WO2021082526A1 - 桥接式微纳结构传感单元的阵列传感器的制备方法及产品 - Google Patents

桥接式微纳结构传感单元的阵列传感器的制备方法及产品 Download PDF

Info

Publication number
WO2021082526A1
WO2021082526A1 PCT/CN2020/101360 CN2020101360W WO2021082526A1 WO 2021082526 A1 WO2021082526 A1 WO 2021082526A1 CN 2020101360 W CN2020101360 W CN 2020101360W WO 2021082526 A1 WO2021082526 A1 WO 2021082526A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed layer
layer
micro
electrode
nano structure
Prior art date
Application number
PCT/CN2020/101360
Other languages
English (en)
French (fr)
Inventor
史铁林
林建斌
廖广兰
方涵
韩航迪
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021082526A1 publication Critical patent/WO2021082526A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Definitions

  • the invention belongs to the field of micro-nano sensor preparation, and more specifically, relates to a preparation method and product of an array sensor of a bridge-connected micro-nano structure sensing unit.
  • Micro-nano materials have physical and chemical properties that traditional materials do not have due to size effects, such as: (1) special optical, thermal, magnetic, and mechanical properties; (2) surface effects; (3) quantum size effects; (4) Macroscopic quantum tunneling effect; (5) Dielectric confinement effect.
  • the unique effect makes it show its skills in the field of sensing, showing more advantageous performance than traditional materials.
  • the huge specific surface area of micro-nano materials enables micro-nano materials to improve sensitivity, response speed and other properties by dozens of times or even several orders of magnitude.
  • nanosensors especially nanosensor arrays, have not been widely used and remain in the laboratory stage.
  • the mainstream methods are: (1) use the anisotropic orientation growth of the crystal structure; (2) obtain the asymmetry of the crystal nucleus by introducing the liquid-solid interface to induce the growth of nanostructures; (3) use the template restriction method to obtain one-dimensional Restricted space; (4) Utilizing the kinetic control method assisted by the capping agent; (5) Self-assembly of nanoparticles to form nanowires; (6) Nanowires obtained by reducing the size of one-dimensional micron materials.
  • the above-mentioned methods can obtain the required nanomaterials, but they usually require high-end equipment such as focused ion beams and nanoprobes, which are not suitable for routine use.
  • the use of nano-manipulators or directional fixed-point preparation of electrodes to measure their physical and chemical properties, and the inability to locate and grow on the electrodes for sensing applications greatly hinders the development of micro-nano structure sensors.
  • micro-nano structures In addition, traditionally prepared bridging micro-nano structures often have a mode of contact between the micro-nano structures.
  • the contact resistance between micro and nano structures is relatively large, and annealing is usually used, and modifiers are added for modification to improve conductivity.
  • the problem of junction resistance between contacts is not essentially solved, so that micro-nano sensors are often not well applied.
  • the preparation of arrayed sensors is still in the development stage, and the simple preparation method of array sensors with micro-nano structural units needs to be further improved and developed.
  • the present invention provides a method and product for manufacturing an array sensor of a bridge-connected micro-nano structure sensor unit, wherein the preparation method of the array sensor of a bridge-connected micro-nano structure sensor unit is improved
  • the process conditions are designed so that only the side of the seed layer that needs to be bridged can contact the target growth solution to grow the micro-nano structure.
  • the seed layer is processed by heat treatment to improve the grain size.
  • the bridging micro-nano structure prepared in the growth solution has a good ability of directional growth.
  • the bridging micro-nano structure sensor unit array sensor prepared by the method of the invention has the characteristics of high sensitivity and strong fault tolerance, and greatly reduces the junction resistance between the sensitive layers of the traditional bridging micro-nano structure sensor.
  • a method for fabricating an array sensor of a bridging type micro-nano structure sensing unit which includes the following steps:
  • S1 depicts an electrode array pattern on the surface of the substrate, and prepares multiple pairs of electrode arrays of specified shapes that need to be bridged on the substrate on which the electrode array pattern is depicted;
  • step S3 prepare a passivation protection layer on the outer periphery of the seed layer prepared in step S2, wherein, for a pair of electrode arrays that need to be bridged, the opposite side of the seed layer on the pair of electrode arrays is not covered with the passivation protection layer;
  • step S4 heat-treating the seed layer with the passivation protective layer prepared on the outer periphery of the surface in step S3, so as to improve the crystallinity of the seed layer, so that the seed layer has the characteristics of single crystal orientation;
  • step S5 adopts the solution method to make the seed layer with improved crystal phase in step S4 not cover the passivation protective layer to directionally grow the micro-nano structure, and then bridge the multiple pairs of the electrode arrays, thereby obtaining the bridge-connected micro-nano sensor unit structure array sensor .
  • the electrode array is made of any one metal of Au, Ag, Pt or Cr by magnetron sputtering, thermal evaporation, electron beam evaporation or atomic deposition.
  • the thickness of the electrode array is 5nm-500nm. If the thickness of the electrode array is too thin, the film will be discontinuous and lead to poor conductivity. If the thickness is too thick, it will increase the stress between the layers in the sensor of the present invention and easily cause the layer to fall off.
  • the cross-sectional profile of the seed layer is smaller than the cross-sectional profile of the electrode array, and for a pair of electrode arrays that need to be bridged, the opposite sides of the seed layer on the pair of electrode arrays are parallel to each other And it is perpendicular to the upper surface of the electrode array.
  • the seed layer is made of Cu, ZnO, Al, or Co by magnetron sputtering, thermal evaporation, electron beam evaporation or atomic deposition, and the thickness of the seed layer is 200nm ⁇ 2000nm, the seed layer is too thin, the lateral growth of the seed layer will be restricted by the growth source and cannot be better oriented, too thick will easily lead to excessive growth of micro-nano structures and stacking and interaction between micro-nano structures, which affects the test performance.
  • step S3 specifically includes the following steps: first, according to the pattern of the passivation protection layer, a layer of photoresist is spin-coated on the surface of the substrate of the seed layer prepared in step S2, wherein the photoresist The thickness of is greater than the sum of the thickness of the seed layer and the electrode array; then, a layer of the passivation protection material is deposited on the surface of the seed layer and the electrode array, and then the photoresist is stripped to obtain a partial coating For the passivation protection layer of the seed layer, for a pair of electrode arrays that need to be bridged, the opposite side of the seed layer on the pair of electrode arrays is not covered with the passivation protection layer.
  • step S4 specifically includes the following steps: under an inert atmosphere, annealing the seed layer with a passivation protective layer on the outer periphery of the surface in step S3 to improve the crystallinity of the seed layer, wherein the annealing
  • the treatment temperature is 200 °C ⁇ 500 °C, it is appropriate to reach the corresponding seed layer phase transition temperature, the annealing treatment time is 1h ⁇ 4h, furthermore, the crystal grain of the seed layer after annealing treatment becomes larger and has a single Crystal orientation characteristics.
  • the micro-nano structure growth mode is lateral growth, so that for a pair of electrode arrays that need to be bridged, the micro-nano structure grows laterally on the opposite side of the seed layer on the pair of electrode arrays. The lap to achieve bridging.
  • the distance between the pair of electrode arrays to be bridged is 100 nm to 5000 nm.
  • the distance is too short, the growth time of the micro-nano structure is not easy to control and the requirements for the equipment for pattern preparation are very high.
  • the distance is too long, the length of the laterally oriented micro-nano structure is not enough to support the too long distance, so that the micro-nano structure cannot be bridged.
  • the substrate includes a sensing substrate layer and an insulating layer disposed on the upper surface of the sensing substrate layer.
  • an array sensor of a bridge-type micro-nano structure sensing unit including a substrate, an electrode array, a seed layer, a passivation protection layer, and a micro-nano structure, wherein the electrode array is provided with a plurality of pairs Each of the electrode arrays is provided with the seed layer, and the passivation protection layer partially covers the outer periphery of the seed layer.
  • the seed layer on the pair of electrode arrays The opposite side is not covered with the passivation protection layer, and the micro-nano structure is grown on the side of the seed layer that is not covered with the passivation protection layer, and the pair of electrode arrays are bridged by overlapping the corresponding micro-nano structure.
  • the seed layer has characteristics of single crystal orientation after annealing treatment
  • the cross-sectional profile of the seed layer is smaller than the cross-sectional profile of the electrode array, and for a pair of electrode arrays that need to be bridged, the opposing sides of the seed layer on the pair of electrode arrays are parallel to each other and to the electrode array
  • the upper surface is vertical;
  • the thickness of the electrode array (4) is 5 nm to 500 nm;
  • the thickness of the seed layer (6) is 200 nm to 2000 nm;
  • the distance between the pair of electrode arrays (4) that needs to be bridged is 100 nm to 5000 nm.
  • the present invention realizes the fixed-point directional growth of the micro-nano structure, and obtains the application-level micro-nano sensor unit sensor array, which has high sensitivity and strong fault tolerance.
  • the array sensor is prepared based on the bridge-type micro-nano sensor unit, which is extremely Improved fault tolerance and sensing stability.
  • the present invention uses a passivation layer to limit the growth point and direction of the micro-nano structure, and further combines the heat-treated seed layer with the characteristics of single crystal orientation, so as to obtain a fixed-point directional growth bridging micro-nano structure.
  • the problem of high junction resistance between traditional micro-nano structures is greatly reduced, thereby improving sensitivity and making sensing stable.
  • the present invention adopts annealing treatment to improve the crystallinity of the seed layer, so that the seed layer has the characteristics of single crystal orientation, and thus a better growth micro-nano structure can be obtained.
  • the micro-nano structure exhibits rod-like and needle-like characteristics, so as to better realize the bridging of the corresponding electrode array.
  • the preparation process of each layer and the morphological characteristics of each layer structure are specifically designed and controlled.
  • the growth direction and morphological characteristics of the micro-nano structure can be better controlled in the growth of the micro-nano structure.
  • the bridging of corresponding electrode arrays can be better realized, and the problem of high junction resistance between traditional micro-nano structures can be greatly reduced.
  • the present invention proposes a three-layer structure of "electrode layer-seed layer-passivation layer", which successfully realizes a bridged nano sensor array.
  • the micro-nano structure is integrated by simultaneous bilateral opposing growth to form a bridging effect.
  • the method has simple process, controllable process, and batch preparation.
  • FIG. 1 is a preparation flow chart of a method for preparing an array sensor of a bridging type micro-nano structure sensing unit according to an embodiment of the present invention
  • FIG. 2 are another preparation flow chart of a method for preparing an array sensor of a bridge-type micro-nano structure sensing unit according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an array sensor of a bridge-type micro-nano structure sensing unit prepared by a preferred embodiment of the present invention
  • FIG. 4 is a top view of an array sensor of a bridge-type micro-nano structure sensing unit related to FIG. 3.
  • the present invention provides a method for manufacturing an array sensor of a bridging type micro-nano structure sensing unit, which specifically includes the following steps:
  • S1 depicts an electrode array pattern on the surface of the substrate, and prepares a plurality of pairs of electrode arrays 4 of a specified shape that need to be bridged on the substrate with the electrode array pattern depicted.
  • the electrode array pattern is prepared on the surface of the substrate by photolithography
  • the electrode array 4 is prepared on the surface of the substrate by deposition and solution stripping.
  • it is not limited to photolithography, deposition and solution stripping methods.
  • the technical means and methods that can realize the preparation of multiple pairs of electrode arrays 4 of specified shapes that need to be bridged on the substrate in this solution can be used.
  • the electrode array 4 is made of any one of Au, Ag, Pt or Cr by magnetron sputtering, thermal evaporation, electron beam evaporation or atomic deposition.
  • the size of the electrode array 4 is on the order of micro-nano, and its shape is preferably square, rectangular, circular, and the like.
  • the thickness of the electrode array 4 is 5 nm to 500 nm.
  • first photoresist 3 is carved on the surface of the substrate by photolithography, and then a layer of metal is deposited on the surface of the substrate where the first photoresist 3 is carved by deposition.
  • the electrodes are finally stripped of the first photoresist 3 with a stripping solution, thereby obtaining an electrode array 4 with a specified shape and thickness.
  • S2 prepares a seed layer 6 of a specified shape and thickness on the upper surfaces of the plurality of pairs of electrode arrays 4.
  • the pattern of the seed layer of the micro-nano structure sensing unit is prepared on the surface of the substrate and the electrode by the overlay technique, that is, the pattern of the bridge pier, and then the seed layer of the micro-nano structure sensing unit is prepared on the surface of the substrate by deposition, and the process is carried out. Peel off to obtain the seed layer of the micro-nano structure sensing unit on the electrode.
  • the prepared seed layer is located above the corresponding electrode array and is included in the electrode array.
  • the shape requires that the opposite bridge pier faces be parallel and straight, and the remaining line structure is preferentially rectangular.
  • the preparation method of the seed layer is magnetron sputtering, thermal evaporation, electron beam evaporation or atomic deposition.
  • the selection of the seed layer matches the subsequent growth solution of the micro-nano structure, preferably Cu, ZnO, Al, Co, etc.
  • the cross-sectional profile of the seed layer 6 is smaller than the cross-sectional profile of the electrode array 4, and for a pair of electrode arrays 4 that need to be bridged, the opposite sides of the seed layer 6 on the pair of electrode arrays 4 are parallel to each other. And it is perpendicular to the upper surface of the electrode array 4.
  • the thickness of the seed layer 6 is 200 nm to 2000 nm.
  • a layer of second photoresist 5 is carved on the surface of the substrate and the electrode array using photolithography technology, and then a layer of second photoresist 5 is carved on the electrode array with the second photoresist 5 by deposition.
  • a seed layer is deposited on the surface, and finally the second photoresist 5 is stripped off with a stripping solution, thereby obtaining a seed layer 6 of a specified shape and thickness.
  • photolithography is used to prepare a passivation protection layer pattern on the electrode and the seed layer of the micro-nano structure sensor unit, and then a deposition method is used to prepare the micro-nano structure sensor unit seed layer passivation protection layer on the surface of the substrate , In order to obtain the seed layer of the micro-nano structure sensing unit partially covering the passivation layer.
  • a layer of photoresist is spin-coated on the substrate surface of the seed layer 6 prepared in step S2, wherein the thickness of the photoresist is greater than that of the seed layer.
  • the passivation layer is aligned with the right side corresponding to the left seed layer directly below, and corresponds to the seed layer on the right electrode array directly below Align the left side.
  • the preparation method of the passivation layer is magnetron sputtering, thermal evaporation, electron beam evaporation or atomic deposition. The selection of the passivation layer does not interact with the subsequent growth solution of the micro-nano structure, and does not cause damage to the seed layer or affect the side shape of the seed layer during the deposition process.
  • step S4 heat-treats the seed layer 6 with the passivation protective layer 7 prepared on the outer periphery of the surface in step S3 to improve the crystallinity of the seed layer 6 so that the seed layer 6 has the characteristics of single crystal orientation.
  • the annealing method is vacuum or inert gas annealing, and the temperature is the optimal size temperature of the crystal grains corresponding to the seed layer, usually the phase transition temperature of the seed layer.
  • the surface temperature in step S3 The seed layer 6 with the passivation protective layer 7 prepared on the periphery is annealed to improve the crystallinity of the seed layer 6, wherein the temperature of the annealing treatment is 200°C to 500°C, and the time of the annealing treatment is 1h to 4h. Further, the crystal grains of the seed layer 6 after annealing treatment become larger, and have the characteristics of single crystal orientation.
  • the seed layers obtained by deposition are all polycrystalline and have a large stress, they may not be dense, which is related to the deposition method. Therefore, annealing can improve the density and grain size of the seed layer, and can change its crystal structure if the temperature reaches a phase transition.
  • the growth of crystals is related to the crystal phase of the crystal. Some crystal phases grow slowly, and some grow very fast.
  • the main purpose of the heat treatment is to make the crystal grain larger and the single crystal orientation more obvious, so that a better growth seed layer can be obtained.
  • the directional growth of the micro-nano structure is restricted in the growth direction in the present invention, because the electrode is isolated from the growth solution in other ways to prevent it from growing, so it only grows on the side. The reason for the lateral growth is that there is a seed layer, and then the laterally oriented growth can be obtained under the large single crystal grains of the seed layer.
  • step S5 adopts the solution method to make the seed layer 6 with improved crystal phase in step S4 not cover the passivation protective layer 7 to directionally grow the micro-nano structure 8 so that multiple pairs of the electrode arrays 4 can be bridged, thereby obtaining a bridged micro-nano sensor Cell structure array sensor.
  • the growth solution of the micro/nano structure 8 is a constant temperature solution
  • the optimal temperature is the temperature corresponding to the growth trend of the single crystal of the seed layer
  • the optimal growth shape is nanorods and nanoneedles, so that the bridge piers from both sides
  • the micro-nano structure that starts to grow can be bridged.
  • the growth mode of the micro-nano structure 8 is lateral growth. Therefore, for a pair of electrode arrays 4 that need to be bridged, the micro-nano structure 8 grows laterally on the opposite side of the seed layer 6 on the pair of electrode arrays 4 The lap to achieve bridging.
  • the solutions used in the solution method are all different, but in the end, the solution method allows the seed layer to grow the milking structure on the specified surface and in the specified direction, so that Two opposing electrode arrays 4 realize bridging.
  • the present invention also provides an array sensor of bridging micro-nano structure sensing unit, including a substrate, an electrode array 4, a seed layer 6, a passivation protection layer 7 and a micro-nano structure 8, wherein ,
  • the electrode array 4 is provided with multiple pairs, each of the electrode arrays 4 is provided with the seed layer 6, and the passivation protection layer 7 is partially covered on the outer periphery of the seed layer 6.
  • the seed layer 6 has the characteristics of single crystal orientation, so that the large single crystal grains of the seed layer can better grow in lateral orientation.
  • the cross-sectional profile of the seed layer 6 is smaller than the cross-sectional profile of the electrode array 4, and for a pair of electrode arrays 4 that need to be bridged, the opposite sides of the seed layer 6 on the pair of electrode arrays 4 are parallel and parallel to each other. It is perpendicular to the upper surface of the electrode array 4.
  • the thickness of the electrode array (4) is 5 nm to 500 nm.
  • the thickness of the seed layer (6) is 200 nm to 2000 nm.
  • the distance between the pair of electrode arrays (4) to be bridged is 100 nm to 5000 nm.
  • S1 uses AZ5214 photoresist as a thin glue to prepare a square-based electrode array pattern on the surface of the substrate;
  • S2 uses magnetron sputtering to prepare an Au electrode array on the surface of the substrate and uses a glue removing solution to peel off the metal electrodes;
  • S3 adopts the engraving technology to prepare the seed layer pattern of the micro-nano structure sensor unit on the surface of the substrate and the electrode, that is, the pattern of the bridge pier, and the shape is selected as a square;
  • S4 uses electron beam evaporation to prepare the seed layer ZnO of the micro-nano structure sensor unit on the surface of the substrate, and performs solution stripping to remove the photoresist to obtain the seed layer ZnO of the micro-nano structure sensor unit on the electrode;
  • S5 uses NR21-20000P as a thick glue for photolithography to prepare a passivation protection layer pattern on the electrode and the seed layer of the micro-nano structure sensing unit;
  • S6 uses magnetron sputtering to prepare the micro-nano structure sensing unit seed layer passivation protective layer Al 2 O 3 on the surface of the substrate, and stripping to obtain the micro-nano structure sensing unit seed layer partially covering the passivation layer;
  • S7 uses high-temperature annealing to process the seed layer of the micro-nano structure sensor unit.
  • the annealing temperature is 400°C
  • the annealing time is 2h
  • the atmosphere is nitrogen to improve the crystallinity of the ZnO seed layer for subsequent bridging. Growth of micro-nano structure;
  • S8 adopts the solution method to grow ZnO nanorod structures on the surface of the seed layer of the micro-nano structure sensor unit and connect them to form a sensitive layer.
  • the concentration ratio of the zinc nitrate hexahydrate solution and the hexamethylenetetramine solution used in the solution method is It is 1:1, specifically, the concentration of zinc nitrate hexahydrate solution and hexamethylenetetramine solution are both 0.02mol L -1 ), the temperature used in the solution method is 90°C, and the growth time of the ZnO nanorod structure is 3h
  • a bridging type ZnO micro-nano sensor unit structure array sensor is prepared.
  • the prepared ZnO micro-nano sensor unit structure array sensor can be used in applications such as photodetectors and humidity sensors.
  • S1 uses HTI751 photoresist as a thin glue to prepare a rectangular-based electrode array pattern on the surface of the substrate;
  • S2 uses thermal evaporation to prepare an Ag electrode array on the surface of the substrate and uses a glue-removing solution to peel off the metal electrodes;
  • S3 adopts the engraving technology to prepare the seed layer pattern of the micro-nano structure sensor unit on the surface of the substrate and the electrode, that is, the pattern of the bridge pier, and the shape is rectangular;
  • S4 uses magnetron sputtering to prepare the seed layer Cu of the micro-nano structure sensor unit on the surface of the substrate, and performs solution stripping to remove the photoresist to obtain the seed layer Cu of the micro-nano structure sensor unit on the electrode;
  • S5 uses NR26-25000P as a thick glue for photolithography to prepare a passivation protection layer pattern on the electrode and the seed layer of the micro-nano structure sensing unit;
  • S6 uses magnetron sputtering to prepare the micro-nano structure sensing unit seed layer passivation protective layer ALN on the surface of the substrate, and stripping to obtain the micro-nano structure sensing unit seed layer partially covering the passivation layer;
  • S7 uses an annealing process to process the seed layer of the micro-nano structure sensing unit.
  • the annealing temperature is 400°C
  • the annealing time is 1h
  • the atmosphere is a mixture of hydrogen and argon, where the volume ratio of hydrogen to argon is 5%:95%, to improve the crystallinity of the Cu seed layer for the subsequent bridging growth of micro-nano structures;
  • S8 adopts the solution method to grow Cu(OH) 2 nanorod structure laterally on the surface of the seed layer of the micro-nano structure sensing unit and connect it to form a sensitive layer.
  • the molar ratio of NaOH to K 2 S 2 O 8 solution used in the solution method is 1 :1.
  • the concentrations of NaOH and K 2 S 2 O 8 solutions are both 0.15 mol L -1
  • the temperature used in the solution method is 25 °C
  • the growth time of the micro-nano structure is 30 min, so as to prepare the bridged Cu( OH) 2 micro-nano sensor unit structure array sensor.
  • the prepared Cu(OH) 2 micro-nano sensor unit structure array sensor can be used in applications such as humidity sensors.
  • S1 uses SPR955 series photoresist as a thin glue to prepare a circular-based electrode array pattern on the surface of the substrate;
  • S2 uses thermal evaporation to prepare a Pt electrode array on the surface of the substrate and uses a glue removing solution to peel off the metal electrodes;
  • S3 uses the engraving technique to prepare the seed layer pattern of the micro-nano structure sensor unit on the substrate and electrode surface, that is, the pattern of the bridge pier, the shape is semicircular, and the two piers face each other as a diameter shape;
  • S4 uses magnetron sputtering to prepare the seed layer Al of the micro-nano structure sensor unit on the surface of the substrate, and performs solution stripping to remove the photoresist to obtain the seed layer Al of the micro-nano structure sensor unit on the electrode;
  • S5 uses HTG910 as a thick glue for photolithography to prepare a passivation protection layer pattern on the electrode and the seed layer of the micro-nano structure sensing unit;
  • S6 uses magnetron sputtering to prepare the micro-nano structure sensing unit seed layer passivation protective layer SiO 2 on the surface of the substrate, and stripping to obtain the micro-nano structure sensing unit seed layer partially covering the passivation layer;
  • S7 uses an annealing process to process the seed layer of the micro-nano structure sensing unit.
  • the annealing temperature is 200°C
  • the annealing time is 3h
  • the atmosphere is a mixture of hydrogen and argon, where the volume ratio of hydrogen to argon is 5%: 95%, to improve the crystallinity of the AL seed layer for subsequent bridging growth of micro-nano structures;
  • S8 adopts the solution method to grow the AL(OH) 3 nanorod structure laterally on the surface of the seed layer of the micro-nano structure sensor unit and connect it to form the sensitive layer.
  • concentration of the NaOH solution used in the solution method is 0.6 mol L -1 .
  • the temperature used in the method is 60°C, and in the solution method, the growth time of the AL(OH)3 nanorod structure is 6h, so as to fabricate the bridge-type AL(OH)3 micro-nano sensor unit structure array sensor.
  • the prepared AL(OH) 3 micro-nano sensor unit structure array sensor can be used in applications such as humidity sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种桥接式微纳结构传感单元的阵列传感器及其制备方法,方法包括:在基底(1)表面制备多对需要桥接的指定形状的电极阵列(4),然后制备一层指定形状和厚度的种子层(6),接着在种子层(6)表面除了桥接面以外的外周表面制备一层钝化保护层(7),并对种子层(6)进行热处理,以改善种子层(6)的结晶性,最后采用溶液法定向生长微纳结构(8),使得多对电极阵列(4)实现桥接。该阵列传感器包括基底(1)、电极阵列(4)、种子层(6)、钝化保护层(7)以及微纳结构(8),微纳结构(8)生长于种子层(6)未覆盖钝化保护层(7)的一面上,从而实现该对电极阵列(4)的桥接。该传感器具有灵敏度高、故障容差性强的特点,大幅度降低了传统桥接式微纳结构传感器敏感层之间的结电阻。

Description

桥接式微纳结构传感单元的阵列传感器的制备方法及产品 【技术领域】
本发明属于微纳传感器制备领域,更具体地,涉及一种桥接式微纳结构传感单元的阵列传感器的制备方法及产品。
【背景技术】
微纳米材料由于尺寸效应具有传统材料不具有的物理和化学特性,例如:(1)特殊的光学、热学、磁学以及力学性质;(2)表面效应;(3)量子尺寸效应;(4)宏观量子隧道效应;(5)介电限域效应。独特的效应使其在传感领域大显身手,表现出比传统材料更有优势的性能。微纳米材料的巨大比表面积使得微纳米材料将灵敏度、响应速度等性能提高数十倍甚至几个量级。然而,由于纳米材料通常无法定位定向生长,导致纳米传感器尤其是纳米传感器阵列还无法得到广泛应用而停留在实验室阶段。目前主流的方式有,(1)利用晶体结构各向异性取向生长;(2)通过引入液—固界面获得晶核的不对称性诱导纳米结构的生长;(3)利用模板限制法获得一维限制空间;(4)利用包覆剂辅助的动力学控制法;(5)从纳米颗粒自组装形成纳米线;(6)从一维微米材料减小尺寸得到纳米线。上述的方式可以获得所需的纳米材料,但使用起来通常需要借聚焦离子束、纳米探针等高尖端的设备,不适合常规使用。采取纳米操纵台或者定向定点制备电极以测量其物理化学特性,而无法进行定位定向生长在电极上进行传感应用极大阻碍了微纳结构传感器的发展。
此外,传统所制备的桥接式微纳结构,时常出现的是微纳米结构之间相互接触的模式。微纳米结构之间接触电阻较大,通常采用退火方式、添加修饰剂进行修饰以改善导电性。但并未从本质上解决接触间结电阻的问题,使得微纳传感器时常得不到很好的应用。目前,阵列化传感器的制备 还尚处在发展阶段,微纳结构单元的阵列传感器的简易制备方法还需要进一步完善和发展。
因此,本领域亟待提出一种桥接式微纳结构传感单元阵列传感器的制备方法及产品,工艺简单,可阵列化制备,从而制备出具有灵敏度高、故障容差性强的微纳传感器阵列,可以大幅度降低结电阻,促使微纳结构传感器走向应用市场。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种桥接式微纳结构传感单元的阵列传感器的制备方法及产品,其中通过对桥接式微纳结构传感单元的阵列传感器的制备方法的工艺条件进行设计,相应的可实现只让种子层需要进行桥接的侧面能够与目标生长溶液接触进而生长微纳结构,进一步的,本发明中,采用热处理的方式对种子层进行晶粒改善处理,最后在生长溶液中制备桥接式的微纳结构具有较好的定向生长的能力。由本发明方法制备得到的桥接式微纳结构传感单元阵列传感器具有灵敏度高、故障容差性强的特点,大幅度降低了传统桥接式微纳结构传感器敏感层之间的结电阻。
为实现上述目的,按照本发明的一个方面,提出了一种桥接式微纳结构传感单元的阵列传感器的制备方法,包括以下步骤:
S1在基底表面刻画电极阵列图案,并在所述刻画有电极阵列图案的基底上制备多对需要桥接的指定形状的电极阵列;
S2在多对所述电极阵列的上表面均制备一层指定形状和厚度的种子层;
S3在步骤S2中制备得到的种子层表面外周制备一层钝化保护层,其中,对于需要桥接的一对电极阵列,该对电极阵列上的种子层相对的一面未覆盖钝化保护层;
S4对步骤S3中表面外周制备有钝化保护层的种子层进行热处理,以改 善种子层的结晶性,使得所述种子层具有单晶取向特征;
S5采用溶液法使得步骤S4中晶相改善的种子层未覆盖钝化保护层的一面定向生长微纳结构,进而使得多对所述电极阵列实现桥接,从而获取桥接式微纳传感单元结构阵列传感器。
作为进一步优选的,步骤S1中,所述电极阵列由Au、Ag、Pt或Cr中的任意一种金属采用磁控溅射、热蒸发、电子束蒸发或者原子沉积的方法制备而成,所述电极阵列的厚度为5nm~500nm,电极阵列的厚度太薄会使得薄膜不连续而导致其导电性差,而其厚度过厚将会增加本发明传感器中各层之间应力,容易导致层脱落。
作为进一步优选的,步骤S2中,所述种子层的横截面轮廓小于所述电极阵列的横截面轮廓,且对于需要桥接的一对电极阵列,该对电极阵列上的种子层相对的一面相互平行且与所述电极阵列的上表面垂直。
作为进一步优选的,步骤S2中,所述种子层由Cu、ZnO、Al或Co采用磁控溅射、热蒸发、电子束蒸发或者原子沉积的方法制备而成,该种子层的厚度为200nm~2000nm,种子层太薄会使得横向生长的种子层受到生长源的限制而无法得到更好的定向,太厚容易导致微纳结构生长过多且微纳结构相互之间堆叠交互,影响测试性能。
作为进一步优选的,步骤S3具体包括以下步骤:首先,根据所述钝化保护层的图案在所述步骤S2中制备得到种子层的基底表面旋涂一层光刻胶,其中,该光刻胶的厚度大于所述种子层与所述电极阵列的厚度之和;然后,在所述种子层与电极阵列表面沉积一层所述钝化保护材料,接着剥离所述光刻胶,得到局部包覆所述种子层的钝化保护层,其中,对于需要桥接的一对电极阵列,该对电极阵列上的种子层相对的一面未覆盖钝化保护层。
作为进一步优选的,步骤S4具体包括以下步骤:在惰性气氛氛围下,对步骤S3中表面外周制备有钝化保护层的种子层进行退火处理,以改善种 子层的结晶性,其中,所述退火处理的温度为200℃~500℃,以达到对应种子层相变温度为宜,退火处理的时间为1h~4h,更进一步的,经退火处理后的种子层的晶粒变大,且具有单晶取向特征。
作为进一步优选的,步骤S5中,所述微纳结构生长的方式为横向生长,从而,对于需要桥接的一对电极阵列,通过该对电极阵列上的种子层相对的一面横向生长的微纳结构的搭接实现桥接。
作为进一步优选的,步骤S1中,需要桥接的一对电极阵列之间的间距为100nm~5000nm,当距离过短时,微纳结构的生长时间不易控制且对图形制备的仪器要求很高,当距离太长时,由于横向定向生长的微纳结构长度不足以支撑太长的距离而导致微纳结构无法实现桥接。
进一步的,所述基底包括传感基底层以及设置于所述传感基底层上表面的绝缘层。
按照本发明的另一个方面,提供一种桥接式微纳结构传感单元的阵列传感器,包括基底、电极阵列、种子层、钝化保护层以及微纳结构,其中,所述电极阵列设置有多对,每个所述电极阵列上均设置有所述种子层,所述钝化保护层局部包覆于所述种子层的外周,对于需要桥接的一对电极阵列,该对电极阵列上的种子层相对的一面未覆盖钝化保护层,且所述微纳结构生长于所述种子层未覆盖钝化保护层一面上,并通过对应所述微纳结构的搭接实现该对电极阵列的桥接。
作为进一步优选的,所述种子层在退火处理后具有单晶取向特征;
进一步的,所述种子层的横截面轮廓小于所述电极阵列的横截面轮廓,且对于需要桥接的一对电极阵列,该对电极阵列上的种子层相对的一面相互平行且与所述电极阵列的上表面垂直;
进一步的,所述电极阵列(4)的厚度为5nm~500nm;
进一步的,所述种子层(6)的厚度为200nm~2000nm;
进一步的,需要桥接的一对电极阵列(4)之间的间距为100nm~5000 nm。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明实现了微纳结构的定点定向生长,得到应用级的微纳传感单元传感器阵列,具有灵敏度高、故障容差性强,基于桥接式微纳传感单元制备了阵列传感器,极大提高了故障容差性和传感稳定性。
2.本发明将用钝化层的方式将微纳结构的生长点和方向进行了限制,进一步的结合热处理后的具有单晶取向特征的种子层,从而可以得到定点定向生长桥接式微纳结构,大幅度降低了传统微纳结构之间的结电阻高的问题,从而提高了灵敏度,使得传感稳定。
3.本发明采用退火处理的热处理方式以改善种子层的结晶性,使得所述种子层具有单晶取向特征,由此可以得到更好的生长微纳结构,在钝化层的限制作用下,微纳结构显现出棒状和针状特性,从而更好的实现对应电极阵列的桥接。
4.本发明将各层的制备工艺以及各层结构的形貌特征进行特定设计和控制,相应的,在生长微纳结构中,能更好的控制微纳结构的生长方向和形貌特征,进而能更好的实现对应电极阵列的桥接,大幅度降低了传统微纳结构之间的结电阻高的问题。
5.本发明提出“电极层—种子层—钝化层”样式的三层结构,成功实现了桥接式纳米传感器阵列,采用同时双边相向生长合拢将微纳结构合成一体,形成桥接效果,该制备方法工艺简单,过程可控,可批量制备。
【附图说明】
图1是本发明实施例涉及的一种桥接式微纳结构传感单元的阵列传感器的制备方法的制备流程图;
图2中的(a)-(h)是本发明实施例涉及的一种桥接式微纳结构传感单元的阵列传感器的制备方法的另一制备流程图;
图3为本发明优选实施例制备而成的一种桥接式微纳结构传感单元的阵列传感器的结构示意图;
图4为图3涉及的一种桥接式微纳结构传感单元的阵列传感器的俯视图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-传感基底层,2-绝缘层,3-第一光刻胶,4-电极阵列,5-第二光刻胶,6-种子层,7-钝化层,8-微纳结构。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1和图2所示,本发明提供了一种桥接式微纳结构传感单元的阵列传感器的制备方法,其具体包括以下步骤:
S1在基底表面刻画电极阵列图案,并在所述刻画有电极阵列图案的基底上制备多对需要桥接的指定形状的电极阵列4。
具体而言,采用光刻技术在基底表面制备电极阵列图案,采用沉积和溶液剥离方式在基底表面制备电极阵列4,但是在本发明中,不限于光刻技术、沉积和溶液剥离的方式,其他的能实现本方案中在基底上制备多对需要桥接的指定形状的电极阵列4的技术手段和方法均可。更进一步的,在本发明中,所述电极阵列4由Au、Ag、Pt或Cr中的任意一种金属采用磁控溅射、热蒸发、电子束蒸发或者原子沉积的方法制备而成,所述电极阵列4的大小为微纳米量级,其形状优先选择正方形、长方形和圆形等。所述电极阵列4的厚度为5nm~500nm。
在本发明的一个优选实施例中,首先,采用光刻技术在基底表面刻画 一层第一光刻胶3,然后采用沉积的方式在刻画有第一光刻胶3的基底表面沉积一层金属电极,最后采用剥离液剥离所述第一光刻胶3,从而得到指定形状和厚度的电极阵列4。
S2在多对所述电极阵列4的上表面均制备一层指定形状和厚度的种子层6。
具体而言,采用套刻技术在基底及电极表面制备微纳结构传感单元的种子层图案,即桥墩的图案,然后采用沉积方式在基底表面制备微纳结构传感单元的种子层,并进行剥离,得到电极上的微纳结构传感单元的种子层,但是在本发明中,不限于套刻技术以及沉积的方式,其他的能实现本方案中制备指定形状的种子层的技术手段和方法均可。进一步的,所述制备的种子层位于相应电极阵列的上方,且包含在电极阵列的范围内,形状要求相对的桥墩面需为相互平行的直面,剩余线条构造优先选择矩形。所述种子层的制备方式为磁控溅射、热蒸发、电子束蒸发或者原子沉积方法,种子层的选取与后续微纳结构的生长溶液相互匹配,优先选择Cu、ZnO、Al、Co等。更进一步的,所述种子层6的横截面轮廓小于所述电极阵列4的横截面轮廓,且对于需要桥接的一对电极阵列4,该对电极阵列4上的种子层6相对的一面相互平行且与所述电极阵列4的上表面垂直。该种子层6的厚度为200nm~2000nm。
在本发明的一个优选实施例中,首先,采用光刻技术在基底和电极阵列的表面刻画一层第二光刻胶5,然后采用沉积的方式在刻画有第二光刻胶5的电极阵列表面沉积一层种子层,最后采用剥离液剥离所述第二光刻胶5,从而得到指定形状和厚度的种子层6。
S3在步骤S2中制备得到的种子层6表面外周制备一层钝化保护层7,其中,对于需要桥接的一对电极阵列4,该对电极阵列4上的种子层6相对的一面未覆盖钝化保护层7。
具体而言,首先,采用光刻技术在电极及微纳结构传感单元的种子层 上制备钝化保护层图案,然后采用沉积方式在基底表面制备微纳结构传感单元种子层钝化保护层,以得到局部覆盖钝化层的微纳结构传感单元种子层。进一步的,首先,根据所述钝化保护层7的图案在所述在步骤S2中制备得到种子层6的基底表面旋涂一层光刻胶,其中,该光刻胶的厚度大于所述种子层6与所述电极阵列4的厚度之和;然后,在所述种子层6与电极阵列4表面沉积一层所述钝化保护材料,接着剥离所述光刻胶,得到局部包覆所述种子层6的钝化保护层7,其中,对于需要桥接的一对电极阵列4,该对电极阵列4上的种子层6相对的一面未覆盖钝化保护层7。更进一步的,所述套刻图形应位于电极阵列4的正上方且将左边电极阵列上的种子层的上、左、下边缘覆盖住,对应的将右边电极阵列的上、右、下边缘进行覆盖,只裸露出左边电极阵列与右边电极阵的相对面,且钝化层与正下方的左边种子层所对应的右侧面对齐,与正下方的右边电极阵上的种子层所对应的左侧面对齐。所述钝化层的制备方式为磁控溅射、热蒸发、电子束蒸发或者原子沉积方法。钝化层的选取与后续微纳结构的生长溶液不相互反应,且在沉积过程中不导致种子层发生破坏或者影响种子层的侧面形状。
S4对步骤S3中表面外周制备有钝化保护层7的种子层6进行热处理,以改善种子层6的结晶性,使得所述种子层6具有单晶取向特征。
所述的退火方式为真空或者加惰性气体退火,温度为种子层对应的晶粒最佳尺寸温度,通常为种子层的相变温度,具体而言,在惰性气氛氛围下,对步骤S3中表面外周制备有钝化保护层7的种子层6进行退火处理,以改善种子层6的结晶性,其中,所述退火处理的温度为200℃~500℃,退火处理的时间为1h~4h,更进一步的,经退火处理后的种子层6的晶粒变大,具有单晶取向特征。
由于沉积得到的种子层都是多晶的,且存在较大的应力,可能不致密,与沉积方式相关。因此退火可以改善种子层的致密性、晶粒大小、若温度 达到相变可以改变其晶体结构。晶体的生长与晶体的晶相有关,有的晶相生长较慢,有的生长很快。热处理的目的最主要是使得晶粒变大,单晶取向更为明显,由此可以得到更好的生长种子层。微纳结构的定向生长在本发明中是被限制生长方向的,因为在电极的周围是采用其他方式与生长溶液进行隔离,不让其生长,因此只在侧面生长。侧面生长的原因是因为有种子层,然后在种子层的大单晶晶粒下便能得到横向定向生长。
S5采用溶液法使得步骤S4中晶相改善的种子层6未覆盖钝化保护层7的一面定向生长微纳结构8,进而使得多对所述电极阵列4实现桥接,从而获取桥接式微纳传感单元结构阵列传感器。
其中,所述微纳结构8的生长溶液为恒温溶液,最佳温度为对应种子层单晶生长微纳结构趋势的温度,生长的最佳形状为纳米棒、纳米针,以使得从两侧桥墩开始生长的微纳结构可以桥接。具体而言,所述微纳结构8生长的方式为横向生长,从而,对于需要桥接的一对电极阵列4,通过该对电极阵列4上的种子层6相对的一面横向生长的微纳结构8的搭接实现桥接。
更具体的,针对用于沉积种子层材料的不同,所述溶液法所采用的溶液均不相同,但最终该溶液法均能让种子层在指定的面、指定的方向生长喂奶结构,从而使得两个相对的电极阵列4实现桥接。
如图3和图4所示,本发明还提供了一种桥接式微纳结构传感单元的阵列传感器,包括基底、电极阵列4、种子层6、钝化保护层7以及微纳结构8,其中,所述电极阵列4设置有多对,每个所述电极阵列4上均设置有所述种子层6,所述钝化保护层7局部包覆于所述种子层6的外周,对于需要桥接的一对电极阵列4,该对电极阵列4上的种子层6相对的一面未覆盖钝化保护层7,且所述微纳结构8生长于所述种子层6未覆盖钝化保护层7一面上,并通过对应所述微纳结构8的搭接实现该对电极阵列4的桥接。
本发明传感器中,种子层6具有单晶取向特征,从而种子层的大单晶 晶粒能更好的横向定向生长。
进一步的,所述种子层6的横截面轮廓小于所述电极阵列4的横截面轮廓,且对于需要桥接的一对电极阵列4,该对电极阵列4上的种子层6相对的一面相互平行且与所述电极阵列4的上表面垂直。
进一步的,所述电极阵列(4)的厚度为5nm~500nm。
进一步的,所述种子层(6)的厚度为200nm~2000nm。
进一步的,需要桥接的一对电极阵列(4)之间的间距为100nm~5000nm。
实施例1
S1采用AZ5214光刻胶作为薄胶在基底表面制备正方形为基础的电极阵列图案;
S2采用磁控溅射在基底表面制备Au电极阵列并采用去胶液进行金属电极的剥离;
S3采用套刻技术在基底及电极表面制备微纳结构传感单元的种子层图案,即桥墩的图案,形状选择正方形;
S4采用电子束蒸发的方式在基底表面制备微纳结构传感单元的种子层ZnO,并进行溶液法剥离,去除光刻胶,得到电极上的微纳结构传感单元的种子层ZnO;
S5采用NR21-20000P作为厚胶进行光刻在电极及微纳结构传感单元的种子层上制备钝化保护层图案;
S6采用磁控溅射方式在基底表面制备微纳结构传感单元种子层钝化保护层Al 2O 3,并进行剥离得到局部覆盖钝化层的微纳结构传感单元种子层;
S7采用高温退火处理的方式对微纳结构传感单元种子层进行处理,退火处理的温度为400℃,退火处理的时间为2h,气氛为氮气,以改善ZnO种子层的结晶性以便后续桥接式生长微纳结构;
S8采用溶液法在微纳结构传感单元种子层表面定向横向生长ZnO纳米 棒结构并连接成敏感层,其中,溶液法所用到的六水合硝酸锌溶液与六次甲基四胺溶液的浓度比为1:1,具体的,六水合硝酸锌溶液与六次甲基四胺溶液的浓度均为0.02mol L -1),溶液法所采用的温度为90℃,ZnO纳米棒结构生长时间为3h,从而制得桥接式ZnO微纳传感单元结构阵列传感器。
所制备的ZnO微纳传感单元结构阵列传感器可以用于光电探测器、湿度传感器等应用方面。
实施例2
S1采用HTI751光刻胶作为薄胶在基底表面制备长方形为基础的电极阵列图案;
S2采用热蒸发在基底表面制备Ag电极阵列并采用去胶液进行金属电极的剥离;
S3采用套刻技术在基底及电极表面制备微纳结构传感单元的种子层图案,即桥墩的图案,形状选择长方形;
S4采用磁控溅射的方式在基底表面制备微纳结构传感单元的种子层Cu,并进行溶液法剥离,去除光刻胶,得到电极上的微纳结构传感单元的种子层Cu;
S5采用NR26-25000P作为厚胶进行光刻在电极及微纳结构传感单元的种子层上制备钝化保护层图案;
S6采用磁控溅射方式在基底表面制备微纳结构传感单元种子层钝化保护层ALN,并进行剥离得到局部覆盖钝化层的微纳结构传感单元种子层;
S7采用退火处理的方式对微纳结构传感单元种子层进行处理,退火处理的温度为400℃,退火处理的时间为1h,气氛为氢氩混合气,其中,氢气与氩气的体积比为5%:95%,,改善Cu种子层的结晶性以便后续桥接式生长微纳结构;
S8采用溶液法在微纳结构传感单元种子层表面定向横向生长Cu(OH) 2纳米棒结构并连接成敏感层,溶液法所用到的NaOH与K 2S 2O 8溶液的摩尔比 为1:1,具体的,NaOH与K 2S 2O 8溶液的浓度均为0.15mol L -1,溶液法所采用的温度为25℃,微纳结构生长时间为30min,从而制得桥接式Cu(OH) 2微纳传感单元结构阵列传感器。
所制备的Cu(OH) 2微纳传感单元结构阵列传感器可以用于湿度传感器等应用方面。
实施例3
S1采用SPR955系列光刻胶作为薄胶在基底表面制备圆形为基础的电极阵列图案;
S2采用热蒸发在基底表面制备Pt电极阵列并采用去胶液进行金属电极的剥离;
S3采用套刻技术在基底及电极表面制备微纳结构传感单元的种子层图案,即桥墩的图案,形状选择半圆形,且两个桥墩相向为直径形状;
S4采用磁控溅射的方式在基底表面制备微纳结构传感单元的种子层Al,并进行溶液法剥离,去除光刻胶,得到电极上的微纳结构传感单元的种子层Al;
S5采用HTG910作为厚胶进行光刻在电极及微纳结构传感单元的种子层上制备钝化保护层图案;
S6采用磁控溅射方式在基底表面制备微纳结构传感单元种子层钝化保护层SiO 2,并进行剥离得到局部覆盖钝化层的微纳结构传感单元种子层;
S7采用退火处理的方式对微纳结构传感单元种子层进行处理,退火处理的温度为200℃,退火处理的时间为3h,气氛为氢氩混合气,其中,氢气与氩气的体积比为5%:95%,改善AL种子层的结晶性以便后续桥接式生长微纳结构;
S8采用溶液法在微纳结构传感单元种子层表面定向横向生长AL(OH) 3纳米棒结构并连接成敏感层,其中,溶液法所用到的NaOH溶液的浓度为0.6mol L -1,溶液法所采用的温度为60℃,溶液法中,AL(OH) 3纳米棒结构的生 长时间为6h,从而制得桥接式AL(OH)3微纳传感单元结构阵列传感器。
所制备的AL(OH) 3微纳传感单元结构阵列传感器可以用于湿度传感器等应用方面。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种桥接式微纳结构传感单元的阵列传感器的制备方法,其特征在于,包括以下步骤:
    S1在基底表面刻画电极阵列图案,并在所述刻画有电极阵列图案的基底上制备多对需要桥接的指定形状的电极阵列(4);
    S2在多对所述电极阵列(4)的上表面均制备一层指定形状和厚度的种子层(6);
    S3在步骤S2中制备得到的种子层(6)表面外周制备一层钝化保护层(7),其中,对于需要桥接的一对电极阵列(4),该对电极阵列(4)上的种子层(6)相对的一面未覆盖钝化保护层(7);
    S4对步骤S3中表面外周制备有钝化保护层(7)的种子层(6)进行热处理,以改善种子层(6)的结晶性,使得所述种子层(6)具有单晶取向特征;
    S5采用溶液法使得步骤S4中晶相改善的种子层(6)未覆盖钝化保护层(7)的一面定向生长微纳结构(8),进而使得多对所述电极阵列(4)实现桥接,从而获取桥接式微纳传感单元结构阵列传感器。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述电极阵列(4)由Au、Ag、Pt或Cr中的任意一种金属采用磁控溅射、热蒸发、电子束蒸发或者原子沉积的方法制备而成,所述电极阵列(4)的厚度为5nm~500nm。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述种子层(6)的横截面轮廓小于所述电极阵列(4)的横截面轮廓,且对于需要桥接的一对电极阵列(4),该对电极阵列(4)上的种子层(6)相对的一面相互平行且与所述电极阵列(4)的上表面垂直。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述种 子层(6)由Cu、ZnO、Al或Co采用磁控溅射、热蒸发、电子束蒸发或者原子沉积的方法制备而成,该种子层(6)的厚度为200nm~2000nm。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S3具体包括以下步骤:首先,根据所述钝化保护层(7)的图案在所述步骤S2中制备得到种子层(6)的基底表面旋涂一层光刻胶,其中,该光刻胶的厚度大于所述种子层(6)与所述电极阵列(4)的厚度之和;然后,在所述种子层(6)与电极阵列(4)表面沉积一层所述钝化保护材料,接着剥离所述光刻胶,得到局部包覆所述种子层(6)的钝化保护层(7),其中,对于需要桥接的一对电极阵列(4),该对电极阵列(4)上的种子层(6)相对的一面未覆盖钝化保护层(7)。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S4具体包括以下步骤:在惰性气氛氛围下,对步骤S3中表面外周制备有钝化保护层(7)的种子层(6)进行退火处理,以改善种子层(6)的结晶性,其中,所述退火处理的温度为200℃~500℃,退火处理的时间为1h~4h,更进一步的,经退火处理后的种子层(6)的晶粒变大,具有单晶取向特征。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S5中,所述微纳结构(8)生长的方式为横向生长,从而,对于需要桥接的一对电极阵列(4),通过该对电极阵列(4)上的种子层(6)相对的一面横向生长的微纳结构(8)的搭接实现桥接。
  8. 根据权利要求1-7任一项所述的制备方法,其特征在于,步骤S1中,需要桥接的一对电极阵列(4)之间的间距为100nm~5000nm;进一步的,所述基底包括传感基底层(1)以及设置于所述传感基底层(1)上表面的绝缘层(2)。
  9. 一种桥接式微纳结构传感单元的阵列传感器,其特征在于,包括基底、电极阵列(4)、种子层(6)、钝化保护层(7)以及微纳结构(8),其中,
    所述电极阵列(4)设置有多对,每个所述电极阵列(4)上均设置有所述种子层(6),所述钝化保护层(7)局部包覆于所述种子层(6)的外周,对于需要桥接的一对电极阵列(4),该对电极阵列(4)上的种子层(6)相对的一面未覆盖钝化保护层(7),且所述微纳结构(8)生长于所述种子层(6)未覆盖钝化保护层(7)一面上,并通过对应所述微纳结构(8)的搭接实现该对电极阵列(4)的桥接。
  10. 根据权利要求9所述的阵列传感器,其特征在于,所述种子层(6)在退火处理后具有单晶取向特征;进一步的,所述种子层(6)的横截面轮廓小于所述电极阵列(4)的横截面轮廓,且对于需要桥接的一对电极阵列(4),该对电极阵列(4)上的种子层(6)相对的一面相互平行且与所述电极阵列(4)的上表面垂直;进一步的,所述电极阵列(4)的厚度为5nm~500nm;进一步的,所述种子层(6)的厚度为200nm~2000nm;进一步的,需要桥接的一对电极阵列(4)之间的间距为100nm~5000nm。
PCT/CN2020/101360 2019-10-29 2020-07-10 桥接式微纳结构传感单元的阵列传感器的制备方法及产品 WO2021082526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911034800.4 2019-10-29
CN201911034800.4A CN110702753B (zh) 2019-10-29 2019-10-29 桥接式微纳结构传感单元的阵列传感器的制备方法及产品

Publications (1)

Publication Number Publication Date
WO2021082526A1 true WO2021082526A1 (zh) 2021-05-06

Family

ID=69202609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101360 WO2021082526A1 (zh) 2019-10-29 2020-07-10 桥接式微纳结构传感单元的阵列传感器的制备方法及产品

Country Status (2)

Country Link
CN (1) CN110702753B (zh)
WO (1) WO2021082526A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702753B (zh) * 2019-10-29 2020-09-08 华中科技大学 桥接式微纳结构传感单元的阵列传感器的制备方法及产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080239610A1 (en) * 2006-07-19 2008-10-02 Ho-Chieh Yu Chip scale gas discharge protective device and fabrication method of the same
CN102730630A (zh) * 2012-07-03 2012-10-17 清华大学 一种制造ZnO纳米结构和纳米紫外传感器的方法
CN103628133A (zh) * 2013-12-09 2014-03-12 西安工业大学 一种定向生长单晶ZnO纳米墙的水溶液制备方法
CN103966662A (zh) * 2014-04-01 2014-08-06 中国科学院重庆绿色智能技术研究院 一种在硅电极上定位横向生长氧化锌纳米线的方法
CN106409975A (zh) * 2016-11-17 2017-02-15 北京工业大学 一种可定制的高增益ZnO纳米线阵列紫外探测器及其制备方法
CN110702753A (zh) * 2019-10-29 2020-01-17 华中科技大学 桥接式微纳结构传感单元的阵列传感器的制备方法及产品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185492C (zh) * 1999-03-15 2005-01-19 清华大学 可单点选通式微电磁单元阵列芯片、电磁生物芯片及应用
TW201140139A (en) * 2010-03-11 2011-11-16 Pacific Biosciences California Micromirror arrays having self aligned features
TWI532196B (zh) * 2011-08-04 2016-05-01 愛美科公司 指叉電極的形成方法以及指叉式背接觸光伏特電池
CN102684068B (zh) * 2012-05-28 2014-04-23 西安交通大学 一种基于纳米线阵列的可调谐激光器及其制备工艺
CN106098661B (zh) * 2013-08-05 2019-01-22 日月光半导体制造股份有限公司 半导体组件及其制造方法
CN106293291B (zh) * 2016-07-25 2018-04-03 京东方科技集团股份有限公司 触摸传感器及其制作方法、和触摸面板
US10026707B2 (en) * 2016-09-23 2018-07-17 Microchip Technology Incorportated Wafer level package and method
CN109216534B (zh) * 2017-07-04 2022-05-06 上海新微技术研发中心有限公司 一种晶圆级封装的单片集成红外温度传感器及其制造方法
CN109580723B (zh) * 2018-10-23 2020-10-02 华中科技大学 一种柔性湿度传感器的制备方法及产品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080239610A1 (en) * 2006-07-19 2008-10-02 Ho-Chieh Yu Chip scale gas discharge protective device and fabrication method of the same
CN102730630A (zh) * 2012-07-03 2012-10-17 清华大学 一种制造ZnO纳米结构和纳米紫外传感器的方法
CN103628133A (zh) * 2013-12-09 2014-03-12 西安工业大学 一种定向生长单晶ZnO纳米墙的水溶液制备方法
CN103966662A (zh) * 2014-04-01 2014-08-06 中国科学院重庆绿色智能技术研究院 一种在硅电极上定位横向生长氧化锌纳米线的方法
CN106409975A (zh) * 2016-11-17 2017-02-15 北京工业大学 一种可定制的高增益ZnO纳米线阵列紫外探测器及其制备方法
CN110702753A (zh) * 2019-10-29 2020-01-17 华中科技大学 桥接式微纳结构传感单元的阵列传感器的制备方法及产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU NISHUANG: "Optoelectronic Devices Based on Lateral Grown Zinc Oxide Nanorods", INFORMATION & TECHNOLOGY, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 26 October 2011 (2011-10-26), XP055809413 *

Also Published As

Publication number Publication date
CN110702753A (zh) 2020-01-17
CN110702753B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
US8435899B2 (en) Method for producing columnar structured material
TWI743525B (zh) 類單晶薄膜及其製造方法
CN111524803B (zh) 一种用于高温传感的多层复合薄膜电极及其制备方法
US20140342236A1 (en) Scalable fabrication of one-dimensional and three-dimensional, conducting, nanostructured templates for diverse applications such as battery electrodes for next generation batteries
JPS6012306B2 (ja) セラミツクをシリコンで被覆する方法
JP2003128411A (ja) 板状シリコン、板状シリコンの製造方法および太陽電池
WO2021082526A1 (zh) 桥接式微纳结构传感单元的阵列传感器的制备方法及产品
JP2013501313A (ja) 磁束ピンニングを改善するためのプレファブ式に作製されたナノ構造を有する超伝導部材
CN1967230A (zh) 纳米结构有序多孔薄膜型气敏元件及其制备方法
TWI457474B (zh) 一維金屬奈米結構之製造方法
KR100984618B1 (ko) 박막 실리콘 태양전지의 제조방법
JP4741326B2 (ja) 酸化物超電導導体およびその製造方法
KR101304286B1 (ko) 다결정층 제조방법
JP2004185890A (ja) メタルマスク
KR20100025838A (ko) 나노구조의 제조 방법
KR101548704B1 (ko) 실리콘 나노와이어 어레이, 리튬 이온전지용 음극 및 이의 제조방법
JP2002115056A (ja) 単結晶巨大粒子からなる金属薄膜の製造方法
JPH01110776A (ja) 半導体多結晶薄膜の製造方法
RU2628220C1 (ru) Способ формирования массива нанопроволок на ступенчатой поверхности Cu2Si
KR101067381B1 (ko) 나노선 수평 성장을 위한 금속촉매의 측면 증착방법 및 이를 이용하여 수평 성장된 나노선의 제조방법
US8029851B2 (en) Nanowire fabrication
KR101919344B1 (ko) 산화아연 습도센서 소자 제조방법
JP4619475B2 (ja) 酸化物超電導導体
US20230174420A1 (en) Method of fabricating metal thin film supported by glass support
TWI726777B (zh) 大晶粒類單晶薄膜及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883528

Country of ref document: EP

Kind code of ref document: A1