理:首先对陶瓷基板的表面进行抛光处理,然后采用工业去油剂、丙酮、酒精和去离子水先后对基底表面进行超声清洗10分钟,再用氮气枪吹干,烘干残留水分,镀膜前采用无水乙醇清洗基板;
步骤2、ITO-Pt薄膜热电偶正负热电极的制备:采用直流、射频磁控溅射与硬质掩膜的方法,将ITO-Pt热电偶正极与负极先后分别沉积于经步骤1处理后的陶瓷基板上,两种薄膜材料在被测点相互重叠形成结点。其中,具体工艺参数:首先制备铂电极时,以纯度不低于99.99wt.%Pt靶为溅射靶材,背底真空度8×10-4Pa,工作气压0.4Pa,溅射功率120W,溅射气体为氩气,氩气气体流量为25sccm,溅射时间30min,采用直流磁控溅射的方法制备铂电极;其次,制备ITO电极时,靶材为铟锡氧化物(In2O3:SnO2=90:10wt.%)靶,背底真空度8×10-4Pa,溅射气体为氩气,氩气流量为25sccm,溅射功率为150W,工作气压为0.8Pa,溅射时间74min,采用射频磁控溅射制备ITO电极,制备的ITO-Pt薄膜热电偶正负极的厚度约为1μm;
步骤3、Y-Al-O非晶氧化物薄膜制备:
采用磁控溅射镀膜设备,在步骤2制得的ITO-Pt薄膜热电偶敏感功能层上通过射频磁控溅射沉积一层Y-Al-O非晶薄膜;将溅射腔体抽真空至真空度为8×10-4Pa以下,以纯度不低于99.99wt.%的Y-Al合金靶(Y:Al=20wt%:80wt%)作为溅射靶材,溅射功率为100W,溅射气体为氩气和氧气的混合气体,溅射气压为0.4Pa,其中,氩气气体流量为24sccm,氧气气体流量为1sccm,溅射完成后,得到厚度为500nm的Y-Al-O薄膜;
步骤4、Si3N4薄膜制备:在上步得到的Y-Al-O薄膜上,采用离子束增强沉积法(IBED)制备Si3N4薄膜;以氮气作为离子注入源,以纯度不低于99.999wt.%的硅作为电子束加热的蒸发源,控制氮离子注入束流能量为40KeV,硅的蒸发速率为
Figure BDA0003233107390000051
控制束流中离子数量比N+:N2 +=0.75:1,沉积时间为2h,沉积完成后,得到厚度为0.5μm的Si3N4薄膜;
步骤5、Al2O3薄膜的制备:在上步得到的Si3N4薄膜上制备Al2O3薄膜;
以纯度不低于99.99wt.%的高纯Al靶为靶材,采用反应溅射的方法,在背底真空度为8×10-4Pa的条件下向真空室内通入O2和Ar的混合溅射气体,氩气气体流量为24sccm,氧气气体流量为1sccm,溅射气压为0.4Pa,溅射时间为6h,制备得到覆盖的Al2O3层;然后将其放置于真空退火炉中,在8.0×10-4Pa以下的真空环境中进行退火处理,退火温度为1000℃,退火时间为2h,即可在Si3N4薄膜上形成厚度为5μm的Al2O3薄膜;从而得到带抗氧化自修复防护层的薄膜热电偶结构。
本实施例制备的抗氧化自修复防护层的薄膜热电偶传感器能够应用的温度可以达到1400℃。传统方法制备的ITO-Pt薄膜热电偶传感器在1000℃高温环境下能稳定持续工作5h左右,而本例制备的抗氧化自修复防护层的薄膜传感器,在1200℃高温环境下生成的Y-Al-Si-O-N玻璃相陶瓷,所产生的自修复效应提高了薄膜结构的稳定性,延长了传感器的稳定持续工作时长至10h以上。并且该结构的防护层有效阻挡了高温环境下氧原子向功能层的扩散,使传感器在高温环境下能稳定工作。

Claims (2)

1.一种薄膜传感器用抗氧化自修复防护层,其特征在于,所述自修复防护层包括依次设置于敏感功能层之上的Y-Al-O薄膜、Si3N4薄膜和Al2O3薄膜;其中,所述Y-Al-O薄膜的厚度为50-500nm,Si3N4薄膜的厚度为0.5-2.0μm,Al2O3薄膜的厚度为1-5μm。
2.一种薄膜传感器用抗氧化自修复防护层的制备方法,其特征在于,包括以下步骤:
步骤1、在敏感功能层上通过磁控溅射沉积一层Y-Al-O非晶薄膜;
将溅射腔体抽真空至真空度为8×10-4Pa以下,以Y-Al合金靶作为溅射靶材,Y和Al的质量比为1:(2~6),溅射功率为100W-120W,溅射气体为氩气和氧气的混合气体,溅射气压为0.35Pa-0.5Pa,其中,氩气气体流量为23-48sccm,氧气气体流量为0.8-2sccm,溅射完成后,得到厚度为50-500nm的Y-Al-O薄膜;
步骤2、在步骤1制备的Y-Al-O薄膜上,采用离子束增强沉积法制备Si3N4薄膜;
以氮气作为离子注入源,硅作为电子束加热的蒸发源,注入束流能量为40KeV-220KeV,硅的蒸发速率为
Figure FDA0003233107380000011
离子数量比N+:N2 +=(0.7-1):1,沉积时间为2h-6h,沉积完成后,得到厚度为0.5-2.0μm的Si3N4薄膜;
步骤3、在步骤2制得的Si3N4薄膜上制备Al2O3薄膜;
以纯度不低于99.99wt.%的高纯Al靶为靶材,采用反应溅射的方法,在真空度为8×10-4Pa以下的条件下向真空室内通入O2和Ar的混合溅射气体,氩气气体流量为23-48sccm,氧气气体流量为0.8-2sccm,溅射气压为0.35Pa-0.5Pa,制备得到Al2O3层;然后放置于真空退火炉中,在8.0×10-4Pa以下的真空环境中进行退火处理,退火温度为1000℃-1300℃,退火时间为2h,即可在Si3N4薄膜上形成厚度为1-5μm的Al2O3薄膜,得到所述抗氧化自修复防护层。
CN202110993606.XA 2021-08-27 2021-08-27 一种薄膜传感器用抗氧化自修复防护层及其制备方法 Active CN113755793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110993606.XA CN113755793B (zh) 2021-08-27 2021-08-27 一种薄膜传感器用抗氧化自修复防护层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110993606.XA CN113755793B (zh) 2021-08-27 2021-08-27 一种薄膜传感器用抗氧化自修复防护层及其制备方法

Publications (2)

Publication Number Publication Date
CN113755793A CN113755793A (zh) 2021-12-07
CN113755793B true CN113755793B (zh) 2022-10-14

Family

ID=78791577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110993606.XA Active CN113755793B (zh) 2021-08-27 2021-08-27 一种薄膜传感器用抗氧化自修复防护层及其制备方法

Country Status (1)

Country Link
CN (1) CN113755793B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812843B (zh) * 2022-04-11 2023-04-11 北京交通大学 基于多层膜热防护的高温传感器及其制备方法
CN117865711A (zh) * 2023-12-25 2024-04-12 江苏富乐华功率半导体研究院有限公司 一种提高覆铜陶瓷基板剥离强度可靠性的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260075A (ja) * 1999-03-04 2000-09-22 Kyocera Corp 光磁気記録媒体
CN103266320B (zh) * 2013-05-30 2016-01-20 电子科技大学 一种抗高温氧化薄膜传感器及其生产方法
CN104726862B (zh) * 2015-03-10 2018-06-19 电子科技大学 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN106498355B (zh) * 2016-10-20 2018-08-21 电子科技大学 一种高温薄膜传感器用抗氧化复合防护层及其制造方法
CN112601368A (zh) * 2021-02-04 2021-04-02 曹建峰 一种基于金属基底的薄膜传感器绝缘层复合结构

Also Published As

Publication number Publication date
CN113755793A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN113755793B (zh) 一种薄膜传感器用抗氧化自修复防护层及其制备方法
CN106498355B (zh) 一种高温薄膜传感器用抗氧化复合防护层及其制造方法
CN107012425B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
CN105970168B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
CN107574415B (zh) 一种金属基薄膜传感器用渐变过渡层及制备方法
CN103266320B (zh) 一种抗高温氧化薄膜传感器及其生产方法
CN107267944B (zh) 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法
CN104149416B (zh) 一种金属基高温绝缘层及其制备方法
CN104726862B (zh) 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN111076836B (zh) 一种金属-氧化物型薄膜热电偶及其制备方法
CN110987215A (zh) 一种检测热障涂层隔热效果的薄膜温度传感器
Liu et al. Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments
Liu et al. High temperature protection performance of sandwich structure Al2O3/Si3N4/YAlO multilayer films for Pt–Pt10% Rh thin film thermocouples
CN113174569B (zh) 制备晶面择优取向氧化铟锡-氧化铟锌薄膜热电偶的方法
CN107201502A (zh) 一种带自愈合复合防护层的高温薄膜传感器及其制备方法
CN109536892B (zh) 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
Liu et al. Effect of nitrogen partial pressure on the TCR of magnetron sputtered indium tin oxide thin films at high temperatures
Zhao et al. High temperature thermoelectric properties of nitrogen doped ITO thin films
CN103921500B (zh) 一种薄膜应变计及其制备方法
CN106756848B (zh) 一种金属基高温组合绝缘层及其制备方法
CN116399398A (zh) 一种应变温度双参量高温薄膜传感器及其制备方法
CN113403594B (zh) 陶瓷基复合材料用耐高温、抗水氧低红外发射率复合薄膜及制备方法
CN112962012A (zh) 一种集抗氧化和阻界面扩散于一体的复合防护涂层及其制备方法
CN113862673B (zh) 发动机叶片薄膜传感器用高温绝缘层及其制备方法
CN117230408A (zh) 一种高温薄膜传感器用的抗氧化保护层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant