CN111363848A - 用于呼吸道rna病毒pcr检测的内参基因及其检测产品 - Google Patents

用于呼吸道rna病毒pcr检测的内参基因及其检测产品 Download PDF

Info

Publication number
CN111363848A
CN111363848A CN202010276167.6A CN202010276167A CN111363848A CN 111363848 A CN111363848 A CN 111363848A CN 202010276167 A CN202010276167 A CN 202010276167A CN 111363848 A CN111363848 A CN 111363848A
Authority
CN
China
Prior art keywords
gene
detection
artificial sequence
reference gene
ddx5
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010276167.6A
Other languages
English (en)
Inventor
仲从浩
王科
张震
聂东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenlian Biomedical Shanghai Co ltd
Original Assignee
Shenlian Biomedical Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenlian Biomedical Shanghai Co ltd filed Critical Shenlian Biomedical Shanghai Co ltd
Publication of CN111363848A publication Critical patent/CN111363848A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种用于呼吸道RNA病毒PCR检测的内参基因及其检测产品,所述内参基因为DDX5基因。本发明还设计了针对内参基因的引物和探针。与美国CDC用的内参基因RNase P(RPP30)及对应引物和探针相比,本发明所设计和筛选的针对本发明内参基因的引物和探针高度特异,仅对mRNA扩增,而不对基因组DNA扩增;并且本发明内参基因在人群中可被稳定检出。

Description

用于呼吸道RNA病毒PCR检测的内参基因及其检测产品
技术领域
本发明涉及呼吸道RNA病毒检测技术领域,具体涉及一种用于呼吸道RNA病毒PCR检测的内参基因及其检测产品。
背景技术
呼吸道病毒(respiratory virus)感染是导致全球死亡、残疾的最主要原因之一。据统计,上世纪流感病毒致死人数超过1亿人[Eric T Beck,2010];在5岁以下儿童中,急性下呼吸道感染导致的死因占20%以上,其中尤以肺炎最为严重,占比超过90%[JeanneCarr,2010]。此外,本世纪新型呼吸道病毒频现,如重症急性呼吸综合征病毒(SARS病毒,2002年)、中东呼吸综合症病毒(MERS病毒,2012年)、新型冠状病毒(SARS-COV2病毒,2019年),严重危害人类生命、导致惨重的社会经济损失。
早期精确诊断呼吸道病毒有利于迅速确定诊疗方案、采取隔离措施控制疫情。目前相关诊断技术较多,包括病毒分离、病毒抗原检测、病毒核酸检测和抗体检测等[Walter,J.M.2018]。呼吸道病毒以RNA病毒为主(见下表1),其PCR检测方法主要有反转录-实时荧光定量PCR(RT-qPCR)、反转录-普通PCR、反转录-环介导等温扩增(RT-LAMP)、反转录-依赖核酸序列的扩增(RT-NASBA)、反转录-滚环扩增(RT-RCA)、反转录-单引物等温扩增(RT-SPIA)、反转录-依赖解旋酶DNA等温扩增(RT-HDA)、反转录-重组酶聚合酶扩增(RT-RPA)、反转录-链替代扩增(RT-SDA)等基因扩增技术。这些技术都是通过设计相关引物序列,对待检测基因序列的数量进行扩增放大,以促使待测基因被检出。其中,RT-qPCR可特异检测病毒RNA,具备快速、灵敏、特异性高等优势,是当前最常用的诊断技术。
表1呼吸道病毒及对应病毒核酸[Somerville,L.K.2015]
Figure BDA0002444862160000011
Figure BDA0002444862160000021
表附注:ss为单链,ds为双链,(+)为正链(单链病毒RNA可直接行使mRNA功能),(–)为负链(单链病毒RNA需先合成互补链,由互补链行使mRNA功能)
尽管具备多项优势,但假阴性仍是目前PCR检测尤其是RT-qPCR存在的主要问题之一。对新发现的病毒,RT-qPCR结果假阴性的原因可能来自多个方面:1)新发现病毒的病理特性尚不完全清楚,尚无法准确判定合适的病理样本采集位置和采集时间;2)新开发的诊断试剂盒检测灵敏度参差不齐;3)RNA稳定性远低于DNA,而相关诊断实验涉及流程多,包括临床样本采集、样本保存运输、RNA提取、RT-qPCR反应,其中任何一步操作失误导致RNA被降解或者扩增反应失败,都可导致实验假阴性。
内参基因在所有人群中表达水平相近,研究显示,RT-qPCR诊断病原的同时检测样本中内源基因的mRNA,可有效对临床样本采集、样本保存运输、RNA提取、RT-qPCR反应等全实验过程进行质控,排除实验操作失误、试剂故障、反应失败,一定程度上可规避假阴性,提升诊断结果的可靠度。事实上,早在SARS期间,美国CDC就已将内参基因RNase P的P30基因(RPP30)应用于病原RT-qPCR诊断[Shannon L.Emery,2004],以提升诊断结果的可靠度,该基因及相关引物探针序列一直沿用至今(序列见表2)。在国内,目前普遍采用的质控方式是,在样品运输到实验室后,在核酸提取之前或在RT-qPCR之前加入外源基因或含外源基因的假病毒,该方法并不能有效监控到上游样本采集和运输保藏过程,且增加额外的实验操作步骤和物料成本。
表2内参基因Rnase P的引物和探针
Figure BDA0002444862160000031
进一步分析针对内参基因RPP30的扩增序列,发现其在人基因组DNA中存在100%相同的序列(图1),即对应引物和探针既可扩增RNA,可以扩增基因组DNA。这提示,即使实验过程中RNA丢失(RNA被降解、RNA未被有效提取出、反转录反应失败),也极可能通过对相应基因组DNA作扩增,获得内参基因的“有效”检出,导致阴性判定,但实际可能为假阴性。事实上,美国CDC也曾做出提醒,称其针对RPP30的引物和探针可同时对RNA和DNA进行扩增,并不适合用作反转录过程的质控品[US CDC,RT-PCR for Mumps Virus RNA,2010]。
发明内容
本发明基于现有技术的不足,提供了一种用于呼吸道RNA病毒PCR检测的内参基因及其检测产品。本专利筛选一个新的内参基因DDX5及相关引物和探针序列,用于监控呼吸道RNA病毒RT-qPCR的实验过程。该基因过去常被用作肿瘤基因表达定量的归一化,而在本发明中该基因被筛选出,并首次被应用于呼吸道RNA病毒PCR诊断质控。所设计的针对该基因的引物和探针序列高度特异,仅识别待检测基因的mRNA,不与人基因组DNA交叉反应。使用该内参基因可更真实指示咽拭子样本中病毒RNA的完整性和实验流程的正确性,提高呼吸道RNA病毒PCR诊断准确度。
本发明的目的是通过以下技术方案实现的:
第一方面,本发明提供了一种用于呼吸道RNA病毒PCR检测的内参基因,所述内参基因为DDX5基因。
优选地,所述呼吸道RNA病毒包括重症急性呼吸综合征病毒、中东呼吸综合症病毒、新型冠状病毒、流感病毒、呼吸道合胞病毒(RSV)、副流感病毒(PIV)、人类偏肺病毒(hMPV)、人鼻病毒(HRV)、人肠道病毒(HEV)中的任一种。鼻咽拭子是呼吸道RNA病毒PCR诊断最普遍和通用的临床样本之一,本发明筛选获得适用于咽拭子样本的内参基因TBP和引物和探针组合,因此该基因及引物探针组合可应用到含上述的任一种病毒的呼吸道RNA病毒PCR诊断方法中,以提高诊断准确度。
优选地,所述PCR检测包括反转录-实时荧光定量PCR(RT-qPCR)检测、反转录-普通PCR检测、反转录-环介导等温扩增(RT-LAMP)检测、反转录-依赖核酸序列的扩增(RT-NASBA)检测、反转录-滚环扩增(RT-RCA)检测、反转录-单引物等温扩增(RT-SPIA)检测、反转录-依赖解旋酶DNA等温扩增(RT-HDA)、反转录-重组酶聚合酶扩增(RT-RPA)、反转录-链替代扩增(RT-SDA)等基因扩增技术中的任一种。这些技术都是通过设计相应的引物,对待检测基因序列的数量进行扩增放大,以促使待测基因被检出。因此本发明筛选得到的内参基因DDX5基因可应用到上述的任一种PCR检测方法中,以提高诊断准确度。
第二方面,本发明提供了一种用于检测前述的内参基因的引物,所述DDX5基因的引物序列如SEQ ID NO.13和SEQ ID NO.14所示。
第三方面,本发明提供了一种用于检测权前述的内参基因的探针,所述DDX5基因的探针序列如SEQ ID NO.15所示。
第四方面,本发明提供了一种新型冠状病毒RT-PCR检测产品,包括用于检测权利要求1所述内参基因DDX5基因的引物和探针;所述引物序列如SEQ ID NO.13和SEQ IDNO.14所示,探针序列如SEQ ID NO.15所示。
优选地,所述检测产品包括检测试剂盒、检测试纸。
第五方面,本发明提供了一种用于呼吸道RNA病毒PCR检测的内参基因的筛选方法,包括以下步骤:
A、对相关基因进行同源性分析,筛选出假基因数在1个及以下的基因作为候选基因;
B、分析各候选基因在健康鼻咽组织和皮肤组织中的表达水平,以推测其在鼻咽拭子样本中的表达水平,选择在至少一个组织中表达的候选基因;
C、对候选基因进行表达稳定性分析,筛选得到在人群中可被稳定检测的基因,即为所述的内参基因。
与现有技术相比,本发明具有如下有益效果:
本发明筛选出新的内参基因DDX5,并设计了这些基因的引物和taqman探针,用作呼吸道RNA病毒的PCR诊断尤其是RT-qPCR诊断。与现有内参基因RPP30相比,新内参基因的引物和探针高度特异,仅识别mRNA,不与人基因组DNA交叉反应;此外,新内参基因在人群中可被稳定检出。使用该内参基因及相应引物和探针可更真实监控临床咽拭子样本中病毒RNA的完整性和实验流程的正确性,提高呼吸道RNA病毒PCR诊断准确度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为人10号染色体DNA序列与现有内参基因RPP30待扩增序列对比图;
图2为实施例2中各基因在健康鼻咽组织和皮肤组织中的表达水平(均值±SD);
图3为12个咽拭子样本中各候选内参基因RT-qPCR和qPCR测得的Ct值结果;
图4为基因表达稳定性分析结果。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1候选内参基因筛选(同源性分析)
根据ICG数据库(http://icg.big.ac.cn/index.php/Homo_sapiens)和公开文献资料[Jo Vandesompele,2002],汇总出基因表达研究常用的内参基因,共计30个(见表3)。参考文献[Sun,Y,2012],分析各内参基因的假基因数。具体地,从NCBI数据库(https://www.ncbi.nlm.nih.gov/nuccore/)获取各内参基因的mRNA序列,去除尾部Poly-A序列后,输入人基因组UCSC数据库(http://genome.ucsc.edu/)进行Blat比对。UCSC数据库基于序列相似度、序列长度、gap等信息进行评分,分数越高代表相似度越高。将评分值200以上,相似度80%以上定义为假基因。
分析结果如表3所示,30个常用内参基因中,26个基因存在假基因,4个无假基因。假基因数目少代表设计特异性引物和探针的难度降低,降低与基因组DNA发生交叉反应的可能性。基于该考虑,本实施例选择假基因数在1个以下的基因,共6个,供进一步筛选。
表3多个内参基因在人基因组中存在同源假基因
Figure BDA0002444862160000061
Figure BDA0002444862160000071
实施例2候选基因筛选(表达水平分析)
咽拭子采样方便,是呼吸道病毒体外诊断最常使用的样本之一,因此选用的内参基因应在咽拭子样本中稳定表达。本实施例基于表达水平,对实施例1筛选获得的6个内参基因做进一步筛选。
目前尚未有咽拭子样本中基因表达的系统研究数据,本实施例通过分析各基因在鼻咽组织和皮肤组织中的表达水平做合理预测。通过对Gene Expression Omnibus数据库和NCBIgene数据库搜索,分析各候选基因在健康鼻咽组织和皮肤组织中的表达水平(https://www.ncbi.nlm.nih.gov/geo/和https://www.ncbi.nlm.nih.gov/gene/)。结果分析如图2所示,6个基因(DDX5、CYC1、HUWE1、TFRC、HMBS、IPO8)在鼻咽或皮肤组织中均有明显表达,由此初步预测这些基因也极可能在咽拭子样本中有表达,均可能用作咽拭子样本的内参基因。
实施例3引物、探针设计和筛选
以实施例2筛选得到的6个基因(DDX5、CYC1、HUWE1、TFRC、HMBS、IPO8)作为候选内参基因,进行进一步测试。
从genebank下载6个候选基因的mRNA,自主设计或通过文献调研获取相应的引物和taqman探针序列(见表4)。为便于优选,针对每个候选基因各设置2至4组候选引物和探针组合(分别用编号1、2、3和4表示),其中对于HMBS的引物探针,HMBS-1序列来自文献[WiegerJ.Norde,2008][H Leroy,2005],其余为自主设计。对照基因(RPP30)的引物探针序列来自美国CDC。基因组DNA通常含多个相互交错的外显子和内含子,为特异检出mRNA,排除对基因组DNA的检出,所设计和挑选的引物和探针需跨至少2个外显子。为便于实施多重RT-qPCR,各探针的5端标记Cy5,3端标记BHQ2。通过BLAST验证各引物探针的特异性。引物和探针由生工生物工程(上海)股份有限公司采用常规方法合成。
根据对咽拭子核酸样本的检测曲线,初步筛选出针对6个内参基因的优选引物探针组合。具体地,采集健康人的咽拭子,用PureLinkTM Viral RNA/DNA Mini Kit(ABI)提取核酸,用TaqManTM Fast Virus 1-Step Master Mix(ABI)分别检验和比较各引物和探针的扩增效果,具体实验方法参考实施例4。
具体为通过优化各引物探针组合的退火温度,并通过梯度稀释样本检测各引物探针组合的扩增效率,通过blast和核酸电泳分析扩增特异性。选择扩增效率在0.8-1.2、特异的引物探针组合做进一步分析。具体获得的优化引物探针组合为:HMBS-1、DDX5-2、CYC1-1、HUWE1-1、TFRC-2、IP08-1,各引物探针组合的最佳退火温度/扩增效率分别依次为:60℃/0.83、56℃/0.91、58℃/0.87、58℃/0.89、58℃/0.9、60℃/1.1。
表4引物和taqman探针序列信息
Figure BDA0002444862160000081
Figure BDA0002444862160000091
实施例4临床样本验证对候选内参基因的检测特异性和稳定性
1.采集咽拭子
采集12位健康人的咽拭子样本(8位女性4位男性)。具体地,用医用一次性无菌棉拭子在被检者的咽部左右两侧分别轻刮30次,将棉拭子置于1.5ml离心管内,管中加入500μL DEPC水。为降低误差,被检者在采集样本前30分钟内不得饮水或进食。
2.咽拭子提取RNA
采集到的拭子编号后,立即用PureLinkTM Viral RNA/DNA Mini Kit(ABI)提取核酸。具体地,1.5ml无菌无Rnase离心管中依次加入25μL蛋白酶K、200μL咽拭子采样液、200μL裂解液(含5.6μg carrier RNA),盖上离心管盖,轻轻上下颠倒15sec,56℃孵育15min,短暂离心使管壁的液体落于管底。加入250μL无水乙醇(乙醇终浓度为37%),盖上离心管盖,轻轻上下颠倒15sec,室温孵育5min,短暂离心使管壁的液体落于管底。将上述裂解物转移到吸附柱中,盖上离心管盖,6800g离心1分钟,弃去透过液。将吸附柱置于清洗管(2mL)中,加入500μL清洗液(WII),盖上离心管盖,6800g离心1分钟,弃去透过液。用清洗液(WII)重复清洗一次。将吸附柱置于一个新的清洗管(2mL)中,12000g离心1min使膜干燥,弃去透过液。将吸附柱置于收集管(1.5mL)中,加入30μL无菌Rnase-free水(E3)到吸附柱中央,室温孵育1min,12000g离心1min,收集洗脱液。洗脱液直接进行RT-qPCR检测。
3.RT-qPCR和qPCR检测
将各组优选的引物和探针(见实施例3的结果)、TaqManTM Fast Virus 1-StepMaster Mix(ABI)、以及咽拭子核酸样本分别按表5进行配制,反应终体积为20μL,引物和探针的终浓度分别为500nM和200nM。在ABI7500fast荧光定量PCR仪上进行RT-qPCR反应,反应程序为:1个循环(50℃,5min),1个循环(95℃,30sec),40个循环(95℃,15sec;60℃,60sec),在60℃延伸阶段搜集Cy5荧光。以RPP30为对照(序列见表4),以无菌Rnase-free水为阴性对照。每组三个重复,根据扩增曲线自动计算Ct值。
表5 PCR反应体系配制
Figure BDA0002444862160000101
为验证检测RNA的特异性,进一步做qPCR,qPCR所用taq酶仅能以DNA为模板,而不能以RNA为模板,另外选用的mix反应液(Premix Ex TaqTM mix(takara))含有耐热性RnaseH,可进一步抑制对RNA的扩增,因此根据qPCR扩增信号的有无可初步判定是否与基因组DNA交叉反应。步骤如下:将各组引物和探针、Premix Ex TaqTMmix(takara)、以及咽拭子核酸样本分别按表5进行配制,反应终体积为20μL,引物和探针的终浓度分别为500nM和200nM。在ABI7500fast荧光定量PCR仪上进行RT-qPCR反应,反应程序为:1个循环(95℃,20sec),40个循环(95℃,5sec;60℃,20sec),在60℃延伸阶段搜集Cy5荧光。以RPP30为对照,以无菌Rnase-free水为阴性对照。每组三个重复,根据扩增曲线自动计算Ct值。
检测结果如图3所示,所设计的相关引物探针对6个候选基因(DDX5、CYC1、HUWE1、TFRC、HMBS、IPO8)均只在RT-qPCR反应中有扩增信号,但在qPCR反应中无扩增信号;而针对对照基因RPP30的相关引物探针在RT-qPCR和qPCR中均有扩增信号。该结果说明针对各内参基因的引物探针组合仅特异检出mRNA但不检出基因组DNA;而对照内参基因RPP30的引物探针组合特异性差,可同时检出mRNA和基因组DNA。本实验初步论证达到候选基因筛选和特异引物探针设计的目的。
检出率方面,除HMBS的检出率较低(仅为42%),其余各候选内参基因的检出率均为100%,这与对照基因RPP30的检出率一致。HMBS基因检出率低,可能是因为该基因在咽拭子样本中表达水平低,导致检测结果不稳定。
表6各候选内参基因在12个咽拭子样本中的检出率
Figure BDA0002444862160000111
上述研究结果初步证实,本研究所用的基于同源假基因分析和组织表达水平的预测模型来预测内参基因基本成立。通过同源性分析排除基因组DNA同源干扰可降低特异引物和探针设计的难度,保障对mRNA的特异检出;而通过表达水平,可初步推测组织中基因的mRNA含量。
4、基因表达稳定性分析
基因表达稳定性越高,在人群中越可被稳定检出,用于诊断的可靠性越强。通过RefFinder在线软件分析上述候选内参基因的表达稳定性,并与对照基因RPP30作比较。RefFinder整合了目前最主流算法(geNorm、Normfinder、BestKeeper和Delta-Ct法)的功能,进行综合评分[F Xie,2012],分值低代表基因表达稳定性强。
结果如图4所示,6个候选内参基因中,DDX5、TFRC、CYC1、IPO8、HUWE1的评分与对照基因RPP30较相近,而HMBS的评分远高于RPP30。该结果提示,在所测试的6个候选内参基因中,DDX5、TFRC、CYC1、IPO8、HUWE1与现有对照基因的表达稳定性相近,是可用内参基因,且DDX5的稳定性优于其他基因;而HMBS表达稳定性差,不可作为本实验用途的内参基因。
因此本发明以DDX5作为内参基因用于后续的实验中。
实施例5以DDX5作为内参基因检测应用于新型冠状病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有新型冠状病毒RT-qPCR诊断方法中,具体操作如下:
新型冠状病毒ORF1ab基因和N基因的引物和探针由中国疾病预防控制中心公开,由生工生物工程(上海)股份有限公司合成,具体序列见表7。
表7新型冠状病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000121
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测病毒基因(1ab和N)和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定参考中国疾病预防控制中心的标准:
(1)阴性:无Ct值或Ct为40。
(2)阳性:Ct值<37,可报告为阳性。
(3)可疑:Ct值在37-40之间,建议重复实验,若重做结果Ct值<40,扩增曲线有明显起峰,该样本判断为阳性,否则为阴性。
结果如表8所示,5个咽拭子样本中,病毒基因(1ab和N)均未被检测到,而内参基因DDX5被稳定检出。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,新型冠状病毒RNA未被检出,结果为真阴性。
表8 5个健康人咽拭子样品新型冠状病毒RT-qPCR结果(Ct值)
样品1 样品2 样品3 样品4 样品5
DDX5 28.7 29.4 29.1 29.5 29.8
1ab 无Ct 无Ct 无Ct 无Ct 无Ct
N 无Ct 无Ct 无Ct 无Ct 无Ct
实施例6以DDX5作为内参基因检测应用于MERS病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有Mers病毒RT-qPCR诊断方法中,具体操作如下:
Mers病毒upE基因、N2基因和N3基因的引物和探针由美国疾病预防控制中心公开,由生工生物工程(上海)股份有限公司合成,具体序列见表9。
表9Mers病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000131
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测病毒基因(upE基因、N2基因、N3基因)和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定参考美国CDC的标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表10所示,5个咽拭子样本中,病毒基因(upE基因、N2基因、N3基因)均未被检测到,而内参基因DDX5被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,Mers病毒RNA未被检出,结果为真阴性。
表10 5个健康人咽拭子样品Mers RT-qPCR结果(Ct值)
样品1 样品2 样品3 样品4 样品5
DDX5 26.8 30.2 31.6 26.2 31.4
upE基因 无Ct 无Ct 无Ct 无Ct 无Ct
N2基因 无Ct 无Ct 无Ct 无Ct 无Ct
N3基因 无Ct 无Ct 无Ct 无Ct 无Ct
实施例7以DDX5作为内参基因检测应用于SARS病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有SARS病毒RT-qPCR诊断方法中,具体操作如下:
Sars病毒N3基因和M基因的引物和探针由美国疾病预防控制中心公开,由生工生物工程(上海)股份有限公司合成,具体序列见表11。
表11 Sars病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000141
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测病毒基因(N3基因和M基因)和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定参考美国疾病预防控制中心的标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表12所示,5个咽拭子样本中,病毒基因(N3基因和M基因)均未被检测到,而内参基因DDX5被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,Sars病毒RNA未被检出,结果为真阴性。
表12 5个健康人咽拭子样品Sars RT-qPCR结果(Ct值)
样品1 样品2 样品3 样品4 样品5
DDX5 31.1 28.4 28.7 31.2 27.7
N3基因 无Ct 无Ct 无Ct 无Ct 无Ct
M基因 无Ct 无Ct 无Ct 无Ct 无Ct
实施例8以DDX5作为内参基因检测应用于流感病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到流感病毒RT-qPCR诊断方法中,具体操作如下:
流感病毒通用检测引物和探针由美国疾病预防控制中心公开,由生工生物工程(上海)股份有限公司合成,具体序列见表13。
表13流感病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000151
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测流感病毒基因和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表14所示,5个咽拭子样本中,流感病毒基因均未被检测到,而内参基因DDX5被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,流感病毒RNA未被检出,结果为真阴性。
表14 5个健康人咽拭子样品流感病毒RT-qPCR结果(Ct值)
样品1 样品2 样品3 样品4 样品5
DDX5 26.3 27.8 30.5 30.8 31.5
流感病毒基因 无Ct 无Ct 无Ct 无Ct 无Ct
实施例9以DDX5作为内参基因检测应用于呼吸道合胞病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有呼吸道合胞病毒RT-qPCR诊断方法中,具体操作如下:
呼吸道合胞病毒基因的引物和探针由美国疾病预防控制中心公开,由生工生物工程(上海)股份有限公司合成,具体序列见表15。
表15呼吸道合胞病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000161
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测呼吸道合胞病毒基因和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表16所示,5个咽拭子样本中,呼吸道合胞病毒基因均未被检测到,而内参基因基因DDX5被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,呼吸道合胞病毒病毒RNA未被检出,结果为真阴性。
表16 5个健康人咽拭子样品呼吸道合胞病毒RT-qPCR结果(Ct值)
样品1 样品2 样品3 样品4 样品5
DDX5 30.3 28.5 27.5 31.5 29.4
F基因 无Ct 无Ct 无Ct 无Ct 无Ct
实施例10以DDX5作为内参基因检测应用于副流感病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有副流感病毒RT-qPCR诊断方法中,具体操作如下:
副流感病毒基因的引物和探针参考文献[Templeton KE,2004],由生工生物工程(上海)股份有限公司合成,具体序列见表17。
表17副流感病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000171
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测病毒基因和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定的标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表18所示,5个咽拭子样本中,病毒基因均未被检测到,而内参基因DDX5被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,副流感病毒RNA未被检出,结果为真阴性。
表18 5个健康人咽拭子样品副流感病毒RT-qPCR结果(Ct值)
Figure BDA0002444862160000181
实施例11以DDX5作为内参基因检测应用于人偏肺病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有人偏肺病毒RT-qPCR诊断方法中,具体操作如下:
人偏肺病毒基因的引物和探针参考文献[Jennifer Klemenc,2012],由生工生物工程(上海)股份有限公司合成,具体序列见表19。
表19人偏肺病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000182
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测人偏肺病毒基因和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定参考标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表20所示,5个咽拭子样本中,病毒基因均未被检测到,而内参基因DDX5均被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,人偏肺病毒RNA未被检出,结果为真阴性。
表20 5个健康人咽拭子样品人偏肺病毒RT-qPCR结果(Ct值)
Figure BDA0002444862160000191
实施例12以DDX5作为内参基因检测应用于人鼻病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有人鼻病毒RT-qPCR诊断方法中,具体操作如下:
人鼻病毒基因的引物和探针参考文献[Julien Dupouey,2014],由生工生物工程(上海)股份有限公司合成,具体序列见表21。
表21人鼻病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000192
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测病毒基因和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定参考标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表22所示,5个咽拭子样本中,病毒基因均未被检测到,而内参基因DDX5被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,人鼻病毒RNA未被检出,结果为真阴性。
表22 5个健康人咽拭子样品人鼻病毒RT-qPCR结果(Ct值)
样品1 样品2 样品3 样品4 样品5
DDX5 30.3 27.9 29.3 31.5 27.6
人鼻病毒基因 无Ct 无Ct 无Ct 无Ct 无Ct
实施例13以DDX5作为内参基因检测应用于人肠道病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有人肠道病毒RT-qPCR诊断方法中,具体操作如下:
人肠道病毒基因的引物和探针参考文献[Antonio Piralla,2015],由生工生物工程(上海)股份有限公司合成,具体序列见表23。
表23人肠道病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000201
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测病毒基因和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定参考标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表24所示,5个咽拭子样本中,病毒基因均未被检测到,而内参基因DDX5被稳定检出,Ct值在有效范围内。且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,人肠道病毒RNA未被检出,结果为真阴性。
表24 5个健康人咽拭子样品人肠道病毒RT-qPCR结果(Ct值)
样品1 样品2 样品3 样品4 样品5
DDX5 27.5 29.4 31.5 30.2 28.1
D68基因 无Ct 无Ct 无Ct 无Ct 无Ct
实施例14以DDX5作为内参基因检测应用于人冠状病毒RT-qPCR诊断
本实施例将DDX5作为内参基因检测整合到现有人冠状病毒RT-qPCR诊断方法中,具体操作如下:
人冠状病毒基因的引物和探针参考文献[Susan S.Chiu,2005]疾病预防控制中心公开,由生工生物工程(上海)股份有限公司合成,具体序列见表25。
表25人冠状病毒RT-qPCR检测引物和探针信息
Figure BDA0002444862160000211
参考实施例4的实验方法,采集5名健康人的咽拭子,提取核酸,通过RT-qPCR分别检测病毒基因和内参基因(DDX5)。阳性对照用待扩增片段的RNA(takara公司合成),阴性对照用无菌Rnase-free水。判定结果前,应先判定实验是否成立。
实验成立标准为:阴性对照无Ct值,阳性对照检测Ct值<37,内参基因DDX5的检测Ct值均<37。
结果判定参考标准:
(1)阴性:无Ct值。
(2)阳性:S型扩增曲线,Ct值<40。
结果如表26所示,5个咽拭子样本中,病毒基因均未被检测到,而内参基因DDX5被稳定检出,Ct值在有效范围内且DDX5的mRNA被恒定检出指示整个操作过程、所用试剂和所有反应均无误,人冠状病毒RNA未被检出,结果为真阴性。
表26 5个健康人咽拭子样品人冠状病毒RT-qPCR结果(Ct值)
Figure BDA0002444862160000212
Figure BDA0002444862160000221
综上所述,本发明筛选的DDX5基因首次证明了其能够应用于呼吸道RNA病毒PCR诊断质控。通过设计针对该基因的引物和探针序列,使扩增片段横跨2个外显子,仅特异识别待检测基因的mRNA,不与人基因组DNA交叉反应,即其仅对RNA进行扩增,而不会对DNA进行扩增。因此使用这些内参基因可更真实指示咽拭子样本中病毒RNA的完整性和实验流程的正确性,提高呼吸道RNA病毒PCR诊断的准确度。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
序列表
<110> 申联生物医药(上海)股份有限公司
<120> 用于呼吸道RNA病毒PCR检测的内参基因及其检测产品
<130> DD08153A5
<160> 84
<170> SIPOSequenceListing 1.0
<210> 1
<211> 16
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggcaatgcgg ctgcaa 16
<210> 2
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gggtacccac gcgaatcac 19
<210> 3
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctcatctttg ggctgttttc ttccgcc 27
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ctagacggct cagatagcat 20
<210> 5
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
accaactgtg ggtcatcct 19
<210> 6
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gagaccatgc aggctacca 19
<210> 7
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tgaaatcatt gctatgtcc 19
<210> 8
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ggctgttttc ttccgccgtt g 21
<210> 9
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ctccagggca tgttcaag 18
<210> 10
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
CATGTCGGGTTATTCGAGTGAC 19
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
AAGTGGAATCTTGATGAGCTGC 20
<210> 12
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
TACTTCCTCCAAATCGAGGTG 19
<210> 13
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
AAGCTCCTATTCTGATTGCTAC 22
<210> 14
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
GAAGAACTGCTCGCAGTACCA 23
<210> 15
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
CATCAATTATGACTACCCTAACTCCT 22
<210> 16
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
agctgccaac aacggagcat 20
<210> 17
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
gttgaagtag agaccttcc 19
<210> 18
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
ctacatcgtg cgagctaggc atggt 25
<210> 19
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
ctgccaacaa cggagcattg c 21
<210> 20
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
ggtgggtggc tcgcagtag 19
<210> 21
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
tcagctacat cgtgcgagct aggc 24
<210> 22
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
caggatgagt atgattggct g 21
<210> 23
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
tccaagagaa gttgctcatc at 22
<210> 24
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
agacacctac tgaggctcct gcagactgc 29
<210> 25
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
caccaggatg agtatgattg 20
<210> 26
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
cagttccaag agaagttgct cat 23
<210> 27
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
tgaggctcct gcagactgca gagcct 26
<210> 28
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
ctcagagcgt cgggatatcg 20
<210> 29
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
ggtatatgac aatggttct 19
<210> 30
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
tggatcaagc tagatcagca ttctc 25
<210> 31
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
cagagcgtcg ggatatcggg tg 22
<210> 32
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
atatgacaat ggttctccac caa 23
<210> 33
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 33
atcaagctag atcagcattc tctaac 26
<210> 34
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 34
cgaagttgcg gattgcagc 19
<210> 35
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 35
cacatggtca gagactataa tc 22
<210> 36
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 36
tcctacaaga ttatcaattt tgcc 24
<210> 37
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 37
agttgcggat tgcagccgag aa 22
<210> 38
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 38
tgtcaccatg ttcttcaggt a 21
<210> 39
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 39
agtctctgac catgtggaat tcc 23
<210> 40
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 40
agatttggac ctgcgagcg 19
<210> 41
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 41
gagcggctgt ctccacaagt 20
<210> 42
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 42
ttctgacctg aaggctctgc gcg 23
<210> 43
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 43
ccctgtgggt tttacactta a 21
<210> 44
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 44
acgattgtgc atcagctga 19
<210> 45
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 45
ccgtctgcgg tatgtggaaa ggttatgg 28
<210> 46
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 46
ggggaacttc tcctgctaga at 22
<210> 47
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 47
cagacatttt gctctcaagc tg 22
<210> 48
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 48
ttgctgctgc ttgacagatt 20
<210> 49
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 49
gcaacgcgcg attcagtt 18
<210> 50
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 50
gcctctacac gggacccata 20
<210> 51
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 51
ctcttcacat aatcgccccg agctcg 26
<210> 52
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 52
ggcactgagg acccacgtt 19
<210> 53
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 53
ttgcgacata cccataaaag ca 22
<210> 54
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 54
ccccaaattg ctgagcttgc tcctaca 27
<210> 55
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 55
gggtgtacct cttaatgcca attc 24
<210> 56
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 56
tctgtcctgt ctccgccaat 20
<210> 57
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 57
acccctgcgc aaaatgctgg g 21
<210> 58
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 58
gaagtaccat ctggggctga g 21
<210> 59
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 59
ccgaagagct acccgacg 18
<210> 60
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 60
ctctttcatt ttgccgtcac caccac 26
<210> 61
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 61
tgtaggcact gattcaggtt ttg 23
<210> 62
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 62
cggcgtggtc tgtatttaat tta 23
<210> 63
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 63
ctgcatacaa ccgctaccgt attggaa 27
<210> 64
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 64
gaccratcct gtcacctctg ac 22
<210> 65
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 65
agggcattyt ggacaaakcg tcta 24
<210> 66
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 66
tgcagtcctc gctcactggg cacg 24
<210> 67
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 67
aacagatgta agcagctccg ttatc 25
<210> 68
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 68
cgatttttat tggatgctgt acattt 26
<210> 69
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 69
tgccatagca tgacacaatg gctcct 26
<210> 70
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 70
aaaaacttag ggttaaagac aatcca 26
<210> 71
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 71
gccagatgtr tgtcyttcct gctggt 26
<210> 72
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 72
caaacgatgg ctgaaaaagg ga 22
<210> 73
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 73
catataagca tgctatatta aaagagtctc 30
<210> 74
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 74
cctatttctg cagcatattt gtaatcag 28
<210> 75
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 75
tgyaatgatg agggtgtcac tgcggttg 28
<210> 76
<211> 16
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 76
agccygcgtg gtgccc 16
<210> 77
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 77
gaaacacgga cacccaaagt agt 23
<210> 78
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 78
ctccggcccc tgaatgyggc taa 23
<210> 79
<211> 16
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 79
ggcggcctac tcatgg 16
<210> 80
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 80
agactcttca caccttgttc atgt 24
<210> 81
<211> 16
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 81
aaaaccatga gacgct 16
<210> 82
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 82
aggaccttaa attcagacaa cgttct 26
<210> 83
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 83
gattacgttt gcgattacca agact 25
<210> 84
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 84
tgttgtttgg gttgctaag 19

Claims (8)

1.一种用于呼吸道RNA病毒PCR检测的内参基因,其特征在于,所述内参基因为DDX5基因。
2.根据权利要求1所述的用于呼吸道RNA病毒PCR检测的内参基因,其特征在于,所述呼吸道RNA病毒包括重症急性呼吸综合征病毒、中东呼吸综合症病毒、新型冠状病毒、流感病毒、呼吸道合胞病毒、副流感病毒、人类偏肺病毒、人鼻病毒、人肠道病毒中的任一种。
3.根据权利要求1所述的用于呼吸道RNA病毒PCR检测的内参基因,其特征在于,所述PCR检测包括反转录-实时荧光定量PCR检测、反转录-普通PCR检测、反转录-环介导等温扩增检测、反转录-依赖核酸序列的扩增检测、反转录-滚环扩增检测、反转录-单引物等温扩增检测、反转录-依赖解旋酶DNA等温扩增、反转录-重组酶聚合酶扩增、反转录-链替代扩增等基因扩增技术中的任一种。
4.一种用于检测权利要求1所述的内参基因的引物,其特征在于,所述DDX5基因的引物序列如SEQ ID NO.13和SEQ ID NO.14所示。
5.一种用于检测权利要求1所述的内参基因的探针,其特征在于,所述DDX5基因的探针序列如SEQ ID NO.15所示。
6.一种用于呼吸道RNA病毒PCR检测产品,其特征在于,包括用于检测权利要求1所述内参基因DDX5基因的引物和探针;所述引物序列如SEQ ID NO.13和SEQ ID NO.14所示,探针序列如SEQ ID NO.15所示。
7.根据权利要求6所述的用于呼吸道RNA病毒PCR检测产品,其特征在于,所述检测产品包括检测试剂盒、检测试纸。
8.一种根据权利要求1所述的用于呼吸道RNA病毒PCR检测的内参基因的筛选方法,其特征在于,包括以下步骤:
A、对相关基因进行同源性分析,筛选出假基因数在1个及以下的基因作为候选基因;
B、分析各候选基因在健康鼻咽组织和皮肤组织中的表达水平,以推测其在咽拭子样本中的表达水平,并选择在至少一个组织中表达的候选基因;
C、对候选基因进行表达稳定性分析,筛选得到在人群中可被稳定检测的基因,即为所述的内参基因。
CN202010276167.6A 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品 Pending CN111363848A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020101983388 2020-03-19
CN202010198338 2020-03-19

Publications (1)

Publication Number Publication Date
CN111363848A true CN111363848A (zh) 2020-07-03

Family

ID=71026222

Family Applications (5)

Application Number Title Priority Date Filing Date
CN202010276179.9A Pending CN111394517A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品
CN202010275432.9A Pending CN111394516A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品
CN202010276167.6A Pending CN111363848A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品
CN202010275441.8A Pending CN111286560A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品
CN202010275417.4A Pending CN111455103A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202010276179.9A Pending CN111394517A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品
CN202010275432.9A Pending CN111394516A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202010275441.8A Pending CN111286560A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品
CN202010275417.4A Pending CN111455103A (zh) 2020-03-19 2020-04-09 用于呼吸道rna病毒pcr检测的内参基因及其检测产品

Country Status (1)

Country Link
CN (5) CN111394517A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793720A (zh) * 2020-07-29 2020-10-20 江苏宏微特斯医药科技有限公司 一种酶切探针恒温检测SARS-CoV-2新型冠状病毒核酸的试剂盒
CN116978457A (zh) * 2023-09-22 2023-10-31 成都斯马特科技有限公司 避免rna检测过程中假基因干扰的引物和探针及其设计方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111808989A (zh) * 2020-06-18 2020-10-23 重庆浦洛通基因医学研究院有限公司 一种冠状病毒/流感病毒/鼻病毒核酸联合检测试剂盒及使用方法
WO2022013886A1 (en) * 2020-07-11 2022-01-20 Swarkar Sharma A system and a method for the diagnosis of an infectious disease
CN112760419B (zh) * 2021-02-04 2022-09-27 杭州遂曾生物技术有限公司 一种用于登革、寨卡和基孔肯雅病毒的三联检测卡盒
CN113025752B (zh) * 2021-03-24 2023-07-21 广州金域医学检验中心有限公司 用于2019-nCoV和SARS病毒PCR检测的内参基因、试剂盒及检测方法
CN113186346A (zh) * 2021-05-08 2021-07-30 北京华诺奥美医学检验实验室有限公司 一种新型冠状病毒核酸pcr-胶体金免疫层析法检测试剂盒
CN113943836B (zh) * 2021-11-16 2023-09-22 圣湘生物科技股份有限公司 检测引起呼吸道感染的病原体并鉴定病原体种类的组合物、试剂盒、方法及用途
CN114350858A (zh) * 2022-02-08 2022-04-15 山东见微生物科技有限公司 检测ebv和hcmv病毒的引物探针组合物及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563547A (zh) * 2016-04-15 2019-04-02 外来体诊断公司 间变性淋巴瘤激酶(alk)核酸和alk融合转录物的基于血浆的检测及其在癌症诊断和治疗中的用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021148A (zh) * 2010-07-27 2011-04-20 张卫东 一种基因ns1缺陷型呼吸道合胞病毒及其应用
CN101985665B (zh) * 2010-11-12 2013-11-06 复旦大学 一种检测多种呼吸道病毒的方法及其引物与探针
US20150056191A1 (en) * 2012-03-30 2015-02-26 Merck Sharp & Dohme Corp. Igf1 biomarker for igf1r inhibitor therapy
KR20150088433A (ko) * 2014-01-24 2015-08-03 삼성전자주식회사 c-Met 저해제의 효능 예측을 위한 바이오마커 TFF1
CN104342503B (zh) * 2014-10-29 2016-11-30 福建国际旅行卫生保健中心 一种同时检测12种常见呼吸道病毒的方法
ES2754434T3 (es) * 2015-05-29 2020-04-17 Koninklijke Philips Nv Métodos de pronóstico de cáncer de próstata
CN110408697A (zh) * 2016-07-08 2019-11-05 中山大学达安基因股份有限公司 Npm1基因突变分型检测方法及试剂盒
CN107254515B (zh) * 2017-05-15 2020-01-24 山大生殖研发中心有限公司 多囊卵巢综合征基因表达分析的内参基因组合及应用
CN109628596A (zh) * 2019-01-18 2019-04-16 臻悦生物科技江苏有限公司 Rna水平检测pd-1和pd-l1表达量的试剂盒及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563547A (zh) * 2016-04-15 2019-04-02 外来体诊断公司 间变性淋巴瘤激酶(alk)核酸和alk融合转录物的基于血浆的检测及其在癌症诊断和治疗中的用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DANIA VAZQUEZ-BLOMQUIST等: "Selection of reference genes for use in quantitative reverse transcription PCR assays when using interferons in U87MG", 《MOL BIOL REP》 *
RADONIC A等: "Reference gene selection for quantitative real-time PCR analysis in virus infected cells- SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections", 《VIROLOGY JOURNAL》 *
张玉芳等: "基因表达研究中内参基因的选择与应用", 《植物生理学报》 *
翟斐等: "活动性肺结核转折PBMCs实时定量PCR内参基因的选择", 《临床肺科杂志》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793720A (zh) * 2020-07-29 2020-10-20 江苏宏微特斯医药科技有限公司 一种酶切探针恒温检测SARS-CoV-2新型冠状病毒核酸的试剂盒
CN111793720B (zh) * 2020-07-29 2023-02-03 江苏宏微特斯医药科技有限公司 一种酶切探针恒温检测SARS-CoV-2新型冠状病毒核酸的试剂盒
CN116978457A (zh) * 2023-09-22 2023-10-31 成都斯马特科技有限公司 避免rna检测过程中假基因干扰的引物和探针及其设计方法
CN116978457B (zh) * 2023-09-22 2023-12-22 成都斯马特科技有限公司 避免rna检测过程中假基因干扰的引物和探针组合及其设计方法

Also Published As

Publication number Publication date
CN111394517A (zh) 2020-07-10
CN111394516A (zh) 2020-07-10
CN111455103A (zh) 2020-07-28
CN111286560A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN111363848A (zh) 用于呼吸道rna病毒pcr检测的内参基因及其检测产品
Millholland et al. Detection of low frequency FGFR3 mutations in the urine of bladder cancer patients using next-generation deep sequencing
CN109295218B (zh) 环状RNA标志物hsa_circ_0001788及其应用
CN110804669A (zh) 用于肺炎支原体的crispr检测引物组及其用途
WO2017223216A1 (en) Compositions and methods for diagnosing lung cancers using gene expression profiles
CN114381509B (zh) 与非结核性肺炎有关的血浆miRNA标志物及其应用
US20180044733A1 (en) Circulatory MicroRNAs (miRNAs) as Biomarkers for Diabetic Retinopathy (DR) and Age-Related Macular Degeneration
CN112662808A (zh) 一种新型冠状病毒covid-19核酸检测试剂盒及其检测方法
CN109735612B (zh) 川崎病冠状动脉瘤并发症的生物分子标志物及其试剂盒
WO2020134950A1 (zh) 用于肺结节良恶性鉴别的基因突变/融合组合及试剂盒
CN114085902B (zh) 检测人血清外泌体中miR-671-5p试剂的应用及骨质疏松检测试剂盒
CN114015767B (zh) 一种鉴别颅缝早闭的血清circRNA标志物及其应用
US20180327857A1 (en) Diagnostic biomarker and diagnostic method
CN111500768B (zh) 鉴定新型冠状病毒的引物探针及在双重数字pcr的用途
CN111455037B (zh) 基于血浆外泌体环状rna的冠心病分子诊断标志物及其应用
CN114410795A (zh) 基于miRNA特征标记的肝癌早期检测
CN107164510A (zh) 一种辅助诊断脑卒中的检测试剂盒及其检测方法
CN113403383A (zh) 一种与先天性巨结肠发生相关的标志物及其应用
CN108998528B (zh) 肺癌诊断分子标记物lncRNA LINC00516和试剂盒及其应用
CN113322318A (zh) Linc00485作为分子标志物在制备用于诊断和/或预后肝细胞癌的产品中的应用
CN111575366A (zh) 用于检测自闭症基因组拷贝数变异的引物组、探针组及试剂盒
CN111718993A (zh) 一种人血清miR-146a双重荧光定量PCR检测试剂盒及其应用
CN105925686B (zh) 用于辅助检测非小细胞肺癌的标记物、引物以及检测方法
CN109097497A (zh) 一种人副流感病毒三联核酸检测试剂盒
CN113981076B (zh) 与抗结核疗效评估有关的miRNA标志物及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination