CN106756848B - 一种金属基高温组合绝缘层及其制备方法 - Google Patents

一种金属基高温组合绝缘层及其制备方法 Download PDF

Info

Publication number
CN106756848B
CN106756848B CN201611191090.2A CN201611191090A CN106756848B CN 106756848 B CN106756848 B CN 106756848B CN 201611191090 A CN201611191090 A CN 201611191090A CN 106756848 B CN106756848 B CN 106756848B
Authority
CN
China
Prior art keywords
layer
high temperature
insulation layer
metal substrate
ysz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611191090.2A
Other languages
English (en)
Other versions
CN106756848A (zh
Inventor
蒋书文
刘豪
赵晓辉
蒋洪川
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201611191090.2A priority Critical patent/CN106756848B/zh
Publication of CN106756848A publication Critical patent/CN106756848A/zh
Application granted granted Critical
Publication of CN106756848B publication Critical patent/CN106756848B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于高温薄膜材料技术领域,提供一种金属基高温组合绝缘层及其制备方法;用以提高金属基底与薄膜敏感层之间的绝缘性,确保薄膜传感器在高温环境下使用的可靠性、准确性和使用寿命。本发明金属基高温组合绝缘层,包括:从下往上依次设置的金属基底、NiCrAlY合金过渡层、α‑Al2O3层,以及α‑Al2O3层上依次层叠的n个复合绝缘层,其中n≥2;每个复合绝缘层由从下往上设置的非晶态YSZ层和Al2O3层构成。本发明中每个复合绝缘层采用非晶态YSZ层‑Al2O3层复合结构,有效避免高温环境下晶态YSZ作为非晶态YSZ向晶态转变所需的晶核,减缓非晶YSZ在高温环境下向晶态转变,提高了非晶态YSZ的高温稳定性;同时,形成“非晶态YSZ‑Al2O3‑非晶态YSZ”的三明治结构,进一步提高绝缘性能。

Description

一种金属基高温组合绝缘层及其制备方法
技术领域
本发明属于高温薄膜材料技术领域,涉及适用于超导、核电、航空航天等领域中的薄膜传感器与金属基底在高温环境下的电绝缘层,特别是航空发动机叶片等高温部件上的薄膜应变计、热电偶、流量计等传感器与以镍基合金为基底的金属材料之间的电绝缘层。
背景技术
最近二三十年,随着真空技术的发展,传感技术界的研究重点放在了发展能替代传统传感器的薄膜传感器,比如薄膜气敏传感器、薄膜应变计、薄膜热电偶、薄膜流量计。由于其由真空蒸发、溅射、化学气相沉积或者离子气相沉积等工艺直接沉积在试样表面,而具有较好的附着性;其结构、功能具有一体化的特点,因此灵敏度较高、响应较快;厚度在微米级别,适用于高温、高动态的环境;而且,利用金属掩模或者光刻技术可以制备出小型化、高精度可适用于不同曲面、不同区域的传感测量。
而针对工作在高温、高压、高气流流速、强振动等恶劣环境中的航空发动机涡轮叶片,监测其力学状态的主要有薄膜应变计;监测其所处环境的传感器主要有薄膜热电偶、薄膜流量计;这些薄膜传感器都是将测量参数转换为敏感元的电信号;为了保证薄膜传感器的正常工作,就需要金属基底与薄膜传感器之间进行电绝缘。
目前,单一结构的薄膜绝缘层主要有Al2O3、YSZ、HfO2、Si3N4、SiO2,但HfO2和SiO2在600K的环境下会因为薄膜中的缺陷及位错等导通,而且可以明显观察到有脱落现象;3μm厚的Si3N4可以满足600K的使用要求,但是Si3N4在保存一段时间后,可以明显的观察到其边缘存在自然脱落现象;Al2O3可以使用到900K,但是容易硬化变脆而开裂、脱落。而复合结构的绝缘层主要有SiO2/Ta2O5、YSZ/Al2O3等,如杨晓东,张洁,蒋书文等,“YSZ/Al2O3复合薄膜高温绝缘层的研究”中采用“晶态YSZ-非晶态YSZ-Al2O3”复合结构作为绝缘层,但是在长时间高温使用时发现非晶态YSZ会结晶,绝缘性变差;其主要原因是在高温环境下,晶态YSZ层为非晶态YSZ层提供转化为晶态YSZ所需晶核,加速了非晶YZS向晶态转变;同时,晶态的YSZ在高温环境中,因为Y3+取代了Zr4+而产生氧空位,使晶态YSZ转变为良好的离子导体。
基于此,本发明提供一种金属基高温组合绝缘层及其制备方法,用于高温环境中薄膜传感器与金属基之间的电绝缘。
发明内容
本发明的目的在于针对上述问题,提供一种金属基高温组合绝缘层及其制备方法;本发明绝缘层采用多层组合结构,以提高金属基底与薄膜敏感层之间的绝缘性,确保薄膜传感器在高温环境下使用的可靠性、准确性和使用寿命,并且能够根据多层组合结构满足不同绝缘性能要求。
为了实现上述目的,本发明采用的技术方案为:
一种金属基高温组合绝缘层,包括:从下往上依次设置的金属基底、NiCrAlY合金过渡层、α-Al2O3层,以及α-Al2O3层上依次层叠的n个复合绝缘层;其特征在于,其中n≥2,每个复合绝缘层由从下往上设置的非晶态YSZ层和Al2O3层构成。
进一步的,所述非晶态YSZ层的厚度为0.4~1μm;Al2O3层的厚度为3~5μm。
进一步的,所述NiCrAlY合金过渡层采用磁控溅射制备,厚度为12~18μm;α-Al2O3层是由NiCrAlY合金过渡层热氧化得到,厚度为0.5μm~1μm。
更进一步的,上述金属基高温组合绝缘层的制备方法,包括以下步骤:
A.金属基底的表面处理:将金属基底表面机械为镜面,再依次采用弱碱、丙酮、乙醇、去离子水超声清洗后用氮气吹干备用;
B.NiCrAlY合金过渡层的制备:将步骤A处理后的金属基底固定至夹具后,采用射频磁控溅射法在金属基底上沉积NiCrAlY合金过渡层;
C.α-Al2O3层的制备:将步骤B中制备有NiCrAlY合金过渡层的金属基底放入石英舟并放置于真空石英管式炉中,在真空度5.0×10-4Pa的环境下,将温度升至1050℃后真空热处理6.5小时,使NiCrAlY合金过渡层中Al析出到表面,形成富Al层;然后,继续保持炉温为1050℃,向真空石英管式炉中持续通入6.5小时氧气,使富Al层在高温痒氛围下下氧化为α-Al2O3
D.复合过渡层的制备:将步骤C得到的样品放置于500~800℃的真空环境中并以恒定速率降至室温过程中采用直流反应溅射制备得到厚为0.4~1μm的非晶态YSZ层;再将金属基底温度升至500~800℃,采用直流反应溅射沉积得到厚度为3~5μm Al2O3层;
E.重复步骤D,直至制备得所需复合过渡层数后冷却至室温;
F.最后于800℃的大气环境中退火处理2小时,得到所述金属基高温组合绝缘层。
其中,步骤B中所述NiCrAlY合金过渡层的制备是以质量百分比不低于99.9%NiCrAlY合金作为靶材,体积百分比不低于99.99%的氩气作为溅射介质,溅射参数为:在本底真空为10-3~10-4Pa、溅射气压为0.29~0.35Pa、溅射功率为300~500W、金属基板温度为300~600℃。步骤C中所述氧气为体积百分比不低于99.99%的氧气。步骤D所制备的非晶态YSZ均以质量百分比不低于99.9%YZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,采用直流反应溅射制备得到,溅射参数为:在本底真空为10-3~10-4Pa、溅射气压为0.29~1Pa、溅射功率为70~150W、金属基底温度为800℃~室温。步骤D所述Al2O3是以质量百分比不低于99.9%AlZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,采用直流反应溅射制备得到,溅射参数为:在本底真空为10-3~10- 4Pa、溅射气压为0.29~1Pa、溅射功率为70~150W、金属基板温度为500~800℃。
本发明的有益效果为:
1、本发明采用多层复合绝缘层组合结构,每个复合绝缘层采用非晶态YSZ层-Al2O3层复合结构,有效避免高温环境下晶态YSZ作为非晶态YSZ向晶态转变所需的晶核,减缓非晶YSZ在高温环境下向晶态转变,提高了非晶态YSZ的高温稳定性;同时,单个复合绝缘层结构厚度较小,能够根据实际应用使用温度和绝缘性能要求设定复合绝缘层数量,使用温度或高温绝缘性能与复合绝缘层数量呈正比。
2、非晶态YSZ-Al2O3构成的复合绝缘层结构界面,非晶YSZ结构致密且无晶界,可阻断Al2O3层中晶界形成的导电通道,从而提高绝缘性能;本发明采用多层复合绝缘层组合结构,形成“非晶态YSZ-Al2O3-非晶态YSZ”的三明治结构,利用“界面叠加效应”进一步提高绝缘性能。
附图说明
图1为本发明金属基高温组合绝缘层结构示意图。
图2为本发明中复合绝缘层单元结构示意图。
具体实施方式
下面结合实施例及附图对本发明做进一步的说明。
实施例
本实施例提供一种金属基高温组合绝缘层,其结构如图1所示,包括:从下往上依次设置的金属基底、NiCrAlY合金过渡层、α-Al2O3层,以及α-Al2O3层上依次层叠的n个复合绝缘层;每个复合绝缘层由从下往上设置的非晶态YSZ层和Al2O3层构成。
上述金属基高温组合绝缘层的制作方法,包括以下步骤:
A.金属基底的表面处理:选用(长×宽×厚)50×30×3mm的镍基合金作为被测样品基底。首先,对样品基底表面进行抛光处理,使抛光表面为镜面,无肉眼可见刮痕,并在依次采用弱碱、丙酮、乙醇、去离子水进行超声清洗后用氮气吹干,放入氮气柜中备用;
B.NiCrAlY合金过渡层的制备:将步骤A处理后的金属基底固定至夹具后放置于本底真空优于5×10-3Pa的真空中,以以质量百分比不低于99.9%的NiCrAlY合金靶材作为源,体积百分比不低于99.99%的氩气作为溅射介质,溅射参数为:在本底真空为5×10-3Pa、溅射气压为0.31Pa、溅射功率为500W、金属基板以5℃/min的升温速率升温至450℃,采用射频磁控溅射法在金属基底上沉积15μm的NiCrAlY合金过渡层;
C.α-Al2O3层的制备:将在步骤B中制备有NiCrAlY合金过渡层的金属基底放入石英舟并放置于真空石英管式炉中,在真空度优于5.0×10-4Pa的环境下,将温度以5℃/min的升温速率升温至1050℃后真空热处理6.5小时,使NiCrAlY合金过渡层中Al析出并富集到表面;然后,继续保持炉温为1050℃,向真空石英管式炉中持续通入6.5小时纯度为99.99%的氧气,使Al在高温下氧化得到厚度为1μm的α-Al2O3层;
D.复合绝缘层的制备:接着步骤C得到的样品放置于500~800℃的真空环境中,采用直流反应溅射的方法,将金属基底温度由700℃以恒定速率降至室温的过程中制备。以质量百分比不低于99.9%YZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,采用直流反应溅射制备得到的,溅射参数为:在本底真空为10-3Pa、溅射气压为0.41Pa、溅射功率为100W、氧气和氩气的流量比为1.4:49,合金基底温度为700℃。采用直流反应溅射的方法,溅射沉积得到厚为1μm的非晶态YSZ层。再将金属基板温度升至700℃,以质量百分比不低于99.9%AlZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,具体溅射参数为:在本底真空为10-3Pa、溅射气压为0.42Pa、溅射功率为110W、氧气和氩气的流量比为1.55:49、金属基板温度为700℃。采用直流反应溅射的方法,溅射得到厚度为4μm Al2O3层;
E.复合绝缘层的制备同步骤D;
最后,在真空度为5×10-4Pa、温度为800℃的真空环境中退火处理2小时,就得到所述金属基高温组合绝缘层。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (7)

1.一种金属基高温组合绝缘层,包括:从下往上依次设置的金属基底、NiCrAlY合金过渡层、α-Al2O3层,以及α-Al2O3层上依次层叠的n个复合绝缘层;其特征在于,其中n≥2,每个复合绝缘层由从下往上设置的非晶态YSZ层和Al2O3层构成。
2.按权利要求1所述金属基高温组合绝缘层,其特征在于,所述非晶态YSZ层的厚度为0.4~1μm;Al2O3层的厚度为3~5μm。
3.按权利要求1所述金属基高温组合绝缘层,其特征在于,所述NiCrAlY合金过渡层采用磁控溅射制备,厚度为12~18μm;α-Al2O3层是由NiCrAlY合金过渡层热氧化得到,厚度为0.5μm~1μm。
4.按权利要求1所述金属基高温组合绝缘层的制备方法,包括以下步骤:
A.金属基底的表面处理:将金属基底表面机械为镜面,再依次采用弱碱、丙酮、乙醇、去离子水超声清洗后用氮气吹干备用;
B.NiCrAlY合金过渡层的制备:将步骤A处理后的金属基底固定至夹具后,采用射频磁控溅射法在金属基底上沉积NiCrAlY合金过渡层;
C.α-Al2O3层的制备:将步骤B中制备有NiCrAlY合金过渡层的金属基底放入石英舟并放置于真空石英管式炉中,在真空度5.0×10-4Pa的环境下,将温度升至1050℃后真空热处理6.5小时,使NiCrAlY合金过渡层中Al析出到表面,形成富Al层;然后,继续保持炉温为1050℃,向真空石英管式炉中持续通入6.5小时氧气,使富Al层在高温痒氛围下下氧化为α-Al2O3
D.复合过渡层的制备:将步骤C得到的样品放置于500~800℃的真空环境中并以恒定速率降至室温过程中采用直流反应溅射制备得到厚为0.4~1μm的非晶态YSZ层;再将金属基底温度升至500~800℃,采用直流反应溅射沉积得到厚度为3~5μm Al2O3层;
E.重复步骤D,直至制备得所需复合过渡层数后冷却至室温;
F.最后于800℃的大气环境中退火处理2小时,得到所述金属基高温组合绝缘层。
5.按权利要求4所述金属基高温组合绝缘层的制备方法,其特征在于,步骤B中所述NiCrAlY合金过渡层的制备是以质量百分比不低于99.9%NiCrAlY合金作为靶材,体积百分比不低于99.99%的氩气作为溅射介质,溅射参数为:在本底真空为10-3~10-4Pa、溅射气压为0.29~0.35Pa、溅射功率为300~500W、金属基板温度为300~600℃。
6.按权利要求4所述金属基高温组合绝缘层的制备方法,其特征在于,步骤C中所述氧气为体积百分比不低于99.99%的氧气。
7.按权利要求4所述金属基高温组合绝缘层的制备方法,其特征在于,步骤D所述非晶态YSZ层以质量百分比不低于99.9%YZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,采用直流反应溅射制备得到,溅射参数为:在本底真空为10-3~10- 4Pa、溅射气压为0.29~1Pa、溅射功率为70~150W、金属基底温度为800℃~室温。
CN201611191090.2A 2016-12-21 2016-12-21 一种金属基高温组合绝缘层及其制备方法 Expired - Fee Related CN106756848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611191090.2A CN106756848B (zh) 2016-12-21 2016-12-21 一种金属基高温组合绝缘层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611191090.2A CN106756848B (zh) 2016-12-21 2016-12-21 一种金属基高温组合绝缘层及其制备方法

Publications (2)

Publication Number Publication Date
CN106756848A CN106756848A (zh) 2017-05-31
CN106756848B true CN106756848B (zh) 2019-05-14

Family

ID=58893537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611191090.2A Expired - Fee Related CN106756848B (zh) 2016-12-21 2016-12-21 一种金属基高温组合绝缘层及其制备方法

Country Status (1)

Country Link
CN (1) CN106756848B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536892B (zh) * 2019-01-17 2020-12-29 电子科技大学 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
CN113862673B (zh) * 2021-09-30 2024-04-26 中国电子科技集团公司第四十八研究所 发动机叶片薄膜传感器用高温绝缘层及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969067A (zh) * 2010-09-18 2011-02-09 云南大学 纳米级ULSI-Cu布线HfSiN扩散阻挡层薄膜及制备工艺
CN104149416B (zh) * 2014-08-22 2016-01-20 电子科技大学 一种金属基高温绝缘层及其制备方法
CN104726862B (zh) * 2015-03-10 2018-06-19 电子科技大学 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN105274475A (zh) * 2015-11-27 2016-01-27 中山市厚源电子科技有限公司 一种膜传感器及其制备方法
CN105970168B (zh) * 2016-07-04 2018-07-27 电子科技大学 一种薄膜传感器用复合绝缘层及其制备方法

Also Published As

Publication number Publication date
CN106756848A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN101894904B (zh) 一种金属基薄膜热电偶及其生产方法
CN103344350B (zh) 高温陶瓷基薄膜热电偶及其制作方法
CN105970168B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
CN104149416B (zh) 一种金属基高温绝缘层及其制备方法
CN104726862B (zh) 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN103266320B (zh) 一种抗高温氧化薄膜传感器及其生产方法
CN107012425B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
Liu et al. YSZ/Al2O3 multilayered film as insulating layer for high temperature thin film strain gauge prepared on Ni-based superalloy
CN107267944B (zh) 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法
CN102867645B (zh) 一种提高各向异性磁电阻坡莫合金薄膜热稳定性的方法
CN109735807B (zh) 一种负温度系数热敏薄膜的制备方法
CN106498355A (zh) 一种高温薄膜传感器用抗氧化复合防护层及其制造方法
CN110042355A (zh) 一种具有一维纳米阵列结构的薄膜热电偶及其制造方法
CN102212823A (zh) 在合金基板上设置薄膜传感器的方法
CN106756848B (zh) 一种金属基高温组合绝缘层及其制备方法
Liu et al. Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments
Liu et al. Effect of thermally grown Al2O3 on electrical insulation properties of thin film sensors for high temperature environments
Exner et al. In-and through-plane conductivity of 8YSZ films produced at room temperature by aerosol deposition
CN105274475A (zh) 一种膜传感器及其制备方法
CN102703873B (zh) 极窄回滞曲线宽度高电阻温度系数二氧化钒薄膜制备方法
Zhang et al. Thermoelectricity and antivibration properties of screen-printed nanodoped In1. 35ZnO2. 11/In2O3 thin-film thermocouples on alumina substrates
CN107142477B (zh) 一种抗热冲击的高温复合绝缘层及制备方法
CN109536892B (zh) 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
CN102607732B (zh) 液浮陀螺仪用薄膜温度传感器的制备方法
CN103921500B (zh) 一种薄膜应变计及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514

Termination date: 20211221

CF01 Termination of patent right due to non-payment of annual fee