CN111370741A - 一种全钒氧化还原液流电池用超薄膜及其制备方法 - Google Patents

一种全钒氧化还原液流电池用超薄膜及其制备方法 Download PDF

Info

Publication number
CN111370741A
CN111370741A CN202010221714.0A CN202010221714A CN111370741A CN 111370741 A CN111370741 A CN 111370741A CN 202010221714 A CN202010221714 A CN 202010221714A CN 111370741 A CN111370741 A CN 111370741A
Authority
CN
China
Prior art keywords
acid resin
redox flow
membrane
flow battery
vanadium redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010221714.0A
Other languages
English (en)
Other versions
CN111370741B (zh
Inventor
刘建国
张登华
徐泽宇
赵丽娜
严川伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202010221714.0A priority Critical patent/CN111370741B/zh
Publication of CN111370741A publication Critical patent/CN111370741A/zh
Application granted granted Critical
Publication of CN111370741B publication Critical patent/CN111370741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/347Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated ethers, acetals, hemiacetals, ketones or aldehydes
    • D06M15/353Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated ethers, acetals, hemiacetals, ketones or aldehydes containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/22Polymers or copolymers of halogenated mono-olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种全钒氧化还原液流电池用超薄膜及其制备方法,属于全钒氧化还原液流电池(VRFB)电池隔膜技术领域。该方法首先采用静电纺丝制备全氟磺酸树脂纺丝膜,然后将所得全氟磺酸树脂纺丝膜浸泡在浓度为3~20wt.%的全氟磺酸树脂的乙醇溶液中,之后烘干成膜,重复浸泡‑烘干的过程3‑10次,即获得所述全钒氧化还原液流电池用超薄膜。本发明制备的超薄膜具有较好的阻钒性、机械性能以及较好的导电性,使VRFB具有较好的电池性能,为全钒氧化还原液流电池隔膜的发展提供新思路。

Description

一种全钒氧化还原液流电池用超薄膜及其制备方法
技术领域
本发明涉及全钒氧化还原液流电池(VRFB)电池隔膜技术领域,具体为一种全钒氧化还原液流电池用超薄膜及其制备方法。
背景技术
随着化石燃料消耗的迅速增加和随之而来的环境污染,迫切需要开发和有效利用风能、太阳能、生物质等可再生能源,但这些可再生能源本质上是间歇性的,导致了季节性和不稳定发电与持续稳定供电需求之间的矛盾。因此,储能包括电池在内的设备对稳定的电力供应至关重要。理想的储能技术需要低成本、环保、长寿命、高性能、高能量密度。液流氧化还原电池(RFBs)在稳定性、安全性、效率、可靠性和易用性等方面表现出优异的性能。其中,全钒氧化还原电池(VRFBs)在大型存储系统中显示出明显的优势。
VRFBs包含两个电解质容器、两个电极和一个隔膜。VRFBs的性能主要表现为库仑效率(CE)、电压效率(VE)和能量效率(EE)。隔膜是VRFBs的关键材料和核心部件之一,起到阻隔正负极混液、形成电流回路的作用。性能优异的隔膜,除具有必要机械性能和化学稳定性外,还必须满足质子导电性和离子选择性(阻钒性)之间的有效平衡,即活性离子扩散(H+、H3O+、SO4 2-或SO4H-)的导电能力与阻钒离子渗透能力之间的平衡。
而隔膜因自身离子传导所产生的电阻,占整个电池堆内阻的较大部分(30-50%)。因此,在保证较小的钒透过率的同时,提高隔膜电导率、降低隔膜面电阻,可有效提升电堆的工作电流密度,也是提高钒电池功率密度的有效途径之一。
发明内容
本发明的目的是提供一种全钒氧化还原液流电池用超薄膜及其制备方法,通过改变工艺参数,制备具有不同结构超薄膜。在保证隔膜高离子选择透过性、高导电性同时,降低隔膜成本,提高隔膜机械强度,可适用于全钒氧化还原液流电池(VRFB)。
为实现上述目的,本发明所采用的技术方案如下:
一种全钒氧化还原液流电池用超薄膜的制备方法,包括如下步骤:
(1)将全氟磺酸树脂溶于有机溶剂中,在磁力搅拌条件下溶解,配成浓度5~25wt.%的全氟磺酸树脂溶液;
(2)将步骤(1)中所得的全氟磺酸树脂溶液超声处理,使树脂分散均匀,并除去溶液中气泡;
(3)采用静电纺丝装置制备全氟磺酸树脂纺丝膜:将经步骤(2)超声处理后的全氟磺酸树脂溶液加入到静电纺丝装置的注射器中,开始静电纺丝,纺丝时间2~6h,纺丝完成后,将铝箔纸取下,铝箔纸上附有全氟磺酸树脂纺丝膜,干燥条件下保存;
(4)将步骤(3)中所得的附于铝箔纸上的全氟磺酸树脂纺丝膜浸泡在浓度为3~20wt.%的全氟磺酸树脂的乙醇溶液中,之后烘干成膜,重复浸泡-烘干的过程3-10次,从而在全氟磺酸树脂纺丝膜上复合一层全氟磺酸树脂,即获得所述全钒氧化还原液流电池用超薄膜。
上述步骤(1)中,有机溶剂选自二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮和二氯甲烷中的一种或几种。
上述步骤(2)中,超声时间为0.5~4小时。
所述静电纺丝装置包括注射器、针头、接收器(板)和高压静电发生器,高压静电发生器的正极接到针头上,高压静电发生器的负极连接到接收器上,接收器上铺有一层铝箔纸,用于接收静电纺纤维。
上述步骤(3)中,静电纺丝过程在室温条件下进行,所述室温条件为温度20℃、湿度45%。设置注射器针头与接收器之间距离为8~15cm,电压为10~20千伏,注射器推进速度为0.1~12.0毫升/小时。
上述步骤(3)中,所述注射器为5mL注射器,注射器针头与接收器之间距离为10cm。
上述步骤(4)中,制膜烘干温度为80~140℃,每次烘干时间为1~4h。
所制备的全钒氧化还原液流电池用超薄膜是由全氟磺酸树脂纺丝膜和全氟磺酸树脂膜组成的两层复合结构,该超薄膜的拉伸强度大于33MPa,断裂伸长率大于101%,离子传导率大于15mS cm-1,钒离子渗透常数小于14×10-7cm min-1
本发明的优点及有益效果如下:
1、本发明利用静电纺丝技术制备了隔膜的基体-全氟磺酸树脂纺丝膜,提高了原本全氟磺酸膜的机械强度,再在基体上复合一层全氟磺酸树脂,构建了静电纺丝超薄膜,降低成本的同时,降低电池内阻,提高了阻钒率,进而提高电池效率,为钒电池电极、隔膜的应用提供新的思路,对提高钒电池性能、降低储能系统成本有着非常重要的意义。
2、全钒液流电池的性能(VRFB电堆的能量效率(EE))由电压效率(VE)和电流效率(CE)两方面决定(EE=VE×CE),电池的性能受其电压损失的影响很大,电压损失又受欧姆极化影响,姆极化影响其电压效率。因此,减小欧姆损失对提高电池性能很重要。性能优异的隔膜,除具有必要机械性能和化学稳定性外,还必须满足质子导电性和离子选择性(阻钒性)之间的有效平衡。采用本发明静电纺丝复合膜,能够有效降低电池的内阻,降低电池的极化损失,提高VRFB的性能。
3、本发明制备的膜电极具有良好的阻钒性能、机械性能以及良好导电性,提高单个VRB电池性能,可应用于全钒氧化还原液流电池领域。
具体实施方式
为了进一步理解本发明,以下结合实例对本发明进行描述,但实例仅为对本发明的特点和优点做进一步阐述,而不是对本发明权利要求的限制。
以下实施例中所用静电纺丝装置包括注射器、针头、接收器(板)和高压静电发生器,高压静电发生器的正极接到针头上,高压静电发生器的负极连接到接收器上,接收器上铺有一层铝箔纸,用于接收静电纺纤维。静电纺丝过程在室温条件(温度20℃、湿度45%)下进行。
实施例1
本实施例制备静电纺丝超薄膜的方法,包括如下步骤:
(1)将4g全氟磺酸树脂溶于N,N-二甲基乙酰胺中,在磁力搅拌条件下溶解,配成浓度为15wt.%的全氟磺酸树脂溶液;
(2)将步骤(1)中所得的全氟磺酸树脂溶液超声处理2h,使树脂分散均匀,除去气泡;
(3)将经步骤(2)处理后的全氟磺酸树脂溶液加入到注射器中,在室温条件下设置针头与接收器之间距离为15cm,电压为15千伏,注射器推进速度为0.6毫升/小时;
(4)然后将高压静电发生器的正极接到针头上,负极连接到接收器上,接收器上铺有一层铝箔纸,用于接收静电纺纤维,开始静电纺丝,纺丝5h,纺丝完成后,将铝箔纸取下,干燥条件下保存;
(5)将步骤(4)中所得的全氟磺酸树脂纺丝膜,浸泡在浓度为10wt.%的全氟磺酸树脂的乙醇溶液中,之后烘干成膜,重复浸泡-烘干的过程3次,获得全钒氧化还原液流电池用超薄膜。
该超薄膜是由全氟磺酸树脂纺丝膜和复合于其外表面的全氟磺酸树脂膜组成,该复合结构的超薄膜表面光滑,分布均匀,无分层现象。
实施例2
与实施例1不同之处在于:
1、步骤(1)将4g全氟磺酸树脂溶于N,N-二甲基乙酰胺中,在磁力搅拌器中溶解,配成质量百分数为25%的全氟磺酸树脂溶液;
2、其余步骤与实施例1相同。本实施例中,所获得的超薄膜表面光滑,分布均匀,无分层现象。
实施例3
与实施例1不同之处在于:
1、步骤(5)将步骤(4)中所得的全氟磺酸树脂纺丝膜,浸泡在浓度为10wt.%的全氟磺酸树脂的乙醇溶液中,之后烘干成膜,重复浸泡-烘干的过程3次。
2、其余步骤与实施例1相同。本实施例中,所获得的超薄膜表面光滑,分布均匀,无分层现象。
对上述实施例1-3所制备的钒电池用隔膜以及所得的钒电池用离子交换膜进行相关性能测试,测试结果如表1所示,测试方法如下,
拉伸强度测试:按照GB/T 1040-2006《塑料拉伸性能试验方法》进行测试。
离子传导率:制备的隔膜的阻抗,是采用两电极交流阻抗法在电化学工作站上测得的,测试频率为1Hz~0.1MHz。将样品浸入3M H2SO4中12h,用3M H2SO4溶液填充两个电解质容器,并控制温度在25℃下。离子传导率根据下列公式计算:
Figure BDA0002426323720000051
其中,σ为离子传导率(S cm-1),L为两电极之间的距离(cm),R为所测样品的交流阻抗,A为膜的横截面面积。
氧化稳定性:将膜在60℃下干燥5h,迅速并且准确称取其质量,然后,将隔膜浸泡在40℃的0.1M L-1VO2++3.0M L-1H2SO4溶液中20小时后取出,洗涤、干燥、测定隔膜的重量保留率。计算公式为:
保留率=(浸泡后膜重量-浸泡前膜重量)/浸泡前膜重量×100%。
钒离子渗透常数:用自制装置测试了膜的VO2+渗透性,左右容器分别在3.0H2SO4溶液中填充200毫升1.65M VOSO4,在3.0M H2SO4中分别填充200毫升1.65M MgSO4。膜夹在两个容器之间,随着时间的推移,用紫外-可见光谱仪测量了MgSO4侧的钒离子浓度。根据文献法计算VO2渗透系数。
全钒氧化还原液流单电池性能:
将3×3cm2膜夹在两个石墨毡电极之间,组装了VRFB单电池。在3M H2SO4中加入两种25毫升(1.65M VO2+:V3+=1:1)溶液作为正负电解质。电解质循环由蠕动泵驱动,流量为40mL min-1。用Neware ct-3008(5v/6a)电池测试系统在100~200mA cm-2的不同电流密度下测试电池性能,充放电截止电压分别为1.65V和1.0V。
从表1可以看出,本发明实施例制备的钒电池用隔膜拉伸强度均大于33MPa,断裂伸长率均大于101%,离子传导率均大于15mS cm-1,钒离子渗透常数均小于14×10-7cm min-1,能量效率在200mA cm-2最高可达到79.45%。可见,本发明方法制备的钒电池用隔膜具有更加优异的拉伸性能和化学稳定性,且其具有更高的离子传导率和更低的钒离子渗透,符合钒电池用隔膜使用要求。
表1
Figure BDA0002426323720000052
实验结果表明:本发明采用静电纺丝法,制备了全氟磺酸树脂超薄膜。本发明制备的全氟磺酸树脂超薄膜具有较好的阻钒性能、导电性能、以及良好电池性能等优点,降低电池内阻,提高隔膜机械性能,满足钒电池使用要求,可广泛地应用于全钒氧化还原液流电池领域。

Claims (9)

1.一种全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:该方法包括如下步骤:
(1)将全氟磺酸树脂溶于有机溶剂中,在磁力搅拌条件下溶解,配成浓度5~25wt.%的全氟磺酸树脂溶液;
(2)将步骤(1)中所得的全氟磺酸树脂溶液超声处理,使树脂分散均匀,并除去溶液中气泡;
(3)采用静电纺丝装置制备全氟磺酸树脂纺丝膜:将经步骤(2)超声处理后的全氟磺酸树脂溶液加入到静电纺丝装置的注射器中,开始静电纺丝,纺丝时间2~6h,纺丝完成后,将铝箔纸取下,铝箔纸上附有全氟磺酸树脂纺丝膜,干燥条件下保存;
(4)将步骤(3)中所得的附于铝箔纸上的全氟磺酸树脂纺丝膜,浸泡在浓度为3~20wt.%的全氟磺酸树脂的乙醇溶液中,之后烘干成膜,重复浸泡-烘干的过程3-10次,从而在全氟磺酸树脂纺丝膜上复合一层全氟磺酸树脂,即获得所述全钒氧化还原液流电池用超薄膜。
2.按照权利要求1所述的全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:步骤(1)中,有机溶剂选自二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮和二氯甲烷中的一种或几种。
3.按照权利要求1所述的全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:步骤(2)中,超声时间为0.5~4小时。
4.按照权利要求1所述的全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:所述静电纺丝装置包括注射器、针头、接收器(板)和高压静电发生器,高压静电发生器的正极接到针头上,高压静电发生器的负极连接到接收器上,接收器上铺有一层铝箔纸,用于接收静电纺纤维。
5.按照权利要求4所述的全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:步骤(3)中,静电纺丝过程在室温条件下进行,设置注射器针头与接收器之间距离为8~15cm,电压为10~20千伏,注射器推进速度为0.1~12.0毫升/小时。
6.按照权利要求5所述的全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:所述室温条件为温度20℃、湿度45%。
7.按照权利要求5所述的全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:步骤(3)中,所述注射器为5mL注射器,注射器针头与接收器之间距离为10cm。
8.按照权利要求1所述的全钒氧化还原液流电池用超薄膜的制备方法,其特征在于:步骤(4)中,制膜烘干温度为80~140℃,每次烘干时间为1~4h。
9.一种利用权利要求1-8任一所述方法制备的全钒氧化还原液流电池用超薄膜,其特征在于:该超薄膜是由全氟磺酸树脂纺丝膜和全氟磺酸树脂膜组成的两层复合结构,该超薄膜的拉伸强度大于33MPa,断裂伸长率大于101%,离子传导率大于15mS cm-1,钒离子渗透常数小于14×10-7cm min-1
CN202010221714.0A 2020-03-26 2020-03-26 一种全钒氧化还原液流电池用超薄膜及其制备方法 Active CN111370741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010221714.0A CN111370741B (zh) 2020-03-26 2020-03-26 一种全钒氧化还原液流电池用超薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010221714.0A CN111370741B (zh) 2020-03-26 2020-03-26 一种全钒氧化还原液流电池用超薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111370741A true CN111370741A (zh) 2020-07-03
CN111370741B CN111370741B (zh) 2022-10-04

Family

ID=71211926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010221714.0A Active CN111370741B (zh) 2020-03-26 2020-03-26 一种全钒氧化还原液流电池用超薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111370741B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773755A (zh) * 2005-11-17 2006-05-17 上海交通大学 一种质子交换膜燃料电池用的膜电极及其制备方法
WO2012174463A1 (en) * 2011-06-17 2012-12-20 E. I. Du Pont De Nemours And Company Improved composite polymer electrolyte membrane
CN103263855A (zh) * 2013-06-04 2013-08-28 北京巨龙博方科学技术研究院 一种静电纺丝制备离子交换膜的方法
CN106558721A (zh) * 2015-09-17 2017-04-05 中国科学院金属研究所 一种多功能复合隔膜及其制备方法
CN106972185A (zh) * 2016-01-14 2017-07-21 中国科学院金属研究所 一种全钒液流电池用低成本复合质子交换膜的制备方法
CN108598520A (zh) * 2018-04-04 2018-09-28 大连理工大学 一种静电纺丝制备液流电池离子传导性隔膜的方法
CN110783591A (zh) * 2019-10-25 2020-02-11 中国科学院山西煤炭化学研究所 一种离子交换膜的制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773755A (zh) * 2005-11-17 2006-05-17 上海交通大学 一种质子交换膜燃料电池用的膜电极及其制备方法
WO2012174463A1 (en) * 2011-06-17 2012-12-20 E. I. Du Pont De Nemours And Company Improved composite polymer electrolyte membrane
CN103620846A (zh) * 2011-06-17 2014-03-05 纳幕尔杜邦公司 改善的复合聚合物电解质膜
CN103263855A (zh) * 2013-06-04 2013-08-28 北京巨龙博方科学技术研究院 一种静电纺丝制备离子交换膜的方法
CN106558721A (zh) * 2015-09-17 2017-04-05 中国科学院金属研究所 一种多功能复合隔膜及其制备方法
CN106972185A (zh) * 2016-01-14 2017-07-21 中国科学院金属研究所 一种全钒液流电池用低成本复合质子交换膜的制备方法
CN108598520A (zh) * 2018-04-04 2018-09-28 大连理工大学 一种静电纺丝制备液流电池离子传导性隔膜的方法
CN110783591A (zh) * 2019-10-25 2020-02-11 中国科学院山西煤炭化学研究所 一种离子交换膜的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.W. CHOI等: ""Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells"", 《JOURNAL OF POWER SOURCES 》 *

Also Published As

Publication number Publication date
CN111370741B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
Zhang et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application
CN101807678B (zh) 电解质隔膜及其复合膜在酸性电解液液流储能电池中应用
Yuan et al. Polypyrrole modified porous poly (ether sulfone) membranes with high performance for vanadium flow batteries
Xu et al. Morphology and performance of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend porous membranes for vanadium flow battery application
JP5362144B2 (ja) 固体高分子型燃料電池用の電解質膜とその製造方法および固体高分子型燃料電池
CN102280251A (zh) 一种基于石墨烯和聚芳醚的超级电容器及其制备方法
JP6155469B2 (ja) 固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池
CN111395008B (zh) 全氟磺酸树脂/聚偏氟乙烯复合电纺丝膜及其制备方法
CN103762375A (zh) 聚四氟乙烯夹层保护离子交换膜、其制备方法及液流电池
Fu et al. SPEEK/PVDF/PES composite as alternative proton exchange membrane for vanadium redox flow batteries
CN112038541B (zh) 一种复合隔膜材料及其制备方法和应用
CN110120483A (zh) 一种钠离子电池隔膜及其制备方法
CN116444848A (zh) 一种多孔离子传导膜及其制备方法和在酸性水系有机液流电池中的应用
Chen et al. Polybenzimidazole and polyvinylpyrrolidone blend membranes for vanadium flow battery
CN113540488B (zh) 一种三明治结构的有机锂离子液流电池隔膜及其制备方法
CN111370741B (zh) 一种全钒氧化还原液流电池用超薄膜及其制备方法
JP2013229325A (ja) 高分子電解質膜、膜電極接合体および燃料電池
CN105226223B (zh) C基多孔复合膜及其应用
CN111048813B (zh) 一种铁铬液流电池用有机-无机复合膜及其制备方法
Zhang et al. Nanofiltration membranes for vanadium flow battery application
CN104752737A (zh) 一种新型全钒液流电池离子交换膜的制备方法
CN103985890B (zh) 一种聚烯烃双层保护离子交换膜、其制备方法及液流电池
CN109428036B (zh) 一种锂氧气电池隔膜的制备方法
CN109411796B (zh) 一种用于钒电池的交联型质子交换膜及制备方法
Subianto et al. On electrospinning of PFSA: a comparison between long and short-side chain ionomers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant