CN116399398A - 一种应变温度双参量高温薄膜传感器及其制备方法 - Google Patents

一种应变温度双参量高温薄膜传感器及其制备方法 Download PDF

Info

Publication number
CN116399398A
CN116399398A CN202310366441.2A CN202310366441A CN116399398A CN 116399398 A CN116399398 A CN 116399398A CN 202310366441 A CN202310366441 A CN 202310366441A CN 116399398 A CN116399398 A CN 116399398A
Authority
CN
China
Prior art keywords
layer
film
temperature
thickness
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310366441.2A
Other languages
English (en)
Inventor
赵晓辉
谭杰
彭斌
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310366441.2A priority Critical patent/CN116399398A/zh
Publication of CN116399398A publication Critical patent/CN116399398A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明属于薄膜传感器技术领域,尤其是对工作在高温、高压、高应力的航空发动机热端部件,具体提供一种应变温度双参量高温薄膜传感器及其制备方法。本发明采用新型复合绝缘层结构,自下而上依次叠层的微晶AlN层、非晶Al‑O‑N层和Al2O3绝缘层形成渐变过渡结构,各层结构化学键类型相似且热膨胀系数相近,有效地提高各层之间的附着性能;其中,微晶AlN层有效地促进了衬底向敏感薄膜的热量传递,提高了薄膜热电偶测温精度,并为薄膜应变计提供精确的温度补偿。同时,敏感功能层采用薄膜应变计和薄膜热电偶的不对称双结构设计,有效降低PtRh薄膜对应变测试产生的影响,提高高温应变测试的准确性,实现部件表面应变温度双参量的同位同时监测。

Description

一种应变温度双参量高温薄膜传感器及其制备方法
技术领域
本发明属于薄膜传感器技术领域,尤其是对工作在高温、高压、高应力的航空发动机热端部件,此类薄膜传感器可同位同时准确监测工作状态下热端部件的表面应变、温度等状态参数;具体提供一种应变温度双参量高温薄膜传感器及其制备方法。
背景技术
航空发动机作为航空飞行器的动力核心部件,长期工作在极端高温和强气流冲刷的极限恶劣环境下,并为了满足大推重比、高马赫数等性能要求,其工作温度也随之不断攀升,进而严重影响航空飞行器的安全性、可靠性以及使用寿命。因此,准确获取热端部件的表面温度、应力等参数分布信息对航空发动机的设计和性能改进具有重要意义。
薄膜传感器具有体积小、质量轻、响应快、无需破坏被测部件的结构与物理性能等优点,因此受到研究人员的广泛关注并成为航空发动机等热端部件状态参数测试的主要技术。薄膜传感器主要有薄膜热电偶、薄膜应变计等,与待测部件一体化集成的薄膜热电偶用于极端高温环境下的测温需求,而感知应力/应变变化的薄膜应变计用于预测叶片的疲劳寿命和及时预警故障。薄膜应变计的电阻不仅随机械应变变化,而且随温度也会发生变化,在高温环境下容易带来显著的测量误差,甚至完全掩盖应变信号。传统的薄膜热电偶和薄膜应变计的功能过于单一,只能测量温度或者应变其中一项参数,即使制备在同一部件上,当部件表面存在较大的温度梯度时,薄膜热电偶所测试的温度数据也无法为薄膜应变计提供精确的温度补偿。因此,研究一种应变、温度双参量同位同时监测的高温薄膜传感器对航空发动机等热端部件的发展具有重要意义。
常用于测量航空发动机等热端部件表面参数的薄膜传感器采用多层膜结构,自下而上依次为Ni基合金基底、NiCrAlY过渡层、热生长Al2O3层、Al2O3绝缘层、敏感功能层和保护层;其中,连接敏感功能层和热生长Al2O3层的绝缘层对薄膜传感器的性能具有至关重要的影响。Al2O3绝缘层和合金衬底间的热膨胀系数存在较大的差异,Al2O3绝缘层增厚到一定值后,会由于应力作用而开裂脱落;并且在后期制备敏感功能层时,由于溅射出的金属原子能量较高,极易穿透疏松的Al2O3绝缘层而与下层合金层导通,极易导致薄膜传感器失效。同时,由于Al2O3的热导率较低,Al2O3绝缘层的存在无法使得热端部件的热量更好的向上传导到敏感功能层,极大的降低了薄膜传感器温度测试的准确性。因此,亟需一种渐变过渡的复合绝缘层结构来增强附着力并且提供精确的温度补偿。
在申请号为CN201610524876.5、专利名称为:一种薄膜传感器用复合绝缘层及其制备方法的专利文献中提出了一种新型的复合绝缘层,其在热生长Al2O3层上首先采用射频反应溅射生长一层非晶Al-O-N薄膜,然后再溅射一层Al-O-N~Al2O3的成分渐变过渡层,再采用电子束蒸发沉积Al2O3薄膜层,非晶Al-O-N薄膜作为金属原子扩散阻挡层,中间的过渡层用于改善位于其下的Al-O-N层和位于其上的Al2O3层之间的附着力,上层的Al2O3微晶层用于阻挡氧原子向膜内扩散,该复合绝缘层有效防止了Al2O3的开裂脱落,并且阻止了金属原子的扩散;然而,由于Al2O3的热导率较低无法为传感器提供精确的温度补偿。因此,为了改善薄膜传感器的测试精准度,实现应变温度信号的同位同时监测,亟需新型的复合绝缘层及敏感层的设计与制备方法。
发明内容
本发明的目的在于针对上述技术背景中存在的缺陷与不足,提出一种应变温度双参量高温薄膜传感器及其制备方法。本发明在热生长Al2O3层上首先采用直流反应溅射生长一层微晶AlN薄膜,然后溅射生长一层非晶Al-O-N薄膜,再溅射生长一层Al2O3薄膜,形成一种渐变过渡的复合绝缘层结构,该复合绝缘层中的AlN、Al-O-N和Al2O3的化学键类型相似,并且通过调整溅射工艺,能够在一次溅射过程完成三层薄膜的制备,减少了多次工艺容易引发的薄膜界面污染,因此具有较强的界面结合力;其中,AlN作为一种高热导率材料,其理论热导率高达320W*m-1*K-1(是Al2O3的5~8倍),有效地促进了衬底向敏感薄膜的热量传递,提高了温度测试的准确性。同时,敏感功能层采用薄膜应变计和薄膜热电偶的双结构设计,PtW作为应变敏感材料用于感知应变变化,PtW/PtRh作为薄膜热电偶的材料用于测试温度;由于薄膜热电偶的热电势大小与电极直径、长度及厚度无关,因此设计PtW和PtRh线条具有不同的厚度、宽度以及面积,这种不对称设计的PtW和PtRh线条使得PtW薄膜的电阻较大而PtRh薄膜的电阻较小,有效地降低了PtRh薄膜对应变测试产生的影响;另外,由于整个器件的尺寸较小,PtW薄膜和PtRh薄膜交叠区域(测温端)的测试温度可近似为整个器件的平均温度,通过温度测试数据对应变测试进行温度补偿,有效提高高温应变测试的准确性。
为实现上述目的,本发明采用的技术方案如下:
一种应变温度双参量高温薄膜传感器,包括:自下而上依次层叠设计的合金基板、NiCrAlY过渡层、热生长Al2O3层、复合绝缘层、温度/应变敏感功能层与保护层;其特征在于,所述复合绝缘层由自下而上依次层叠设计的微晶AlN层、非晶Al-O-N层和Al2O3绝缘层构成。
进一步的,所述微晶AlN层的厚度为0.1~1μm,非晶Al-O-N层的厚度为0.1~1μm,Al2O3绝缘层的厚度为1~2m,复合绝缘层的厚度为2~4μm。
进一步的,所述温度/应变敏感功能层包括:PtW薄膜与PtRh薄膜,所述PtW薄膜形成蛇形结构薄膜应变计;所述PtW薄膜与PtRh薄膜部分交叠形成薄膜热电偶,PtRh薄膜厚度大于PtW薄膜、且于交叠区域完全覆盖PtW薄膜,PtW薄膜与PtRh薄膜交叠区域作为测温端;所述PtW薄膜的厚度为100~300nm,线宽为20~50μm,所述PtRh薄膜的厚度为200~400nm的PtRh薄膜,线宽为100~140μm。
进一步的,上述应变温度双参量高温薄膜传感器的制备方法,包括以下步骤:
步骤1.合金基板的表面处理:首先对合金基板表面进行抛光处理,然后依次使用丙酮、乙醇和去离子水对合金基板表面进行超声清洗各10~15min,最后采用乙醇清洗基板表面并用氮气枪吹干;
步骤2.NiCrAlY合金过渡层的制备:使用质量百分比不低于99.9%的NiCrAlY合金靶作为靶材,在背底真空度为5×10-3Pa以下的真空腔体中通入氩气至溅射气压为0.3~0.6Pa,其中,氩气流量为35~45sccm,采用直流溅射的方法将NiCrAlY合金沉积在经步骤1清洗干净的合金基板上,NiCrAlY合金过渡层的厚度为14~18μm;
步骤3.热生长Al2O3层的制备:将经步骤2处理后得到的复合基板置于真空退火炉内,在5×10-3Pa以下的真空环境以及800~1200℃温度条件下析铝5~8小时;然后,保持750~950℃温度并通入氧气至常压,氧化处理10~14小时;最后,控温冷却至室温,得到表面覆盖NiCrAlY合金过渡层及热生长Al2O3层的复合基板;
步骤4.AlN微晶层的制备:使用纯度不低于99.9wt%金属Al作为靶材,将经步骤3处理后的复合基板置于背底真空度为5×10-3Pa以下的真空腔体中并通入氮气和氩气至溅射气压为0.3~0.9Pa,采用直流反应溅射的方法制备AlN微晶层,其厚度为0.1~1μm,溅射功率为90~130W;氮气流量为30~40sccm,氩气流量为10~20sccm;
步骤5.非晶Al-O-N扩散阻挡层的制备:在步骤4制备完成AlN的基础上,在背底真空度为5×10-3Pa以下的真空腔体中通入氩气、氧气和氮气至溅射气压为0.3~0.6Pa,采用直流反应溅射的方法在步骤4处理后带有AlN微晶层的复合基板上沉积一层非晶Al-O-N层,其厚度为0.1~1μm,溅射功率为90~130W;氩气流量为22~26sccm,氧气流量为0.8~1.5sccm和氮气流量为48~53sccm;
步骤6.Al2O3绝缘层的制备:在步骤5制备完成非晶Al-O-N的基础上,改变溅射气氛比例,使氧氩混气的流量增加5~10sccm而氮气的流量减少5~10sccm后溅射15~20min,这样重复5~7次后使腔体里的气氛只含氩氧混气而不含氮气顺利过渡到Al2O3所需的制备环境当中,采用直流反应溅射的方法在步骤5处理后带有非晶Al-O-N层的复合基板上沉积一层Al2O3绝缘层,其厚度为1~2μm,溅射功率为90~120W;氩气流量为46~50sccm,氧气流量为1.8~2.5sccm;
步骤7.敏感功能层的制备:将步骤6处理后的复合基板置于80~100℃的热烘台上热烘8~12min后,将其放置在室温下冷却10~15min,然后使用旋涂机在复合基板上均匀旋涂一层负性光刻胶并在80~100℃下热烘0.5~1.5min,冷却后将其进行曝光1~2s后并置于100~120℃下热烘1~2min,再泛曝光40~45s后进行显影处理,得到敏感功能层的图形;将上述处理后带有图形的复合基板置于真空度为5×10-3Pa以下的真空腔体中,通入氩气至溅射气压稳定在0.3~0.5Pa之间,氩气流量为15~35sccm,先在图形的一侧溅射一层厚度为100~300nm的PtW薄膜,其线宽为20~50μm,然后在图形的另一侧溅射一层厚度为200~400nm的PtRh薄膜,其线宽为100~140μm;最后,将镀膜后的复合基板置于丙酮溶液中,通过剥离工艺后可得到带有PtW和PtRh的敏感功能层;
步骤8.Al2O3保护层的制备:在步骤7制备完成的敏感功能层的基础上,使用纯度不低于99.9wt%金属Al作为靶材,在背底真空度为5×10-3Pa以下的真空腔体中通入氩气和氧气至溅射气压为0.3~0.6Pa,采用直流反应溅射的方法制备Al2O3保护层,其厚度为1~3μm;
步骤9.退火处理:在真空度为5×10-4Pa、温度为800~1000℃的真空环境中退火处理2~3小时,得到所述薄膜传感器。
基于上述技术方案,本发明的有益效果在于:
1、本发明采用一种新型复合绝缘层结构,包括依次沉积于热生长Al2O3层上的微晶AlN薄膜、非晶Al-O-N薄膜和Al2O3薄膜,各层结构的化学键类型相似并且热膨胀系数相近,结合牢固的键合形成了一种渐变过渡结构,能够有效地提高各层之间的附着性能;并且三层结构在制备过程中可以通过改变通入气体的种类及流量大小等溅射工艺参数,一次完成制备过程,有效地提高了制备效率;其中,AlN具有高的热导率,是Al2O3的5~8倍,在不增加绝缘层厚度的前提下,制备一层微晶AlN薄膜能有效地提高热量在复合绝缘层中的传导效率,极大地提高了薄膜热电偶温度测试的精准度,同时为薄膜应变计提供更加精确的温度补偿,有效地提高了高温应变测试的准确性;同时,通过AlON的非晶流变效应以及微晶AlN层能够有效释放合金基板与复合绝缘层之间的热应力,从而减少复合绝缘层之间微裂纹的产生,更进一步提高复合绝缘层的高温绝缘性能。
2、本发明中的薄膜传感器的敏感功能层采用薄膜应变计和薄膜热电偶的双结构设计,其中,用于薄膜应变计的PtW具有高的抗张强度、电阻率和电阻应变灵敏系数,电阻温度系数低,在高温下抗氧化性优良,性能稳定并且溅射成分均一,非常适用于应变测试;同时,PtRh具有热电性能稳定、抗氧化性强,适宜在氧化性、惰性气氛中连续使用等优点;溅射制备具有不同线宽和膜厚的PtW薄膜和PtRh薄膜,有效地降低了PtRh薄膜对应变测试产生的影响,提高应变测试的准确性。其中,PtW和PtRh的交叠区域为薄膜热电偶的热端(测温端),由于整个器件的尺寸较小,测温端的测试温度可近似为整个器件的平均温度;该结构充分利用了薄膜应变计和薄膜热电偶的各自优势,通过后端设置不同的测试电路,能够实现在应变和温度之间快速切换测试,从而实现部件表面应变温度双参量的同位同时监测。
附图说明
图1为本发明提供的应变温度双参量高温薄膜传感器的整体结构示意图(剖视图);自下而上依次是合金基板、NiCrAlY过渡层、热生长Al2O3层、微晶AlN薄膜、Al-O-N薄膜、Al2O3薄膜、温度/应变敏感层和Al2O3防护层。
图2为本发明提供的应变温度双参量高温薄膜传感器的中温度/应变敏感功能层的结构示意图;其中,1为PtW薄膜、2为测温端、3为PtRh薄膜、4为PtW电极、5为PtRh电极。
具体实施方式
为使本发明的目的、技术方案与有益效果更加清楚明白,下面结合附图和实施例对本发明做进一步详细说明。
实施例1
本实施例提供一种温度应变同位同时监测的高精度薄膜传感器,其结构如图1所示,自下而上依次是合金基板、NiCrAlY过渡层、热生长Al2O3层、微晶AlN薄膜、Al-O-N薄膜、Al2O3薄膜、温度/应变敏感层和Al2O3防护层;由以下步骤制备得到:
步骤1.合金基板的表面处理:选取尺寸为50mm×20mm×3mm的镍基合金作为被测样品的基板;首先对样品基板表面进行抛光处理,然后依次使用丙酮、乙醇和去离子水对样品基板表面进行超声清洗各10min,镀膜前采用乙醇清洗样品基板表面并用氮气枪吹干;
步骤2.NiCrAlY合金过渡层的制备:在背底真空度为8.0×10-4Pa的真空腔体中,使用质量百分比不低于99.9%的NiCrAlY合金靶作为靶材,采用直流溅射的方法将NiCrAlY合金沉积在经步骤1清洗干净的合金基板上,溅射气体为Ar、气体流量为40sccm、溅射气压为0.4Pa、溅射功率为200W、基底温度为450℃,NiCrAlY合金过渡层的厚度约为16μm;
步骤3.热生长Al2O3层的制备:将经步骤2处理后得到的复合基板置于真空退火炉内,在8×10-4Pa的真空条件下,以5℃/min的速率升温至1000℃,并在1000℃温度下保温6h用于析铝处理;然后,以5℃/min的速率控温冷却至900℃,并保持900℃温度并通入氧气(氧气流量为60sccm)至常压,氧化处理12h;最后,以5℃/min的速率控温冷却至室温,得到表面覆盖NiCrAlY合金过渡层及热生长Al2O3层的复合基板;
步骤4.AlN微晶层的制备:使用纯度不低于99.9wt%金属Al作为靶材,将经步骤3处理后的复合基板置于背底真空度为8.0×10-4Pa的真空腔体中,采用直流反应溅射的方法制备AlN微晶层,溅射气体为氮气和氩气,氮气流量为35sccm,氩气流量为15sccm,溅射气压为0.8Pa、溅射功率为120W、AlN微晶层的厚度约为500nm;
步骤5.非晶Al-O-N扩散阻挡层的制备:在步骤4制备完成AlN的基础上,在背底真空度为8.0×10-4Pa的真空腔体中通入氩气、氧气和氮气至溅射气压为0.4Pa,其中,氩气流量为24sccm,氧气流量为1sccm和氮气流量为50sccm、溅射功率为100w,采用直流反应溅射的方法制备非晶Al-O-N层,在步骤4处理后带有AlN微晶层的复合基板上沉积一层厚度约为0.5μm非晶Al-O-N层;
步骤6.Al2O3绝缘层的制备:在步骤5制备完成非晶Al-O-N的基础上,改变溅射气氛比例,使氧氩混气的流量增加5sccm而氮气的流量减少5sccm后溅射15min,这样重复6次后使腔体里的气氛只含氩氧混气而不含氮气顺利过渡到Al2O3所需的制备环境当中,氩气流量为48sccm,氧气流量为2.2sccm,采用直流反应溅射的方法制备Al2O3绝缘层,溅射气压为0.4Pa、溅射功率为100w、溅射时间为4.5h,在步骤5处理后带有非晶Al-O-N层复合基板上沉积一层厚度约为1μm的Al2O3绝缘层;
步骤7.敏感功能层的制备:将步骤6处理后的复合基板置于100℃的热烘台上热烘10min后,将其放置在室温下冷却10min,使用旋涂机在复合基板上均匀旋涂一层负性光刻胶并在100℃下热烘1min,冷却后将其进行曝光1.4s后并置于120℃下热烘1.5min,再泛曝光45s后进行显影处理,得到敏感功能层的图形;然后,将上述处理后的复合基板在其左侧和右侧采用直流溅射的方法分别制备一层PtW薄膜1和PtRh薄膜3,溅射气压为0.4Pa、溅射气体为Ar、气体流量为30sccm、溅射功率为120W、PtW薄膜的线宽和厚度约为40μm和200nm、PtRh薄膜的线宽和厚度约为120μm和400nm;最后,将镀膜后的复合基板置于丙酮溶液中,剥离后即可得到带有PtW和PtRh的敏感功能层;PtW薄膜1与PtRh薄膜3交叠区域作为测温端2,并对应引出PtW电极4与PtRh电极5;
步骤8.Al2O3保护层的制备:在步骤7制备完成的敏感功能层的基础上,使用纯度不低于99.9wt%金属Al作为靶材,在背底真空度为8.0×10-4Pa的真空腔体中通入氩气和氧气,采用直流反应溅射的方法制备Al2O3保护层,其中,氩气流量为48sccm,氧气流量为2.2sccm、溅射气压为0.4Pa、溅射功率为100w、得到厚度约为1.33μm的Al2O3保护层;
步骤9.退火处理:在真空度为5×10-4Pa、温度为800℃的真空环境中退火处理2小时,就得到所述薄膜传感器。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (4)

1.一种应变温度双参量高温薄膜传感器,包括:自下而上依次层叠设置的合金基板、NiCrAlY过渡层、热生长Al2O3层、复合绝缘层、温度/应变敏感功能层与保护层;其特征在于,所述复合绝缘层由自下而上依次层叠设置的微晶AlN层、非晶Al-O-N层和Al2O3绝缘层构成。
2.按权利要求1所述应变温度双参量高温薄膜传感器,其特征在于,所述微晶AlN层的厚度为0.1~1μm,非晶Al-O-N层的厚度为0.1~1μm,Al2O3绝缘层的厚度为1~2μm,复合绝缘层的厚度为2~4μm。
3.按权利要求1所述应变温度双参量高温薄膜传感器,其特征在于,所述温度/应变敏感功能层包括:PtW薄膜与PtRh薄膜,所述PtW薄膜形成蛇形结构薄膜应变计;所述PtW薄膜与PtRh薄膜部分交叠形成薄膜热电偶,PtRh薄膜厚度大于PtW薄膜、且于交叠区域完全覆盖PtW薄膜,PtW薄膜与PtRh薄膜交叠区域作为测温端;所述PtW薄膜的厚度为100~300nm,线宽为20~50μm,所述PtRh薄膜的厚度为200~400nm的PtRh薄膜,线宽为100~140μm。
4.按权利要求1所述应变温度双参量高温薄膜传感器的制备方法,其特征在于,包括以下步骤:
步骤1.合金基板的表面处理:首先对合金基板表面进行抛光处理,然后依次使用丙酮、乙醇和去离子水对合金基板表面进行超声清洗各10~15min,最后采用乙醇清洗基板表面并用氮气枪吹干;
步骤2.NiCrAlY合金过渡层的制备:使用质量百分比不低于99.9%的NiCrAlY合金靶作为靶材,在背底真空度为5×10-3Pa以下的真空腔体中通入氩气至溅射气压为0.3~0.6Pa,其中,氩气流量为35~45sccm,采用直流溅射的方法将NiCrAlY合金沉积在经步骤1清洗干净的合金基板上,NiCrAlY合金过渡层的厚度为14~18μm;
步骤3.热生长Al2O3层的制备:将经步骤2处理后得到的复合基板置于真空退火炉内,在5×10-3Pa以下的真空环境以及800~1200℃温度条件下析铝5~8小时;然后,保持750~950℃温度并通入氧气至常压,氧化处理10~14小时;最后,控温冷却至室温,得到表面覆盖NiCrAlY合金过渡层及热生长Al2O3层的复合基板;
步骤4.AlN微晶层的制备:使用纯度不低于99.9wt%金属Al作为靶材,将经步骤3处理后的复合基板置于背底真空度为5×10-3Pa以下的真空腔体中并通入氮气和氩气至溅射气压为0.3~0.9Pa,采用直流反应溅射的方法制备AlN微晶层,其厚度为0.1~1μm,溅射功率为90~130W;氮气流量为30~40sccm,氩气流量为10~20sccm;
步骤5.非晶Al-O-N扩散阻挡层的制备:在步骤4制备完成AlN的基础上,在背底真空度为5×10-3Pa以下的真空腔体中通入氩气、氧气和氮气至溅射气压为0.3~0.6Pa,采用直流反应溅射的方法在步骤4处理后带有AlN微晶层的复合基板上沉积一层非晶Al-O-N层,其厚度为0.1~1μm,溅射功率为90~130W;氩气流量为22~26sccm,氧气流量为0.8~1.5sccm,氮气流量为48~53sccm;
步骤6.Al2O3绝缘层的制备:在步骤5制备完成非晶Al-O-N的基础上,改变溅射气氛比例,使氧氩混气的流量增加5~10sccm而氮气的流量减少5~10sccm后溅射15~20min,这样重复5~7次后使腔体里的气氛只含氩氧混气而不含氮气顺利过渡到Al2O3所需的制备环境当中,采用直流反应溅射的方法在步骤5处理后带有非晶Al-O-N层的复合基板上沉积一层Al2O3绝缘层,其厚度为1~2μm,溅射功率为90~120W;氩气流量为46~50sccm,氧气流量为1.8~2.5sccm;
步骤7.敏感功能层的制备:将步骤6处理后的复合基板置于80~100℃的热烘台上热烘8~12min后,将其放置在室温下冷却10~15min,然后使用旋涂机在复合基板上均匀旋涂一层负性光刻胶并在80~100℃下热烘0.5~1.5min,冷却后将其进行曝光1~2s后并置于100~120℃下热烘1~2min,再泛曝光40~45s后进行显影处理,得到敏感功能层的图形;将上述处理后带有图形的复合基板置于真空度为5×10-3Pa以下的真空腔体中,通入氩气至溅射气压稳定在0.3~0.5Pa之间,氩气流量为15~35sccm,先在图形的一侧溅射一层厚度为100~300nm的PtW薄膜,其线宽为20~50μm,然后在图形的另一侧溅射一层厚度为200~400nm的PtRh薄膜,其线宽为100~140μm;最后,将镀膜后的复合基板置于丙酮溶液中,通过剥离工艺后可得到带有PtW和PtRh的敏感功能层;
步骤8.Al2O3保护层的制备:在步骤7制备完成的敏感功能层的基础上,使用纯度不低于99.9wt%金属Al作为靶材,在背底真空度为5×10-3Pa以下的真空腔体中通入氩气和氧气至溅射气压为0.3~0.6Pa,采用直流反应溅射的方法制备Al2O3保护层,其厚度为1~3μm;
步骤9.退火处理:在真空度为5×10-4Pa、温度为800~1000℃的真空环境中退火处理2~3小时,得到所述薄膜传感器。
CN202310366441.2A 2023-04-07 2023-04-07 一种应变温度双参量高温薄膜传感器及其制备方法 Pending CN116399398A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310366441.2A CN116399398A (zh) 2023-04-07 2023-04-07 一种应变温度双参量高温薄膜传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310366441.2A CN116399398A (zh) 2023-04-07 2023-04-07 一种应变温度双参量高温薄膜传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN116399398A true CN116399398A (zh) 2023-07-07

Family

ID=87009887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310366441.2A Pending CN116399398A (zh) 2023-04-07 2023-04-07 一种应变温度双参量高温薄膜传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN116399398A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116593122A (zh) * 2023-07-19 2023-08-15 中国航空工业集团公司沈阳空气动力研究所 一种模型表面多参量薄膜传感结构及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116593122A (zh) * 2023-07-19 2023-08-15 中国航空工业集团公司沈阳空气动力研究所 一种模型表面多参量薄膜传感结构及其制备方法

Similar Documents

Publication Publication Date Title
CN109338290B (zh) 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN107574415B (zh) 一种金属基薄膜传感器用渐变过渡层及制备方法
CN105755438B (zh) 一种高温自补偿多层复合薄膜应变计及其制备方法
US4969956A (en) Transparent thin film thermocouple
CN103021605B (zh) 片式铂热敏电阻器制作方法
CN105970168B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
CN104149416B (zh) 一种金属基高温绝缘层及其制备方法
CN116399398A (zh) 一种应变温度双参量高温薄膜传感器及其制备方法
CN104726862A (zh) 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN102212823B (zh) 在合金基板上设置薄膜传感器的方法
CN101673705B (zh) 一种Ru-TiN扩散阻挡层薄膜的制备方法
CN104748876A (zh) 一种高温薄膜热电偶温度传感器
CN105274475A (zh) 一种膜传感器及其制备方法
CN113755793B (zh) 一种薄膜传感器用抗氧化自修复防护层及其制备方法
Liu et al. Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments
CN113174569B (zh) 制备晶面择优取向氧化铟锡-氧化铟锌薄膜热电偶的方法
CN110132445A (zh) 一种负温度系数电阻型深低温温度传感器及制备方法
CN109536892B (zh) 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
CN116334554A (zh) 一种铂电阻温度传感器芯片的生产工艺
CN107142477A (zh) 一种抗热冲击的高温复合绝缘层及制备方法
CN106756848B (zh) 一种金属基高温组合绝缘层及其制备方法
CN202994696U (zh) 一种薄膜热流传感器
CN118007063A (zh) 一种镍基合金上的铝成分梯度变化的镍铬铝钇过渡层
CN115389043A (zh) 集温度、应变和热流测试功能为一体的耐高温薄膜传感器及其制备方法
CN114993496B (zh) 一种合金表面快速响应薄膜热电偶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination