CN111356760A - 细菌或李斯特菌菌株的冻干组合物和方法 - Google Patents

细菌或李斯特菌菌株的冻干组合物和方法 Download PDF

Info

Publication number
CN111356760A
CN111356760A CN201880073982.3A CN201880073982A CN111356760A CN 111356760 A CN111356760 A CN 111356760A CN 201880073982 A CN201880073982 A CN 201880073982A CN 111356760 A CN111356760 A CN 111356760A
Authority
CN
China
Prior art keywords
listeria
strain
listeria strain
hours
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880073982.3A
Other languages
English (en)
Inventor
大卫·费拉
安努·瓦勒查
迈克·格蕾丝
梅利莎·高斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ayala Pharmaceuticals Inc
Original Assignee
Advaxis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advaxis Inc filed Critical Advaxis Inc
Publication of CN111356760A publication Critical patent/CN111356760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/522Bacterial cells; Fungal cells; Protozoal cells avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/95Fusion polypeptide containing a motif/fusion for degradation (ubiquitin fusions, PEST sequence)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01021D-Amino-acid transaminase (2.6.1.21), i.e. D-alanine aminotransferase/transaminase or D-aspartic aminotransferase/transaminase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/01Racemaces and epimerases (5.1) acting on amino acids and derivatives (5.1.1)
    • C12Y501/01001Alanine racemase (5.1.1.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

提供了用于细菌或李斯特菌菌株,例如单核细胞增生李斯特菌的冻干的方法和组合物。提供了制备包含细菌或李斯特菌菌株的冻干组合物的方法、包含细菌或李斯特菌菌株、冻干细菌或李斯特菌菌株的用于冻干的制剂,以及制备用于冻干的冷冻细菌或李斯特菌菌株的方法。

Description

细菌或李斯特菌菌株的冻干组合物和方法
相关申请的交叉引用
本申请要求于2017年9月19日提交的美国申请号62/560,318的权益,出于所有目的通过引用将其全部内容并于本文。
对通过EFS WEB提交为文本文件的序列表的引用
记录在文件519152SEQLIST.txt中的序列表为89.2KB,创建于2018年8月24日,在此通过引用并入本文。
背景技术
冻干(lyophilization)是一种从溶液中去除溶剂以形成固体或粉末的方法,该固体或粉末稳定,并且在高温下比液体更易于存储。冻干也称为冷冻干燥(freeze drying),涉及冷冻以及之后的升华。所得的冻干物质可以在不冷藏的情况下储存或在比液体更高的温度下储存,从而降低物质的储存和运输成本以及产品所需的储存空间。它还可以减轻产品的重量,从而相似地减少运输和相关成本。冻干对于保存和储存各种生物分子而言特别有用,因为它增加了它们的保存期限。
与液体配方相比,固体配方具有多个优点,例如优异的储存稳定性、降低的分子迁移率(molecular mobility)、减少的不希望的化学反应,以及更小的包装重量,从而更易于运输和分配。此外,由于所有当前可用的市售疫苗都需要低温保存,因此目标是利用固态稳定(solid state stabilization)技术来增强其在室温或高温下的稳定性,并减少对冷链的依赖以保持药效并确保安全。由于与超低温保存(cryopreservation)相比,冻干细菌培养物的低存储和运输成本是主要优势,冻干是优选的保存方法;尽管如此,冻干是非常复杂的、受许多参数的影响的物理过程,需要特定的设备和训练有素的人员。冷冻干燥可导致多种类型的细胞损伤,包括丧失活力、降低代谢活性,以及改变细胞形态,从而影响诸如细菌等细胞的生理、特性描述(characterization)和功能。
另外,改变不同的冻干参数的效果是高度菌株特异性的,并且这种菌株依赖性使得难以从任何一种特定菌株得出一般结论或指导方针。细菌的高生物多样性和代谢多样性使得对菌株特异的、优化的冻干程序的开发困难而费力。李斯特菌(Listeria)菌株(如单核细胞增生李斯特菌(Listeria monocytogenes))的冻干情况、需要优化哪些参数,以及如何优化它们以使冻干成为李斯特菌的可行选择的数据非常有限。
发明内容
提供了用于细菌或李斯特菌菌株,例如单核细胞增生李斯特菌的冻干方法和组合物。一方面,提供了制备包含细菌或李斯特菌菌株的冻干组合物的方法。一些这样的方法可以包括提供组合物,该组合物包含在包含缓冲剂的配方中的细菌或李斯特菌菌株,在冷冻步骤中冷却该组合物,在一级干燥步骤中将冷却的组合物暴露于真空和第一升高温度中,以及在二级干燥步骤中将来自一级干燥步骤的组合物暴露于真空和第二升高温度中,从而制备所述冻干组合物。
在一些这样的方法中,组合物中使用的细菌或李斯特菌菌株是在冷冻步骤之前解冻的冷冻李斯特菌菌株。在一个具体的例子中,可以在约2℃至约37℃、约20℃至约37℃、约23℃至约37℃、约25℃至约37℃、约32℃至约37℃,或约37℃的温度下解冻冷冻的细菌或李斯特菌菌株。可选地,所述解冻不超过约8小时。可选地,将解冻的细菌或李斯特菌菌株在约2℃至约8℃的温度下保持不超过约24小时。在一个具体的例子中,被解冻的细菌或李斯特菌菌株的浓度可在每毫升约1×10E9至约1×10E10菌落形成单位(CFU)之间。
在一些这样的方法中,配方包含缓冲剂和蔗糖。例如,配方缓冲剂可包含约1%至约5%w/v的蔗糖、约2%至约3%w/v的蔗糖,或约2.5%w/v的蔗糖。可选地,该配方不包含一种或多种其它赋形剂,例如海藻糖、谷氨酸钠(MSG),或重组人血清白蛋白(rHSA)。
在一些这样的方法中,每毫升该配方包含约1x10E9至约1x10E10菌落形成单位(CFU)的细菌或李斯特菌。
在一些这样的方法中,一级干燥步骤中的保持温度在约-10℃至约-30℃之间、约-12℃至约-22℃之间、约-17℃至约-19℃之间,或约-18℃。
在一些这样的方法中,冻干组合物中的残留水分为至少约2.5%、至少为约3%,或至少为约3.5%。在一些这样的方法中,残留水分在约1%至约5%之间或在约2%至约4%之间。
在一些这样的方法中,冻干组合物在约-20℃至约4℃之间或在约-20℃或约4℃储存约6个月、12个月、18个月或24个月后显示至少约60%、70%、80%或90%的生存力(viability)。
这样的方法可以包括例如:(a)提供组合物,该组合物在包含缓冲剂的配方中包含细菌或李斯特菌菌株;(b)在冷冻步骤中将步骤(a)中提供的组合物冷却至约-32℃至约-80℃的保持温度;(c)在一级干燥步骤中,将步骤(b)制备的组合物在约-10℃至约-30℃的保持温度下暴露于真空中;以及(d)在二级干燥步骤中,将步骤(c)制备的组合物在约-5℃至约25℃的保持温度下暴露于真空中,从而制得冻干组合物。此类方法可替代地包括例如:(a)提供组合物,该组合物在包含缓冲剂的配方中包含细菌或李斯特菌菌株;(b)在冷冻步骤中将步骤(a)中提供的组合物冷却至约-32℃至约-80℃的保持温度;(c)在一级干燥步骤中,将步骤(b)制备的组合物在约-10℃至约-30℃的保持温度下暴露于真空中;(d)在二级干燥步骤中,将步骤(c)制备的组合物在在约5℃至约25℃的保持温度下暴露于真空中,从而制得冻干组合物。在一些这样的方法中,李斯特菌菌株是重组单核细胞增生李斯特菌菌株,通过将李斯特菌菌株暴露于降低的温度中而在李斯特菌菌株中诱导应激反应(stressresponse),缓冲剂是磷酸盐缓冲剂,配方包含2%至3%w/v蔗糖,该配方不包含海藻糖、MSG,或rHSA,一级干燥步骤(c)中的温度为-17℃至-19℃,冻干组合物中的残留水分为3%和4%。一些这样的方法具有以下一个或多个或全部的要素:李斯特菌菌株是重组单核细胞增生李斯特菌菌株;缓冲剂是磷酸盐缓冲剂;该配方包含约2%至约3%w/v的蔗糖;该配方不包含海藻糖、MSG,或rHSA;每毫升该配方包含约1x10E9至约1x10E10菌落形成单位(CFU)的李斯特菌;冷冻步骤(a)中的保持温度在约-40℃至约-50℃之间;一级干燥步骤(c)中的保持温度为约-17℃至约-19℃;二级干燥步骤(d)中的保持温度为-1℃至1℃;冻干组合物中的残留水分为约2.5%至约4%。在一些这样的方法中,步骤(a)中的组合物中所使用的李斯特菌菌株是在步骤(a)之前解冻的冷冻李斯特菌菌株。可选地,这样的方法具有以下一个或多个或全部的要素:解冻的冷冻李斯特菌菌株的浓度在每毫升约1x10E9至约1x10E10菌落形成单位(CFU)之间;将冷冻李斯特菌菌株在约37℃解冻;冷冻李斯特菌菌株的解冻不超过8小时;解冻后,将冷冻李斯特菌菌株在约2℃至约8℃下保持不超过24小时。还提供了通过本文公开的冻干方法产生的冻干细菌或李斯特菌菌株。
另一方面,提供了包含细菌或李斯特菌菌株的冻干配方。这样的配方可以包括例如:(1)李斯特菌菌株;(2)磷酸盐缓冲剂;(3)蔗糖。在一些这样的配方中,李斯特菌菌株是重组单核细胞增生李斯特菌菌株,所述配方包含约2%至约3%w/v的蔗糖,并且所述配方不包含海藻糖、MSG,或rHSA。
另一方面,提供了包含细菌或李斯特菌菌株的冻干组合物。一些这样的冻干组合物具有至少约2.5%或至少约3%的残留水分。一些这样的冻干组合物可以进一步包含磷酸盐缓冲剂和蔗糖。在一些这样的冻干组合物中,李斯特菌菌株是重组单核细胞增生李斯特菌菌株,冻干组合物不包含海藻糖、MSG,或rHSA,并且冻干组合物中的残留水分在3%至4%之间。
在另一方面,提供了制备用于冻干的冷冻李斯特菌菌株的方法,其包括在约20℃至约37℃之间的温度下解冻所述冷冻李斯特菌菌株。可选地,这样的方法具有以下一个或多个或全部的要素:解冻的冷冻李斯特菌菌株的浓度在每毫升约1x10E9至约1x10E10菌落形成单位(CFU)之间;将冷冻李斯特菌菌株在约37℃解冻;将冷冻李斯特菌菌株解冻不超过8小时;解冻后,将冷冻李斯特菌菌株在约2℃至约8℃下保持不超过24小时。
附图说明
图1示出了不同的配方缓冲剂(柠檬酸盐、磷酸盐,和MOPS(3-(N-吗啉代)丙烷磺酸)和不同的蔗糖(Suc)、海藻糖(Treh)、谷氨酸钠(MSG)、重组人血清白蛋白(rHSA)之比随时间推移的活细胞计数(VCC)数据。
图2A和2B示出了在1个月稳定性锚定点(图2A)和6个月稳定性锚定点(图2B)的加速稳定性研究中的VCC多元数据分析(MVDA)。
图3示出了不同OD水平和稳定剂组合的VCC数据。每张图的标题指示小瓶中的OD(2.0、3.0、10.0、12.5、15.0、17.5,或20.0)、稳定剂(缓冲剂2(2.5%蔗糖)或缓冲剂5(5%的蔗糖与氨基酸混合物)。
图4示出了不同OD水平以及蔗糖(Suc)与氨基酸混合物(AA Mix)与重组人血清白蛋白(rHSA)之比的VCC数据。每张图的标题表示小瓶中的OD(2或10),蔗糖(10、5、2.5):氨基酸混合物(存在(1)或不存在(0)):rHSA(0、1或2.5)。
图5示出了不同OD水平以及蔗糖(Suc)与氨基酸混合物(AA Mix)与重组人血清白蛋白(rHSA)之比的残留水分(RM)数据。
图6示出了在冻干循环中的不同时间点的不同百分比的蔗糖(每体积重量)的残留水分数据。
图7A和7B示出了在Lyo4实验中的一级干燥步骤、调温(ramp),或二级干燥步骤之后,Lm样品在冻干后不同温度下保存不同时间后的VCC数据图。图7A示出了具有2.5%重量/体积(w/v)蔗糖的配方的结果。图7B示出了具有5%w/v蔗糖的配方的结果。
图8示出了在Lyo5实验中冻干前在冰浴中温度变化引起应激的Lm样品、冻干前通过酸处理降低pH引起应激的Lm样品、在冻干前同时通过温度和pH的变化引起应激的Lm样品、无温度变化或pH值变化的Lm样品在不同温度下储存不同时间后的冻干后VCC数据。
图9示出了在Lyo6实验中,冻干前(初始)和在不同温度下存储不同时间的冻干后(所有其它样品)的VCC数据(冻干前VCC的平均数的百分比)。
图10示出了在Lyo7实验中,冻干前和在不同温度下存储不同时间的冻干后(所有其它样品)的VCC数据(冻干前VCC的平均数的百分比)。
图11示出了在Lyo8实验中,新鲜的Lm样品(部分A)和解冻的冷冻Lm样品(部分B)在不同温度下储存不同时间的冻干后的VCC数据(冻干前VCC的平均数的百分比)。
图12示出了在Lyo9实验中,在不同温度下储存不同时间的冻干后的VCC数据。
图13示出了在Lyo10实验中,冻干前在冰浴中温度变化引起应激的Lm样品(B部分)和无温度变化的Lm样品(A部分)在不同温度下储存不同时间的冻干后的VCC数据。
图14示出了在Lyo11实验中,在不同温度下存储不同时间的冻干后的VCC数据。
图15示出了在Lyo12实验中,新鲜的Lm样品(部分A)、在冻干前在2~8℃下解冻的冷冻Lm样品(部分B),以及在37℃解冻并在冻干前孵育4小时的冷冻Lm样品(C部分)在不同温度下储存不同时间的冻干后的VCC数据。
图16示出了在新鲜的Lm样品(部分A)和在2~8℃下存储3天的Lm样品在不同温度下储存不同时间的冻干后的VCC数据。
图17示出了在以下条件下,Lm样品于不同温度下储存不同时间后的冻干后的VCC数据:2R小瓶、1×109VCC,和1.2mL填充。
图18示出了冻干前、冻干后,以及在30℃的加速条件下的1、2和3天的VCC数据(CFU/mL)(分别为Tliq、Tlyo、T42h、T48h,和T72h)。
图19示出了在二级干燥步骤中残留水分含量(RM)作为搁板温度(shelftemperature)的函数(SD温度)。
图20示出了AxalimogeneFilolisbac(ADXS-HPV)的药物物质生产工艺流程。
图21示出了制造AxalimogeneFilolisbac(ADXS-HPV)药物产品的流程图。
图22A示出了在Lyo1实验中,在不同温度下储存不同时间后的冻干前和冻干后的VCC数据(平均冻干前VCC的百分比)。
图22B示出了在Lyo1实验中,冻干后立即和在2~8℃下6个月后的残留水分。
图23A示出了在Lyo2实验中,在不同温度下储存不同时间(数月)的冻干前和冻干后的VCC数据(平均冻干前VCC的百分比)。
图23B示出了在Lyo2实验中,冻干后立即和在2~8℃下6个月后的残留水分。
图24A示出了在使用2.5%蔗糖的Lyo4实验中的一级干燥步骤、调温,和二级干燥步骤之后在不同温度下储存不同时间后的残留水分(RM)。
图24B示出了在使用5.0%蔗糖的Lyo4实验中的一级干燥步骤、调温,和二级干燥步骤之后在不同温度下储存不同时间后的残留水分(RM)。
图25示出了在Lyo5实验中,在各种应激处理(stress treatment)之后,在不同温度下储存不同时间后的残留水分。
图26示出了在Lyo6实验中,在冻干前的温度变化处理之后,在不同温度下储存不同时间后的残留水分。
图27示出了在Lyo7实验中,在不同温度下储存不同时间后的残留水分。
图28示出了在Lyo8实验中,立即冻干的样品(A部分)和冷冻、解冻,然后冻干的样品(B部分)在不同温度下储存不同时间后的的残留水分。
图29示出了在Lyo9实验中,在不同温度下储存不同时间后的残留水分。
图30示出了在Lyo10实验中,在不同温度下储存不同时间后的残留水分。
图31示出了在Lyo11实验中,在不同温度下储存不同时间后的残留水分。
图32示出了在Lyo12实验中,在不同温度下储存不同时间后的残留水分。
图33示出了在Lyo13实验中,在不同温度下储存不同时间后的残留水分。
图34示出了在Lyo14实验中,在不同温度下储存不同时间后的残留水分。
图35示出了在批量规模实验中,在30℃下储存不同时间后,冻干后的VCC数据占冻干前的百分比。
图36示出了在批量规模实验中,在30℃下储存不同时间后,冻干后的VCC数据占冻干后的百分比。
图37示出了批量规模实验中的残留水分(RM)与样品的关系。
图38示出了在批量规模实验中,在冻干及30℃下储存72小时的残留水分(RM)。
图39示出了在Lyo11实验中,与未冻干的细菌和10-mer对照相比,冻干产物的生物活性和INFγ诱导。
图40A-B示出了在WP3实验中,冻干前,冻干后的冻干之后立即以及在30℃下储存24、48或72小时后的VCC数据(A)以及残留水分(B)。
图41A-B示出了在WP6实验中,冻干前,冻干后的冻干之后立即以及在30℃下储存24、48或72小时后的VCC数据(A)以及残留水分(B)。
图42A-B示出了在WP7实验中,冻干后的冻干之后立即以及在30℃下储存24、48或72小时后的冻干饼(A)和重建时间(B)。
图43示出了在WP7实验中,冻干前、冻干后、冻干后立即以及在30℃下存储24小时、72小时,和7天后的VCC数据。
图44A-B示出了在WP7实验中,VCC数据(A)和活细胞百分比(B)与在30℃下的储存时间的关系。
图45A-B示出了在WP7实验中,CFU/mL(A)和活细胞百分比(B)与时间的关系。
图46A-B示出了在WP7实验中,冻干前、冻干后、冻干后立即以及在30℃下存储24小时和72小时之后的VCC数据。
图47A-B示出了在WP7实验中,冻干前、冻干后、冻干后立即以及在30℃下存储24小时和72小时之后的VCC数据。
图48示出了用于ADXS11-001中试批次(pilot batch)的VCC和RM的散点图。
图49示出了Lot#5329PD-17-01(ADXS11-001试验批次)的VCC的散点图。
图50示出了Lot#5329PD-17-01(ADXS11-001试验批次)的存活%(%live)的散点图。
图51示出了Lot#5329PD-17-01(ADXS11-001试验批次)的pH的散点图。
图52示出了在30℃下存储的Lot#5329PD-17-01(ADXS11-001试验批次)的VCC的散点图。
图53示出了在30℃下存储的Lot#5329PD-17-01(ADXS11-001试验批次)的存活%的散点图。
图54示出了对植入和给药时间表(ADXS11-001试验批次)进行说明的图表。
图55示出了说明冻干AXAL和临床AXAL在不同剂量下在TC-1肿瘤模型中抑制肿瘤生长的图。
图56示出了说明不同剂量的冻干AXAL和临床AXAL在TC-1肿瘤模型中均延长动物存活的图。
图57示出了图示WP7循环3与循环1和循环2相比的重建时间的图。
图58A-B示出了说明A0085(A)和A1300(B)在Tliq、Tlyo,以及在30℃下储存24小时和72小时后的MFI分析的图。
图58C-D示出了说明B0085(C)和B1300(D)在Tliq、Tlyo,以及在30℃下储存24小时和72小时后的MFI分析的图。
图59A-B示出了说明A.A0085(200倍稀释)和B.A1300(5,000倍稀释)的RRM结果的图。
图59C-D示出了说明C.B0085(200倍稀释)和D.B1300(5,000倍稀释)的RRM结果的图。
图60A-B示出了说明A0085(200倍稀释)(A)和A1300(5,000倍稀释)(B)的负浮力颗粒分布的图。
图60C-D示出了说明B0085(200倍稀释)(C)和B1300(5,000倍稀释)(D)的负浮力颗粒分布的图。
图61示出了说明在Tlyo下的A0085、A1300、B0085,和B1300五个小瓶的卡尔·费休(Karl-Fischer)滴定分析的图。
图62示出了说明在Tliq、Tlyo以及在30℃下储存24h、48h,和72h后进行的VCC测定的结果的图。分析前,将前方小瓶(front vials)在-20℃下保存7天。
图63A示出了散点图,其说明了WP7循环3之后的加速稳定性时的VCC。
图63B示出了散点图,其说明了WP7循环3之后的加速稳定性时的存活%。
图64示出了散点图,其说明了在各种温度和VCC水平下,重复的冷冻/解冻循环对BDS(1L填充/1L LDPE袋)的VCC的影响。
图65示出了散点图,其说明了在各种温度和VCC水平下,重复的冷冻/解冻循环对BDS(1L填充/1L LDPE袋)的存活%的影响。
具体实施方式
定义
本文可互换使用的术语“蛋白质”、“多肽”,和“肽”是指任何长度的氨基酸的聚合形式,所述任何长度的氨基酸包括编码和非编码氨基酸以及化学或生物化学修饰或衍生的氨基酸。该术语包括已被修饰的聚合物,例如具有修饰的肽主链的多肽。
蛋白质被认为具有“N末端”和“C末端”。术语“N末端”是指蛋白质或多肽的起始,其端点为具有游离胺基(-NH2)的氨基酸。术语“C末端”是指氨基酸链(蛋白质或多肽)的结尾,其端点为游离羧基(-COOH)。
术语“融合蛋白”是指包含通过肽键或其它化学键连接在一起的两个或更多个肽的蛋白。肽可以通过肽键或其它化学键直接连接在一起。例如,嵌合分子可以重组表达为单链融合蛋白。或者,肽可以通过“接头”连接在一起,所述接头为例如一个或多个氨基酸或两个或多个肽之间的另一种合适的接头。
本文可互换使用的术语“核酸”和“多核苷酸”是指任何长度的核苷酸的聚合形式,包括核糖核苷酸,脱氧核糖核苷酸或其类似物或其修饰形式。它们包括单链、双链和多链DNA或RNA、基因组DNA、cDNA、DNA-RNA杂交以及包含嘌呤碱基、嘧啶碱基或其它天然的、化学修饰的、生物化学修饰的、非天然的,或衍生的核苷酸碱基的聚合物。
核酸被称为具有“5'末端”和“3'末端”,是因为使单核苷酸通过这样的方式反应来制备寡核苷酸,使得在一个方向上一个单核苷酸戊糖环的5'磷酸通过磷酸二酯键附着到其相邻单核苷酸戊糖环的3'氧上。如果寡核苷酸的5'磷酸未与单核苷酸戊糖环的3'氧连接,则将该寡核苷酸的末端称为“5'末端”。如果寡核苷酸的3'氧未与另一个单核苷酸戊糖环的5'磷酸连接,则将其末端称为“3'末端”。即使在较大的寡核苷酸内部,核酸序列也可以称为具有5'末端和3'末端。在线性或环状DNA分子中,离散元件(discrete elements)被称为“下游”或3'元件的“上游”或5'。
“密码子优化”是指在保持天然氨基酸序列的同时,用在宿主细胞的基因中更常用或最常用的密码子替换天然序列的至少一个密码子,从而修饰核酸序列以在特定宿主细胞中增强表达的过程。例如,可以修饰编码融合多肽的多核苷酸,以代入与天然存在的核酸序列相比,在给定的李斯特菌细胞或任何其它宿主细胞中具有更高使用频率的密码子。密码子使用情况表很容易获得,例如可在“密码子使用情况数据库(Codon Usage Database)”中获得。US 2007/0207170示出了单核细胞增生李斯特菌对每种氨基酸使用的最佳密码子,出于所有目的将其全文引入本文作为参考。可以通过多种方式对这些表进行修改,参见Nakamura et al.(2000)Nucleic Acids Research28:292,出于所有目的将其全文引入本文作为参考。也可获得用于在特定宿主中表达的特定序列的密码子优化的计算机算法(参见,例如Gene Forge)。
术语“质粒”或“载体”包括任何已知的递送载体,包括细菌递送载体、病毒载体递送载体、肽免疫疗法递送载体、DNA免疫疗法递送载体、附加体质粒(episomal plasmid)、整合型质粒,或噬菌体载体。术语“载体”是指能够在宿主细胞中递送和可选地表达一种或多种融合多肽的构建体。
术语“附加体质粒”或“染色体外质粒”是指与染色体DNA物理分离的核酸载体(即附加体或染色体外的,并且不整合到宿主细胞的基因组中),并且独立于染色体DNA复制。质粒可以是线性或环状的,并且可以是单链或双链的。附加体质粒可能会在宿主细胞的细胞质(例如李斯特菌)中以多个拷贝的形式持久存在,从而导致附加体质粒内的任何感兴趣的基因都得到扩增。
术语“基因组整合的”是指已被引入细胞中的核酸,使得核苷酸序列整合到细胞的基因组中并且能够被其子代遗传。可以用任何方法将核酸稳定地掺入细胞的基因组中。
术语“稳定地维持”是指在没有选择(例如抗生素选择)的情况下将核酸分子或质粒维持至少10代而没有可检测的损失。例如,周期(period)可以是至少15代、20代、至少25代、至少30代、至少40代、至少50代、至少60代、至少80代、至少100代、至少150代、至少200代、至少300代,或至少500代。“稳定地维持”可以指核酸分子或质粒在体外(例如,在培养物中)的细胞中稳定地维持、在体内稳定地维持,或两者。
“开放阅读框”或“ORF”是DNA的一部分,其包含可能潜在地编码蛋白质的碱基序列。例如,ORF可以位于基因的起始密码子序列(起始密码子)和终止密码子序列(终止密码子)之间。
“启动子”是DNA的调节区,其通常包含能够指导RNA聚合酶II在特定多核苷酸序列的适当转录起始位点起始RNA合成的TATA盒。启动子可以另外包含影响转录起始速率的其它区域。本文公开的启动子序列调节有效连接的多核苷酸的转录。启动子可以在本文公开的一种或多种细胞类型(例如:真核细胞、非人类哺乳动物细胞、人类细胞、啮齿动物细胞、多能细胞、单细胞阶段胚胎(one-cell stage embryo)、分化的细胞,或其组合)中具有活性。启动子可以是例如组成型活性启动子、条件启动子(conditional promoter)、诱导型启动子、时间受限的启动子(temporally restricted promoter)(例如发育调控的启动子(developmentally regulated promoter)),或空间受限的启动子(spatially restrictedpromoter)(例如细胞特异性或组织特异性启动子)。启动子的例子可以在例如WO 2013/176772中找到,其全部内容通过引用并入本文。
“可操作的连接”或“可操作地连接”是指两个或更多个成分(例如启动子和另一个序列元件)的并置,使得两个成分均正常起作用,并允许至少一个成分可以介导施加在至少一个其它组件上的功能。例如,如果启动子响应一种或多种转录调节因子的存在或不存在而控制编码序列的转录水平,则该启动子可以可操作地连接至编码序列。可操作的连接可以包括这样的序列,所述序列彼此连续或反式作用(例如,调节序列可以在一定距离处起作用以控制编码序列的转录)。
在两个多核苷酸或多肽序列的上下文中,“序列同一性”或“同一性”是指两个序列中的残基,当在指定的比较窗口上比对以获得最大对应性时,它们是相同的。当使用序列同一性百分比来表示蛋白质时,应认识到不相同的残基位置通常因保守的氨基酸取代而不同,其中氨基酸残基被具有类似化学性质(例如电荷或疏水性)的其它氨基酸残基取代,因此不会改变分子的功能特性。当序列在保守取代处不同时,可以向上调整百分比序列同一性以校正取代的保守性质。通过这种保守取代而不同的序列被称为具有“序列相似性”或“相似性”。进行这种调整的方法是众所周知的。通常,这涉及将保守取代计为部分错配而不是全部错配,从而增加序列同一性百分比。因此,例如,在相同氨基酸的评分为1,非保守取代的评分为零的情况下,保守取代的评分在0与1之间。在例如PC/GENE程序(Intelligenetics,山景城,加利福尼亚州)中实现保守取代的得分的计算。
“序列同一性百分比”是指通过在比较窗口中比较两个最佳比对的序列(完美匹配残基的数量最大)而确定的值,其中与参考序列(不包含添加或缺失)相比,比较窗口中多核苷酸序列的部分可以包含添加或缺失(即缺口),以实现两个序列的最佳比对。百分比的计算方式为:确定在两个序列中都出现相同的核酸碱基或氨基酸残基的位置数,以产生匹配位置数,将匹配位置数除以比较窗口中的位置总数,然后将结果乘以100,以得出序列同一性百分比。除非另有说明(例如,较短的序列包括连接的异源序列),否则比较窗口是被比较的两个序列中较短的序列的全长。
除非另有说明,否则序列同一性/相似性值是指使用GAP版本10,用以下参数获得的值:使用GAP权重(GAP Weight)50和长度权重(Length Weight)3以及nwsgapdna.cmp评分矩阵获得核苷酸序列的同一性%和相似性%;使用GAP权重8和长度权重2以及BLOSUM62评分矩阵获得氨基酸序列的同一性%和相似性%;或任何等效程序。“等效程序”包括任何序列比较程序,当与由GAP版本10生成的相应比对进行比较时,所述序列比较程序针对所讨论的任何两个序列生成具有相同核苷酸或氨基酸残基匹配和相同百分比的序列同一性的比对。
术语“保守氨基酸取代”是指序列中通常存在的氨基酸被具有相似大小、电荷,或极性的不同氨基酸取代。保守取代的实例包括用非极性(疏水)残基(如异亮氨酸、缬氨酸,或亮氨酸)取代另一个非极性残基。同样,保守取代的例子包括一个极性(亲水)残基被另一个取代,例如精氨酸和赖氨酸之间的取代,谷氨酰胺和天冬酰胺之间的取代,或甘氨酸和丝氨酸之间的取代。另外,保守取代的另外的例子是用碱性残基如赖氨酸、精氨酸或组氨酸取代另一种,或用一种酸性残基如天冬氨酸或谷氨酸取代另一种酸性残基。非保守取代的实例包括将非极性(疏水)氨基酸残基,例如异亮氨酸、缬氨酸、亮氨酸、丙氨酸,或蛋氨酸取代为极性(亲水)残基例,如半胱氨酸、谷氨酰胺、谷氨酸或赖氨酸和/或将极性残基取代为非极性残基。下表1总结了典型的氨基酸分类。
表1:氨基酸分类
Figure BDA0002492522430000151
“同源”序列(例如核酸序列)是指与已知参考序列相同或基本相似的序列,例如其与已知参考序列至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%,或100%相同。
术语“野生型”是指具有在正常(相较于突变、患病、改变等)状态或环境中发现的结构和/或活性的实体。野生型基因和多肽通常以多种不同形式(例如等位基因)存在。
就蛋白质和核酸而言,术语“分离的”是指相对于其它细菌、病毒或细胞成分相对纯化的蛋白质和核酸;所述其它细菌、病毒或细胞成分通常可原位存在,直至并包括蛋白质和多核苷酸的基本上纯的制剂。术语“分离的”还包括没有天然存在的对应物,已经化学合成并且因此基本上未被其它蛋白质或核酸污染的蛋白质和核酸,或者已与其自然伴随的大多数其它细胞成分(例如其它细胞蛋白、多核苷酸,或细胞成分)分离或纯化的蛋白质和核酸。
“外源”或“异源”分子或序列是通常在细胞中不表达或通常不以该形式存在于细胞中的分子或序列。“正常存在”包括关于细胞的特定发育阶段和环境条件的存在。例如,外源或异源分子或序列可以包括细胞内相应内源序列的突变形式,或者可以包括与细胞内的内源序列相对应,但形式不同(即不在染色体内)的序列。特定细胞中的外源或异源分子或序列也可以是源自与细胞的参考物种不同的物种的分子或序列,或源自相同物种内的不同生物的分子或序列。例如,在表达异源多肽的李斯特菌菌株的情况下,异源多肽可以是非天然(native)或内源于李斯特菌菌株的,即:并非通常由李斯特菌菌株表达的、来自除李斯特菌之外的来源的、来自同一物种内的不同生物的。
相反,“内源”分子或序列或“天然”分子或序列是在特定环境条件下的特定发育阶段在特定细胞中通常以该形式存在的分子或序列。
术语“变体”是指与种群(population)中的主流不同,但仍与共模(common mode)足够相似,足以被认为是其中之一的氨基酸或核酸序列(或生物体或组织)(例如剪接变体)。
术语“异形体”指分子(例如,蛋白质)的一种形式,其与(例如同一蛋白质的)另一种异形体或形式相比仅具有微小差异。例如,蛋白质异形体可以由不同但相关的基因产生,它们可以通过可变剪接从同一基因中产生,或者它们可以由单核苷酸多态性产生。
当涉及蛋白质时,术语“片段”是指比全长蛋白质短或具有更少氨基酸的蛋白质。当涉及核酸时,术语“片段”是指比全长核酸短或核苷酸少的核酸。片段可以是例如N末端片段(即去除蛋白质的C末端的一部分)、C末端片段(即去除蛋白质的N末端的一部分),或内部片段。片段也可以是例如功能片段或免疫原性片段。
当提及蛋白质时,术语“类似物”是指以保守的氨基酸差异而与天然蛋白质不同的蛋白质、以不影响氨基酸序列的修饰而与天然蛋白质不同的蛋白质,或二者。
术语“功能性”是指蛋白质或核酸(或其片段、异形体,或变体)表现出生物学活性或功能的固有能力。这样的生物学活性或功能可以包括,例如,当施用于受试者时引起免疫应答的能力。这样的生物学活性或功能还可以包括,例如,与相互作用对(interactionpartner)的结合。在功能片段、异形体,或变体的情况下,这些生物学功能实际上可以改变(例如就其特异性或选择性而言),但保留基本生物学功能。
术语“免疫原性”是指分子(例如蛋白质、核酸、抗原,或生物体)在施用于受试者时引起受试者免疫应答的固有能力。免疫原性可通过,例如,针对该分子的更多的抗体数量、针对该分子的更多的抗体种类、对该分子具有特异性的更多的T细胞数量、对该分子的更大的细胞毒性或辅助性T细胞反应来测量。
术语“抗原”在本文中是指当与受试者或生物体接触时(例如:当存在于受试者或生物体中或由受试者或生物体检测时)导致可检测到的来自受试者或生物的免疫应答的物质。抗原可以是例如脂质、蛋白质、碳水化合物、核酸,或其组合和变体。例如,“抗原肽”是指当存在于受试者或生物体中或由受试者或生物体检测时导致免疫应答在受试者或生物体中产生(mounting)的肽。例如,这种“抗原肽”可以包括蛋白质,该蛋白质被装载并呈现在宿主细胞表面的MHC I类和/或II类分子上,并可以被宿主的免疫细胞识别或检测,从而导致对蛋白质的免疫应答的产生。这样的免疫应答也可以延伸到宿主内的其它细胞,例如表达相同蛋白质的病变细胞(例如肿瘤或癌细胞)。
术语“表位”是指抗原上被免疫系统识别的位点(例如抗体结合的位点)。表位可以由连续氨基酸或通过一种或多种蛋白质的三级折叠而并列(juxtapose)的非连续氨基酸形成。由连续氨基酸形成的表位(也称为线性表位)通常在暴露于变性溶剂时保留,而由三级折叠形成的表位(也称为构象表位)通常在用变性溶剂处理时丢失。表位通常以独特的空间构象包含至少3个,更通常至少5个或8-10个氨基酸。确定表位的空间构象的方法包括例如X射线晶体学和二维核磁共振。参见例如Epitope Mapping Protocols,in Methods inMolecular Biology,Vol.66,Glenn E.Morris,Ed.(1996),其出于所有目的通过引用整体并入本文。
术语“突变”是指基因或蛋白质的结构的任何改变。例如,突变可由染色体或蛋白质的缺失、插入、取代或重排引起。“插入”通过添加一个或多个其它核苷酸或氨基酸来改变基因中的核苷酸数或蛋白质中的氨基酸数。“缺失”通过减少一个或多个其它核苷酸或氨基酸来改变基因中的核苷酸数或蛋白质中的氨基酸数。
当核苷酸的添加或缺失改变基因的阅读框架时,DNA中发生“移码”(frameshift)突变。一个阅读框由3个碱基组成,每个编码一个氨基酸。移码突变会改变这些碱基的分组,并更改氨基酸代码。所得蛋白质通常是无功能的。插入和缺失均可为移码突变。
“错义”突变或替代是指蛋白质的一个氨基酸的改变或单个核苷酸中的点突变,其导致编码的氨基酸的改变。导致一个氨基酸改变的单个核苷酸中的点突变是DNA序列中的“非同义”取代。非同义取代也可能导致“无义”突变,其中密码子更改为提前终止密码子(premature stop codon),导致生成的蛋白质的截短(truncation)。相反,DNA中的“同义”突变是不改变蛋白质氨基酸序列的突变(由于密码子简并)。
术语“体细胞突变”包括生殖细胞(例如精子或卵细胞)以外的细胞所获得的遗传改变。这样的突变可以在细胞分裂的过程中传递给突变细胞的子代,但不能遗传。相比之下,种系突变发生在种系中,并且可以传递给后代的下一代。
术语“体外”是指人工环境以及在人工环境(例如试管)内发生的过程或反应。
术语“体内”是指自然环境(例如细胞或生物体或身体)以及在自然环境中发生的过程或反应。
术语“冷冻状态玻璃化转变温度”(Tg’)是指:当加热时,糖玻璃(sugar glasses)溶液经历从刚性状态到粘弹性橡胶态的二级转变。发生玻璃化转变的温度是冷冻状态下的玻璃化转变温度。
术语“固态玻璃化转变温度”(Tg)是指:与Tg’相似,为冻干的玻璃状固体转变为粘弹性橡胶态的温度。
术语“塌陷温度(collapse temperature)”(Tc)是指产品在一级干燥过程中可以承受而不会失去其物理结构的最高温度。
术语“药物物质”(DS)是指活性成分。它是指旨在在疾病的诊断、治愈、缓解、治疗,或预防中提供药理活性或其它直接作用,或影响人类或其它动物的身体的结构或任何功能的药物产品的任何成分。活性成分包括产品的成分,这些成分在药物产品的生产过程中可能发生化学变化,并以修饰形式存在于药物产品中,以提供特定的活性或效果。例如Lm(例如ADXS-HPV或ADXS-HER2)被认为是药物物质。
术语“原料药物物质”(bulk drug substance,BDS)意指用于药物中的任何物质,当该物质用于药物的制造、加工,或包装中时,其成为活性成分或最终剂量形式的药物;但该术语不包括用于合成此类物质的中间体。
术语“药物产品”(DP)是指最终剂型,例如片剂、胶囊剂或溶液剂,其包含活性药物成分,通常但不一定与非活性成分结合。例如,冻干的Lm(例如ADXS-HPV或ADXS-HER2)被认为是药物产品。
“包含”(comprising)或“包括”(including)一个或多个所列举的元素的组合物或方法可以包括未具体列举的其它元素。例如,“包含”或“包括”蛋白质的组合物可以单独地包含蛋白质,或包含蛋白质与其它成分的组合。
值的范围的指定包括该范围内的所有整数或定义该范围的所有整数,以及由该范围内的整数定义的所有子范围。
除非从上下文中可以明显得知,否则术语“约”涵盖在固定值的测量误差范围内的值(例如SEM),或相对于指定值的±0.5%、1%、5%,或10%的变化。
除非上下文另外明确指出,否则冠词“一”(a),“一个”(an)和“该”的单数形式包括复数形式。例如,术语“一种抗原”或“至少一种抗原”可包括多种抗原,包括其混合物。
统计学上显著意指p≤0.05。
详细说明
I.概述
本文公开了针对稳定的冻干药物配方的组合物和方法,所述冻干药物配方通过冻干包含细菌或李斯特菌菌株(例如单核细胞增生李斯特菌)的水性配方而制备。在一些实施方案中,冻干配方在4℃或-20℃下稳定至少6个月、至少1年,或至少2年。在一些实施方案中,冻干配方适合于肠外施用,例如静脉内注射。
当前用于治疗的、包括例如单核细胞增生李斯特菌的冷冻液体配方在-80℃下储存和运输。低温为临床地点(尤其是南美和非洲的国家)的材料运输和存储带来了供应链挑战。因此,期望具有冷藏或-20℃下的供应链。通过优化如本文所述的制造过程,可以产生能够维持在较高温度下的稳定药物产品。与直觉相反,本文所述的工作实施例表明较高的残留水分(例如,在一个实施方案中高于正常的目标残留水分水平,例如约2.5%、3.0%,或3.5%)改善了冻干产品的稳定性。类似地,与直觉相反,在一级干燥步骤中较高的搁板温度(shelf temperature)(例如,在一个实施方案中为约-17℃至约-19℃或约-18℃,其远高于Tg)改善了冻干产品的稳定性。另外,在进行冻干之前通过热激对细胞的预处理改善了冻干产物的稳定性。另外,相对于较低的VCC,使用较高浓度的活细菌(viable bacteria)(活细胞计数或VCC)导致冻干药物产品的稳定性提高。另外,与直觉相反,相对于在室温或在2-8℃下的解冻,在冻干前在约37℃下解冻冷冻的药物物质改善了冻干的药物产品的稳定性。与液体冷冻配方相比,这些工艺的改善提高了高温条件下的稳定性,从而允许使用更高温度的供应链。这样可以使供应链更易于管理,并可以配送到无法在-80℃下进行储存的国家。
除了优化冻干饼(lyophilized cake)中的残留水分(例如,在一个实施方案中,使用高于正常的目标残留水分水平,例如约3.5%;这可以通过调整二级干燥温度以及可选地调整二级干燥时间来实现)之外,还通过冻干前的温度变化,在单核细胞增生李斯特菌细胞中诱导应激反应,该过程提高了冻干药物产品在较高温度下的稳定性。类似地,使用包含磷酸盐缓冲剂和低于正常水平的蔗糖(例如,在一个实施方案中为约2.5%w/v蔗糖)的配方以及使用较高的一级干燥步骤温度(例如,在一个实施方案中为约-18℃),改善冻干药物产品在较高温度下的稳定性;所述的较高温度包括-20℃、2~8℃甚至室温(约20℃至约25℃,或约20℃、约23℃,或约25℃)。与液体冷冻配方相比,这些工艺改进提高了高温条件下的稳定性,从而允许使用更高温度的供应链。这使得供应链更易于管理,并可以配送到无法在-80℃下进行储存的国家。
II.细菌或李斯特菌的冻干
冻干可分为三个步骤:冷冻、一级干燥,和二级干燥。随着第一步中的水的冷冻,配方中的溶解成分保留在残留液体(冷冻浓缩物(freeze-concentrate))中。在最大冰形成点(the point of maximal ice formation)处,冷冻浓缩物在构成晶格的冰晶之间凝固。在适当的冻干条件下,在一级干燥中通过升华除去冰,使剩余的冷冻浓缩物保持与冰存在时相同的物理和化学结构。在二级干燥步骤中除去冷冻浓缩物中的残留水。
冻干涉及操控溶液的温度和压力,使得溶剂的相可以直接从冷冻状态转为气态而不通过液相/态。这是通过冷却溶液并将压力降低到水的三相点之下来实现的。这允许不使产物经受强热而从产物中除去溶剂。在冷冻阶段,将配方冷却。从液体中形成纯的结晶冰,从而导致剩余的该液体的冷冻浓缩物变为更粘稠的状态,从而抑制了进一步的结晶。最终,这种高度浓缩和粘稠的溶液凝固,产生非晶相、结晶相,或非晶-结晶相。在一级干燥阶段,通过在低于环境温度的真空下升华,除去冷冻过程中形成的冰。在这整个阶段中,产品保持在低于产品的塌陷温度下的固态,以便干燥产品,同时保留在冷冻步骤中建立的结构。塌陷温度是无定形产物情况下的玻璃化转变温度(Tg’)或结晶产物的共熔温度(Te)。在二级干燥阶段,通过解吸(desorption)除去残留在基质中的相对少量的结合水。在此阶段,升高搁板温度和产品温度,以促进合适的解吸速率,并达到所需的残留水分。
冻干药物产品的目标特征(target profile)为能在目标残留水分下产生轮廓分明的饼的目标特征,该饼在2~8℃或-20℃下是稳定的,并保持与液体冷冻配方相同的效能和生物活性。可以在冻干过程中增强细菌生存力的保护策略包括,例如,向干燥介质中添加赋形剂、控制工艺参数、在冻干前对细菌样品施加预应激(pre-stressing),以及更改细菌的发酵条件。但是,这些策略的效率取决于菌株,因为对干燥过程的内在承受力也因菌株而异。即使在高度相关的细菌菌株中,一种菌株对冻干过程的抵抗力也可能比另一种菌株高。这种菌株依赖性使得难以得出一般性结论和指导方针。
本文提供了制备包含细菌或李斯特菌菌株的冻干组合物的方法。这样的方法可以包括提供组合物,该组合物在包含缓冲剂的配方中包含细菌或李斯特菌菌株、在冷冻步骤中冷却该组合物、在一级干燥步骤中将冷却的组合物暴露于真空和第一升高温度,以及在二级干燥步骤中将来自一级干燥步骤的组合物暴露于真空和第二升高温度中,从而制得冻干组合物。
在一些这样的方法中,组合物中使用的细菌或李斯特菌菌株是在冷冻步骤之前解冻的冷冻李斯特菌菌株。这样的预处理步骤的示例在本文其它地方更详细地描述。在一个具体的例子中,可以在约2℃至约37℃、约20℃至约37℃、约23℃至约37℃、约25℃至约37℃、约32℃至约37℃,或约37℃的温度下解冻冷冻的细菌或李斯特菌菌株。可选地,所述解冻不超过约8小时。可选地,将解冻的细菌或李斯特菌菌株在约2℃至约8℃的温度下保持不超过约24小时。在一个具体的例子中,被解冻的细菌或李斯特菌菌株的浓度可在每毫升约1×10E9至约1×10E10菌落形成单位(CFU)之间。
在一些这样的方法中,配方包含缓冲剂和蔗糖。例如,配方缓冲剂可包含约1%至约5%w/v的蔗糖、约2%至约3%w/v的蔗糖,或约2.5%w/v的蔗糖。可选地,该配方不包含一种或多种其它赋形剂,例如海藻糖、谷氨酸钠(MSG),或重组人血清白蛋白(rHSA)。
在一些这样的方法中,每毫升该配方包含约1x10E9至约1x10E10菌落形成单位(CFU)的细菌或李斯特菌。
在一些这样的方法中,一级干燥步骤中的保持温度在约-10℃至约-30℃之间、约-12℃至约-22℃之间、约-17℃至约-19℃之间,或约-18℃。
在一些这样的方法中,冻干组合物中的残留水分为至少约2.5%、至少为约3%,或至少为约3.5%。在一些这样的方法中,残留水分在约1%至约5%之间或在约2%至约4%之间。
在一些这样的方法中,冻干组合物在约-20℃至约4℃之间或在约-20℃或约4℃下储存约6个月、12个月、18个月或24个月后显示至少约60%、70%、80%或90%的生存力。
一些这样的方法包括:(a)提供组合物,该组合物在包含缓冲剂的配方中包含细菌或李斯特菌菌株;(b)在冷冻步骤中将步骤(a)中提供的组合物冷却至约-32℃至约-80℃的保持温度;(c)在一级干燥步骤中,将步骤(b)制备的组合物在约-10℃至约-30℃的保持温度下暴露于真空中;以及(d)在二级干燥步骤中,将步骤(c)制备的组合物在约-5℃至约25℃的保持温度下暴露于真空中
下文提供细胞预处理、配方、冷冻步骤、一级干燥步骤、二级干燥步骤,和冻干产物的其它实施方案。
A.细菌或李斯特菌的预处理
用于本文公开的冻干方法中的细菌或李斯特菌菌株的培养物可以来自冷冻原种(stock)、来自起子培养物(starter culture),或来自菌落(例如新鲜培养的细菌或李斯特菌)。
本文提供了制备用于冻干的冷冻细菌或李斯特菌菌株的方法,包括解冻冷冻细菌或李斯特菌菌株。如果细菌或李斯特菌菌株来自冷冻原种,则可以通过任何方法将其解冻。解冻温度和解冻时间会影响稳定性。确定用于解冻冷冻药物物质的合适条件,从而允许在冻干之前对药物物质进行冷冻和保存。确保解冻后得到高质量健康细胞,从而允许确保所获得的冻干药物产品也具有足够的质量。在一个实例中,可将其在约-4℃、约2~8℃,或约4℃下解冻,并孵育例如约0.5、1、2、3、4小时或更长。在另一个实例中,可以将其在约37℃下解冻并孵育例如约0.5、1、2、3、4小时或更长。
在一个实施例中,可将冷冻的细菌或李斯特菌菌株在约4℃至约37℃、约10℃至约37℃、约15℃至约37℃、约20℃至约37℃、约23℃至约37℃、约25℃至约37℃、约25℃至约37℃、约30℃至约37℃、约32℃至约37℃、约32℃至约42℃、约34℃至约40℃、约35℃至约39℃、约36℃至38℃,或约37℃下解冻。
可以将冷冻细菌或李斯特菌菌株解冻例如约0.5、1、2、3、4、5、6、7或8小时、约0.5小时至约8小时、约1小时至约8小时、约2小时至约8小时、约3小时至约8小时、约4小时至约8小时、约5小时至约8小时、约6小时至约8小时,或约7小时至8小时。或者,可将冷冻细菌或李斯特菌菌株解冻例如不超过约0.5、1、2、3、4、5、6、7或8小时。
被解冻的冷冻细菌或李斯特菌菌株可以在细菌或李斯特菌冻干配方中,或者可以在细菌或李斯特菌冻干配方中解冻。这种细菌或李斯特菌冻干配方在本文其它地方更详细地公开。
冷冻的细菌或李斯特菌菌株可以在解冻后保持在一定温度下。例如,解冻后,冷冻的细菌或李斯特菌菌株可以保持在约2℃至约8℃之间。冷冻细菌或李斯特菌菌株可以例如保持约0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24小时,或保持约0.5小时至约24小时、约1小时至约24小时、约2小时至约24小时、约5小时至约24小时、约10小时至约24小时、约12小时至约24小时。或者,可以将冷冻细菌或李斯特菌菌株保持例如不超过约0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24小时。在一个具体实施例中,将冷冻细菌或李斯特菌菌株在约37℃下解冻不超过约8小时,并在约2℃至约8℃下保持不超过约24小时。
被解冻的细菌或李斯特菌菌株的浓度可以是任何合适的浓度。例如,浓度可以在每毫升约1×10E9至约1×10E10菌落形成单位(CFU)之间。
用于冻干的培养物可以处于任何生长期。培养物可以例如在对数生长中期(mid-log growth phase)、在约为对数生长中期,或在另一个生长期。
用于培养细菌或李斯特菌菌株的培养物的营养培养基可以是任何合适的营养培养基。合适的培养基的实例包括,例如,卢里亚肉汤(LB;卢里亚-贝尔塔尼肉汤)、超级肉汤(Terrific Broth,TB)、改良的,不含动物产品的超级肉汤、或确定成分培养基(definedmedium)。细菌或李斯特菌菌株可以通过任何已知的细菌生长方法进行培养。例如,生长步骤可以用摇瓶(例如带挡板的摇瓶(baffled shake flask))、分批发酵罐(batchfermenter)、搅拌罐或搅拌瓶、气升式发酵罐、补料分批(fed batch)、连续细胞反应器(continuous cell reactor)、固定化细胞反应器,或任何其它细菌生长方式进行。
可选地,在培养物的生长过程中(例如在分批发酵罐中)维持恒定的pH。例如,pH可以维持在约6.0、约6.5、约7.0、约7.5,或约8.0。同样,pH可以为例如约6.5至约7.5、约6.0至约8.0、约6.0至约7.0、约6.0至约7.0,或约6.5至约7.5。或者,在从生物反应器中收集细胞后,可立即通过添加酸来降低pH值以诱导应激反应,从而激活一组基因,该基因可更好地为细胞的冻干做准备。
可选地,在培养物的生长过程中可以维持恒定的温度。例如,温度可以维持在约37℃。或者,可以将温度维持在约25℃、约27℃、约28℃、约30℃、约32℃、约34℃、约35℃、约36℃、约38℃,或约39℃。或者,在从生物反应器中收集细胞后,可以立即将细胞置于冰浴中(例如,约0℃或约4℃)以降低温度以诱导应激反应,从而激活一组基因,该基因可更好地为细胞的冻干做准备。
可选地,在培养物的生长过程中可以维持恒定的溶解氧浓度。例如,溶解氧浓度可以维持在20%饱和度、15%饱和度、16%饱和度、18%饱和度、22%饱和度、25%饱和度、30%饱和度、35%饱和度、40%饱和度、45%饱和度、50%饱和度、55%饱和度、60%饱和度、65%饱和度、70%饱和度、75%饱和度、80%饱和度、85%饱和度、90%饱和度、95%的饱和度、100%饱和度,或接近100%饱和度。
细菌菌株或李斯特菌菌株可以可选地在冻干之前在动物宿主处传代。这样的传代(passage)可以最大化李斯特菌菌株作为疫苗载体的效力、可以稳定李斯特菌菌株的免疫原性、可以稳定李斯特菌菌株的毒力、可以增加李斯特菌菌株的免疫原性、可以增加李斯特菌菌株的毒力、可以去除李斯特菌菌株的不稳定亚菌株,或可以降低李斯特菌菌株的不稳定亚菌株的流行。使李斯特菌菌株通过动物宿主的方法是众所周知的,并且例如在US2006/0233835中描述,出于所有目的将其全文引入本文作为参考。
B.细菌或李斯特菌冻干配方
在冻干前,可以以包含缓冲剂和赋形剂的悬浮液(配方)提供细菌或李斯特菌菌株。冻干配方的设计可取决于活性药物成分的要求和预期的给药途径。配方可以由缓冲剂和执行一种或多种功能的一种或多种赋形剂组成。这样的赋形剂可为,例如,pH调节剂、填充剂(例如蔗糖、甘露醇、麦芽糖、海藻糖、右旋糖和乳糖)、稳定剂例如冷冻保护剂(例如PEG)和冻干保护剂(例如二糖),或张力调节剂(例如NaCl、甘露醇、蔗糖、甘氨酸,和甘油)。
缓冲剂可以是任何合适的缓冲剂。缓冲剂可以稳定配方中的pH。例如,缓冲剂可为磷酸盐缓冲剂、Tris缓冲剂、组氨酸缓冲剂、柠檬酸盐缓冲剂,或MOPS(3-(N-吗啉代)丙烷磺酸)缓冲剂。在一个具体的例子中,缓冲剂是磷酸盐缓冲剂。在冻干配方的开发中通常避免使用磷酸盐缓冲剂,因为磷酸盐缓冲剂(例如磷酸钠)在冷冻过程中可发生剧烈的pH变化。因此,通常使用在冷冻过程中pH值变化最小的低浓度缓冲剂,例如Tris、柠檬酸盐,和组氨酸缓冲剂。但是,如本文其它地方所示,使用磷酸盐缓冲剂可达到单核细胞增生李斯特菌的适宜生存力水平。在某些此类缓冲剂中,KH2PO4(无水)的浓度约为0.1~0.3g/L、0.12~0.28g/L、0.14~0.26g/L、0.16~0.24g/L、0.18~0.22g/L、0.19~0.21g/L,或0.2g/L。在某些此类缓冲剂中,Na2HPO4(无水)的浓度约为1.0~1.3g/L、1.02~1.28g/L、1.04~1.26g/L、1.06~1.24g/L、1.08~1.22g/L、1.1~1.2g/L、1.12~1.18g/L、1.14~1.16g/L,或1.15g/L。一些这样的缓冲剂为约5~20mM、6~18mM、7~16mM、8~14mM、9~12mM、9~11mM,或10mM。一些这样的缓冲剂的pH为约6.8~7.6、6.9~7.5、7.0~7.4、7.1~7.3,或7.2。作为一个实施例,磷酸盐缓冲剂可具有约0.19~0.21g/L(例如0.2g/L)的KH2PO4(无水),约1.14~1.16g/L(例如1.15g/L)的Na2HPO4(无水),并且可以具有约7.1~7.3(例如7.2)的pH。
可以将诸如冷冻保护剂和冻干保护剂的赋形剂加入配方中,以在冻干过程中保护细菌或李斯特菌菌株。冷冻保护剂是可降低水的熔点的水溶性化学物质。随着冰晶的形成,细菌细胞被压缩于未冷冻的部分中。添加冷冻保护剂可以扩大未冷冻的部分,为细菌细胞提供更多空间,从而可以减少因机械应激或渗透压应激引起的细胞损伤。冻干保护剂可以在去除水的干燥步骤中保护细菌细胞。一些糖,例如蔗糖和海藻糖,可以同时用作冷冻保护剂和冻干保护剂。使用脱脂奶也可以提供保护作用。赋形剂的其它例子包括葡萄糖、麦芽糖、乳糖、甘露醇、甘氨酸、甘油、氯化钠、酵母提取物、右旋糖酐、右旋糖、聚右旋糖、谷氨酸钠、麦芽糖糊精、抗氧化剂(例如抗坏血酸)、糖类(saccharides)、二糖、糖(sugar)等。在一个实施例中,用于配方中的赋形剂包括蔗糖、海藻糖、谷氨酸钠(MSG)、重组人血清白蛋白(rHSA),和氨基酸混合物的各种组合。在一个具体实例中,赋形剂包含蔗糖、基本上由蔗糖组成,或由蔗糖组成,例如约5%w/v(每体积重量)的蔗糖或约2.5%w/v的蔗糖。例如,配方缓冲剂可包含约1%至约5%w/v的蔗糖、约2%至约3%w/v的蔗糖,或约2.5%w/v的蔗糖。
可选地,赋形剂不包括海藻糖、MSG、rHSA、氨基酸混合物、脱脂奶、葡萄糖、麦芽糖、乳糖、甘露醇、甘氨酸、甘油、氯化钠、酵母提取物、右旋糖酐、右旋糖、聚葡萄糖、谷氨酸钠、麦芽糊精、抗坏血酸、蔗糖以外的糖类(saccharides)、蔗糖以外的二糖、蔗糖以外的糖(sugars),或抗氧化剂中的一种或多种或全部。可选地,赋形剂不包括海藻糖、MSG,和rHSA中的一种或多种或全部。
配方中的细菌或李斯特菌的浓度可以是任何合适的浓度。例如,浓度可以在每毫升约1×10E9至约1×10E10菌落形成单位(CFU)之间。
C.冷冻步骤
冻干的第一步是冷冻步骤。在此阶段,将配方冷却。例如,这可以在搁板冷冻干燥机(shelf freeze dryer)中通过降低冻干机搁板的温度(即降低搁板温度)来实现。在冷冻过程中,会形成冰晶,该冰晶可破坏细菌。冰晶的生长取决于冷冻速率和温度。一些实施例中应用较高的冷冻速率。与较低的冷冻速率相比,较高的冷冻速率可以导致形成较小的冰晶,从而减少细胞损伤。冰晶的形成可能对细菌有害。随着水的结晶,剩余的未冷冻部分中的溶质浓缩,这可能导致化学和渗透损伤。尽管在较低温度下冷冻细菌对应较高的冷冻速率,并会产生较小的冰晶(这应可限制细胞损伤),但较高的冷冻速率并不总是与最佳生存力结果相对应。最佳冷冻条件可以根据配方中使用的保护剂和细菌菌株而有所不同。
通过以例如每分钟约0.2℃至约2.0℃的速率降低温度(例如搁板温度),从而可以达到冷冻步骤的保持温度(例如搁板温度)。替代地,可以通过以例如每分钟约0.2℃至约1.8℃、每分钟约0.4℃至约1.6℃、每分钟约0.6℃至约1.4℃、每分钟约0.8℃至约1.2℃,或每分钟约0.9℃至约1.1℃的速率降低温度(例如搁板温度),从而可以达到冷冻步骤的保持温度(例如搁板温度)。例如,可以以每分钟约0.2℃、约0.3℃、约0.4℃、约0.5℃、约0.6℃、约0.7℃、约0.8℃、约0.9℃、约1.0℃、约1.1℃、约1.2℃、约1.3℃、约1.4℃、约1.5℃、约1.6℃、约1.7℃、约1.8℃、约1.9℃,或约2.0℃的速率将温度降低至冷冻温度。在一个具体实施例中,通过以每分钟约1℃的速率将温度降低至保持温度,从而达到冷冻步骤的保持温度。
冷冻步骤的持续时间可为冷冻细菌或李斯特菌菌株的任何合适时长。同样,可以将温度保持在冷冻温度并持续任何合适的时长,以冷冻细菌或李斯特菌菌株。例如,冷冻步骤可为以下时长,或可以将温度保持在冷冻温度并持续以下时长:约2小时至约6小时、约2.5小时至约6小时、约1小时至约6小时、约1小时至约5小时、约1小时至约4小时、约1小时至约3小时、约1小时至约2小时、约1.5小时至约2.5小时、约1.5小时至约5.5小时、约2小时至约5小时、约2.5小时至约4.5小时、约3小时至约4小时、约1小时、约1.5小时、约2小时、约2.5小时、约3小时、约3.5小时、约4小时、约4.5小时、约5小时、约5.5小时,或约6小时。在一个具体实施例中,冷冻步骤可为3.5小时,或可以将温度保持在冷冻温度并持续3.5小时。在另一个具体实施例中,冷冻步骤可为2小时,或可以将温度保持在冷冻温度并持续2小时。在另一个具体实施例中,冷冻步骤可为1.5小时,或可以将温度保持在冷冻温度并持续1.5小时。在另一个具体实施例中,整个冷冻步骤的时间(例如将温度升高至冷冻温度,然后保持在冷冻温度下)为约3.5-4.5小时或约3.5小时。
冷冻温度(即保持温度)可以是适于冷冻细菌或李斯特菌菌株的任何温度。在一些实施方案中,冷冻温度(例如搁板温度)使得配方的温度低于溶液的玻璃化转变温度,在蔗糖配方的情况下,该温度可以是例如约-32℃。高于该温度的温度可能不会真正冷冻溶液,然后在冻干过程中可能会塌陷,从而潜在地导致生存力下降。例如,温度(例如搁板温度)可以在约-49℃至约-25℃、约-47℃至约-40℃、约-45℃至约-35℃、约-10℃至约-80℃、约-15℃至约-75℃、约-20℃至约-70℃、约-25℃至约-65℃、约-30℃至约-60℃、约-35℃至约-55℃、约-40℃至约-50℃、约-41℃至约-49℃、约-42℃至约-48℃、约-43℃至约-47℃,或约-44℃至约-46℃之间。在一个具体实施例中,冷冻温度可以为约-45℃。在另一个实施例中,温度可以在约-49℃至约-32℃、约-47℃至约-40℃、约-45℃至约-35℃、约-32℃至约-80℃、约-32℃至约-75℃、约-32℃至约-70℃、约-32℃至约-65℃、约-32℃至约-60℃、-49℃至约-33℃、约-33℃至约-80℃、约-33℃至约-75℃、约-33℃至约-70℃、约-33℃至约-65℃、约-33℃至约-60℃、约-35℃至约-55℃、约-40℃至约-50℃、约-41℃至约-49℃、约-42℃至约-48℃、约-43℃至约-47℃,或约-44℃至约-46℃之间。在一个实例中,冷冻温度可为约-39℃。在另一个实施例中,冷冻温度可为约-45℃。在一个具体的实施例中,冷冻步骤中的保持温度为约-40℃至约-50℃之间(例如约-45℃),该冷冻步骤包括将温度以每分钟约1℃的速率降低至保持温度,并且冷冻步骤中的冷却为约2小时至约4小时(例如,冷冻步骤包括将组合物在保持温度下保持约2小时)。
D.一级干燥步骤
冻干的第二步是一级干燥步骤。在一级干燥步骤中,将包含冷冻步骤产生的细菌或李斯特菌菌株的组合物在升高的温度下暴露于真空中。在该步骤中,通过在真空下升华来除去冷冻水。
一级干燥步骤的温度可以通过以例如每分钟约0.2℃至约2.0℃的速率升高温度(例如搁板温度)来达到。替代地,可以通过以例如每分钟约0.2℃至约1.8℃、每分钟约0.4℃至约1.6℃、每分钟约0.6℃至约1.4℃、每分钟约0.8℃至约1.2℃,或每分钟约0.9℃至约1.1℃的速率升高温度(例如搁板温度)来达到一级干燥步骤的保持温度(例如搁板温度)。例如,可以以每分钟约0.2℃、约0.3℃、约0.4℃、约0.5℃、约0.6℃、约0.7℃、约0.8℃、约0.9℃、约1.0℃、约1.1℃、约1.2℃、约1.3℃、约1.4℃、约1.5℃、约1.6℃、约1.7℃、约1.8℃、约1.9℃,或约2.0℃的速率将温度升高到一级干燥温度。在一个具体实施例中,通过以每分钟约1℃的速率将温度升高至保持温度,以达到用于一级干燥步骤的保持温度。
一级干燥步骤可以持续任何合适的时间。同样,保持温度(例如搁板温度)可以保持在一级干燥温度任何合适的时间。温度应保持在一级干燥温度,直到一级干燥完成。该时间可以根据冻干机、小瓶的尺寸、填充容量(fill volumn)、小瓶数量、压力,和其它变量而变化。例如,当产品温度升高到搁板温度或高于搁板温度时,可以确定一级干燥的结束时间。其也可以例如通过压力上升测试(pressure rise test)来确定,在该压力上升测试中,冷冻干燥室与真空泵隔离,以确定由于持续的水升华而导致压力升高了多少。例如,一级干燥步骤可为,或可以将温度保持在一级干燥温度下约10至约29小时、约29至约42小时、约36小时、约10至约80小时、约10至约70小时、约10至约60小时、约10至约50小时、约10至约40小时、约10至约30小时,或约20至约30小时。在一个具体的例子中,一级干燥步骤可为,或可以将温度保持在一级干燥温度下约25至约35小时、约26至约34小时、约27至约33小时、约28至约32小时、约29至约31小时,或约30小时。在另一个具体实施例中,一级干燥步骤可为,或可以将温度保持在一级干燥温度下约20至约30小时、约21至约30小时、约22至约30小时、约23至约29小时、约24至约28小时、约25至约27小时,或约26小时。
一级干燥步骤可被,或可以将温度保持在一级干燥保持温度下一段时间,该段时间被定义为冻干机中的探针(例如:冻干机中的冷点的探针,例如位于冻干机的中心)超过一次干燥保持温度或Ts设定点(例如约-18℃)后的约8至约20小时、约9至约19小时、约10至约18小时、约11至约17小时、约12至约16小时、约13至约15小时,或约14小时。替代地,干燥步骤可为,或可以将温度保持在一级干燥保持温度下一段时间,该段时间被定义为被冻干的组合物(例如:冻干机中的冷点中的组合物样品,或冻干机中的组合物的所有样品)达到一次干燥保持温度或Ts设定点(例如约-18℃)后的约8至约20小时、约9至约19小时、约10至约18小时、约11至约17小时、约12至约16小时、约13至约15小时,或约14小时。在一个具体的实施例中,一级干燥步骤可为,或可以将温度保持在一级干燥保持温度下一段时间,该段时间被定义为冻干机中的探针(例如冻干机中的冷点的探针,例如位于冻干机的中心)已经超过一次干燥保持温度或Ts设定点(例如约-18℃)后的14小时,或被定义为被冻干的组合物(例如冻干机中的冷点中的组合物样品,或冻干机中的组合物的所有样品)达到一次干燥保持温度或Ts设定点(例如约-18℃)后,其可为例如约30小时。
一级干燥步骤的结束可为冻干机中的探针(例如:冻干机中的冷点的探针,例如位于冻干机的中心)超过一次干燥保持温度或Ts设定点(例如约-18℃)后的约8至约20小时、约9至约19小时、约10至约18小时、约11至约17小时、约12至约16小时、约13至约15小时,或约14小时。或者,一次干燥步骤的结束可为被冻干的组合物(例如:冻干机中的冷点中的组合物样品,或冻干机中的组合物的所有样品)达到一次干燥保持温度或Ts设定点(例如约-18℃)后的约8至约20小时、约9至约19小时、约10至约18小时、约11至约17小时、约12至约16小时、约13至约15小时,或约14小时。在一个具体的实施例中,一级干燥步骤的结束可为冻干机中的探针(例如冻干机中的冷点的探针,例如位于冻干机的中心)已经超过一次干燥保持温度或Ts设定点(例如约-18℃)后的14小时,或被冻干的组合物(例如冻干机中的冷点中的组合物样品,或冻干机中的组合物的所有样品)达到一次干燥保持温度或Ts设定点(例如约-18℃)后,其可为例如约30小时。
一级干燥温度(例如搁板温度或保持温度)可以是适于干燥细菌或李斯特菌菌株的任何温度。例如,保持温度可为约0℃至约-30℃、0℃至约-19℃、约-5℃至约-30℃、约-10℃至约-25℃、约-15℃至约-20℃、约-17℃至约-19℃、约-12℃至约-30℃、约-12℃至约-24℃、约-12℃至约-22℃、约-14℃至约-22℃、约-15℃至约-21℃、约-16℃至约-20℃、约-17℃至约-19℃、约-18℃至约-22℃、约-30°、约-29°、约-28°、约-27°、约-26°、约-25°、约-24°、约-23°、约-22°、约-21°、约-20°、约-19°、约-18°、约-17°、约-16°、约-15°、约-14°、约-13°、约-12°、约-11°、约-10°、约-9°、约-8°、约-7°、约-6°、约-5°、约-4°、约-3°、约-2°、约-1°,或约0°。例如,温度可为不超过约-30°、约-29°、约-28°、约-27°、约-26°、约-25°、约-24°、约-23°、约-22°、约-21°、约-20°、约-19°、约-18°、约-17°、约-16°、约-15°、约-14°、约-13°、约-12°、约-11°,或约-10℃。在特定实施例中,一级干燥温度可以为约-25℃至约-35℃、约-26℃至约-37℃、约-27℃至约-33℃、约-28℃至约-32℃、约-29℃至-31℃,或约-30℃。在一个具体的实施例中,一级干燥温度可以为约-17℃至约-27℃、约-18℃至约-26℃、约-19℃至约-25℃、约-20℃至约-24℃、约-21℃至约-23℃,或约-22℃。在另一个具体实施例中,一级干燥温度可以为约-7℃至约-17℃、约-8℃至约-16℃、约-9℃至约-15℃、约-10℃至约-14℃、约-11℃至约-13℃,或约-12℃。在另一个具体实施例中,一级干燥温度可为约-13℃至约-23℃、约-14℃至约-22℃、约-15℃至约-21℃、约-16℃至约-20℃、约-17℃至约-19℃,或约-18℃。在一个具体的实施例中,一级干燥步骤中的保持温度在约-17℃至约-19℃之间,或为约-18℃。
压力(真空条件)可以是任何合适的压力。在某些情况下,在配方的玻璃化转变温度下,压力应不大于冰的蒸气压的50%(例如约0.270毫巴)。其也不应太低。例如,压力可为约0.140至约0.050毫巴、约0.100至约0.060毫巴、约0.100至约0.070毫巴、约0.100至约0.080毫巴、约0.099至约0.081毫巴、约0.098至约0.082毫巴、约0.097至约0.083毫巴、约0.096至约0.084毫巴、约0.095至约0.085毫巴、约0.094至约0.086毫巴、约0.093至约0.087毫巴、约0.092至约0.088毫巴、约0.091至约0.089毫巴、约0.090毫巴,或约0.120毫巴。在一个具体实施例中,压力为约0.090毫巴。
在一个具体实施例中,一级干燥步骤中的保持温度在约-17℃和约-19℃之间(例如约-18℃),一级干燥步骤包括以每分钟约1℃的速率加热,将温度升高到保持温度,并且一级干燥步骤为约10小时至约40小时(例如约20至约40小时,或约25-35小时,例如约30小时或约32小时)。
E.二级干燥步骤
冻干的第三步是二级干燥步骤。在二级干燥步骤中,将包含一级干燥步骤所产生的细菌或李斯特菌菌株的组合物在升高的温度下暴露于真空。在该步骤中,未解冻的水通过解吸除去。
可通过以例如每分钟约0.2℃至约2.0℃的速率升高温度(例如搁板温度),以达到二级干燥步骤的温度。替代地,可以通过以例如每分钟约0.2℃至约1.8℃、每分钟约0.2℃至约1.6℃、每分钟约0.2℃至约1.4℃、每分钟约0.2℃至约1.2℃、每分钟约0.2℃至约1.0℃、每分钟0.2℃至约0.8℃、每分钟约0.2℃至约0.6℃、每分钟约0.2℃至约0.4℃的速率升高温度(例如,搁板温度),以达到第二干燥步骤的保持温度(例如搁板温度)。例如,可以以每分钟约0.2℃、约0.3℃、约0.4℃、约0.5℃、约0.6℃、约0.7℃、约0.8℃、约0.9℃、约1.0℃、约1.1℃、约1.2℃、约1.3℃、约1.4℃、约1.5℃、约1.6℃、约1.7℃、约1.8℃、约1.9℃,或约2.0℃的速率将温度升高到二级干燥温度。在一个具体实例中,通过以每分钟约0.2℃的速率将温度升高至保持温度,以达到二级干燥步骤的保持温度。
二级干燥步骤可以持续任何合适的时间。同样地,温度(例如搁板温度或保持温度)可以在二级干燥温度下保持任何合适的时间。例如,该温度可以在二级干燥温度下保持任何合适的时间,以在冻干产品中达到所需的残留水分水平。例如,二级干燥步骤可为,或可以将温度保持在二级干燥温度下约5至约40小时、约10至约30小时、约15至约25小时、约2至约25小时、约2至约20小时、约2至约10小时、约2至约4小时、约1至约25小时、约1至约20小时、约1至约10小时、约1至约9小时、约1至约8小时、约1至约7小时、约1至约6小时、约1至约5小时、约1至约4小时、约1至约3小时、约1至约2小时、约1.5至约2.5小时、约2.5至约3.5小时、约15小时、约14小时、约13小时、约12小时、约11小时、约10小时、约9小时、约8小时、约7小时、约6小时、约5小时、约4小时、约3小时、约2小时,或约1小时。在一个具体的例子中,二级干燥步骤可为,或者二级干燥保持时间不超过10小时。在另一个具体实例中,二级干燥保持时间不超过6小时。在另一个具体实例中,该温度可以保持在二级干燥温度下约3小时。在另一个具体实施例中,该温度可以保持在二次干燥温度下约2小时。在一个实施例中,二级干燥步骤持续约1小时至约10小时。在另一个实施例中,二级干燥步骤包括将组合物在保持温度下保持约2小时至约6小时、约5小时至约6小时,或约5小时,或约6小时。
二级干燥温度(例如搁板温度或保持温度)可为任何适于干燥细菌或李斯特菌菌株,以在冻干产物中获得所需残留水分水平的任何温度。例如,温度可以为约5℃至约40℃、约5℃至约30℃、约10℃至约30℃、约20℃至约30℃,或约15℃至约25℃。在一个具体实施例中,二次干燥温度可以为约25℃。在另一个具体实施例中,二级干燥温度可以为约20℃。在另一个具体实例中,二级干燥温度不超过约20℃。在另一个实施例中,温度可为约5℃至约20℃、约9℃至约15℃、约10℃至约15℃、约11℃至约14℃、约11℃至约13℃、约5℃、约6℃、约7℃、约8℃、约9℃、约10℃、约11℃、约12℃、约13℃、约14℃、约15℃、约16℃、约17℃、约18℃、约19℃,或约20℃。在一个具体实施例中,二级干燥温度可为约12℃。替代地,保持温度可为约-10℃至约30℃、约-10℃至约25℃、约-10℃至约20℃、约-10℃至约10℃、约-5℃至约30℃、约-5℃至约25℃、约-5℃至约20℃、约-5℃至约15℃、约-5℃至约10℃、约-5℃至约5℃、约-4℃至约4℃、约-3℃至约3℃、约-2℃至约2℃、约-1℃至约1℃,或约0℃。在一个具体实施例中,保持温度可为约-5℃至约5℃或约0℃。
压力(真空条件)可为任何合适的压力。在某些情况下,压力与一级干燥步骤的压力相同。然而,二级干燥中的某些循环可能具有全真空。例如,压力可为从约0.140至约0.020毫巴、0.140至约0.030毫巴、0.140至约0.040毫巴、0.140至约0.050毫巴、约0.100至约0.060毫巴、约0.100至约0.070毫巴、约0.100至约0.080毫巴、约0.099至约0.081毫巴、约0.098至约0.082毫巴、约0.097至约0.083毫巴、约0.096至约0.084毫巴、约0.095至约0.085毫巴、约0.094至约0.086毫巴、约0.093至约0.087毫巴、约0.092至约0.088毫巴、约0.091至约0.089毫巴,或约0.090毫巴,或约0.120毫巴。在一个具体实施例中,压力为约0.090毫巴。
在一个具体实施例中,二级干燥步骤中的保持温度在约-5℃和约5℃之间(例如约0℃),二级干燥步骤包括以每分钟0.2℃的速率将温度升高至保持温度,二级干燥步骤包括将组合物在保持温度下保持约5小时至约6小时。
二级干燥步骤可以产生具有任何期望的残留水分的冻干产品。例如,残留水分可以不超过:约7.0%、约6.9%、约6.8%、约6.7%、约6.6%、约6.5%、约6.4%、约6.3%、约6.2%、约6.1%、约6.0%、约5.9%、约5.8%、约5.7%、约5.6%、约5.5%、约5.4%、约5.3%、约5.2%、约5.1%、约5.0%、约4.9%、约4.8%、约4.7%、约4.6%、约4.5%、约4.4%、约4.3%、约4.2%、约4.1%、约4.0%、约3.9%、约3.8%、约3.7%、约3.6%、约3.5%、约3.4%、约3.3%、约3.2%、约3.1%、约3.0%、约2.9%、约2.8%、约2.7%、约2.6%、约2.5%、约2.4%、约2.3%、约2.2%、约2.1%、约2.0%、约1.9%、约1.8%、约1.7%、约1.6%、约1.5%、约1.4%、约1.3%、约1.2%、约1.1%,或约1.0%。替代地,残留水分可至少为约7.0%、约6.9%、约6.8%、约6.7%、约6.6%、约6.5%、约6.4%、约6.3%、约6.2%、约6.1%、约6.0%、约5.9%、约5.8%、约5.7%、约5.6%、约5.5%、约5.4%、约5.3%、约5.2%、约5.1%、约5.0%、约4.9%、约4.8%、约4.7%、约4.6%、约4.5%、约4.4%、约4.3%、约4.2%、约4.1%、约4.0%、约3.9%、约3.8%、约3.7%、约3.6%、约3.5%、约3.4%、约3.3%、约3.2%、约3.1%、约3.0%、约2.9%、约2.8%、约2.7%、约2.6%、约2.5%、约2.4%、约2.3%、约2.2%、约2.1%、约2.0%、约1.9%、约1.8%、约1.7%、约1.6%、约1.5%、约1.4%、约1.3%、约1.2%、约1.1%,或约1.0%。在一个具体的例子中,残留水分可以为至少约1%、至少约1.5%,或至少约2%且不超过约7%。替代地,残留水分可为约1%至约7%、约1%至约6.5%、约1%至约6%、约1%至约5.5%、约1%至约5%、约1.5%至约7%、约1.5%至约6.5%、约1.5%至约6%、约1.5%至约5.5%、约1.5%至约5%、约1.5%至约4.5%、约2%至约7%、约2%至约6.5%、约2%至约6%、约2%至约5.5%、约2%至约5%、约2%至约4.5%、约2%至约4%、约2%至约3%,或约3%至约4%。在一个具体实施例中,残留水分可为约3%至约4%、约3.1%至约3.9%、约3.2%至约3.8%、约3.3%至约3.7%、约3.4%至约3.6%,或约3.5%。在一个具体的例子中,残留水分为至少约2%、至少约2.5%,或至少约3%。在另一个具体实施例中,残留水分在约1%至约5%之间、在约2%至约4%之间、在约2.5%至约3.5%之间、在约2.5%至约4%之间、在约3%至约4%之间,或在约3%至约3.5%之间。
F.冻干的细菌或李斯特菌的储存和重建
所得的冻干的细菌或李斯特菌可以是冻干组合物,其包含在配方部分列出的组分的任何组合。在一个实施例中,冻干的组合物包含李斯特菌菌株、缓冲剂(例如磷酸盐),和赋形剂(例如蔗糖)。可选地,冻干的组合物不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种或全部。可选地,冻干的组合物不包含配方部分中列出的一种或多种或所有可选组分。
所得的冻干的细菌或李斯特菌可以是具有本文中其它地方列出的任何残留水分含量的冻干组合物。作为一个实施例,残留水分含量可以在约1%至约5%之间、约2%至约4%之间,或约3%至约4%之间。
冻干的细菌可以在公知的任何合适的条件下存储,包括任何合适的温度、相对湿度,和大气氧气水平。在储存一定时间后,冻干的细菌或李斯特菌在重建时可表现出至少约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%,或约95%的生存力。重建可以在冻干的细菌或李斯特菌的存储之后进行,例如,存储2天、3天、4天、1周、2周、3周、1个月、2个月、3个月、5个月、6个月、9个月、12个月(1年)、15个月、18个月、21个月,或24个月(2年)。
冻干的细菌或李斯特菌的储存温度例如可在约0℃至约10℃之间、约1℃至约9℃之间、约2℃至约8℃之间、约2℃至约6℃之间,或约3℃至约5℃之间。在一个具体实施例中,其储存温度可为约2℃至约8℃,或者该储存温度可为约4℃。在另一个实施例中,存储温度可以在约-15℃至约-25℃之间,约-16℃至约-24℃之间,约-17℃至约-23℃之间,约-18℃至约-22℃之间,或约-19℃至-21℃之间。在一个具体的实施例中,其储存温度可为约-20℃。
例如,冻干的细菌或李斯特菌在在约2~8℃(例如4℃)的储存后,或在约-20℃下储存约6个月、约9个月、约12个月、约18个月,或约24个月后可以显示出至少约60%、至少约75%、至少约80%、至少约85%、至少约90%、至少约91%。至少约92%、至少约93%、至少约94%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%,或约100%的生存力。冻干的细菌或李斯特菌在约30℃下、在约室温下(即约20~25℃(例如20℃、21℃、22℃、23℃、24℃,或25℃))、在约2~8℃(例如4℃)下,或在约-20℃下储存约1个月、约2个月、约3个月、约4个月、约5个月、约6个月、约9个月、约12个月、约18个月,或约24个月后,可显示出至少约60%、至少约75%、至少约80%、至少约85%、至少约90%、至少约91%、至少约92%、至少约93%、至少约94%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%,或约100%的生存力。作为一个实施例,在2~8℃的6个月后,冻干的细菌或李斯特菌可显示出至少约75%至约80%的生存力。作为另一个实施例,冻干的细菌或李斯特菌在-20℃下的9个月后可显示出至少约95%至约100%的生存力。作为另一个实施例,冻干细菌或李斯特菌在室温下或在30℃下的2个月后可显示出至少约80%至约90%的生存力。作为另一个实施例,冻干的细菌或李斯特菌在约-20℃的约12个月、18个月,或24个月后,可显示出至少约60%、65%、70%、75%、80%、85%,或90%的生存力。作为另一个实施例,在约2~8℃下的约12个月、18个月,或24个月后,冻干的细菌或李斯特菌可显示出至少约60%、65%、70%、75%、80%的生存力。作为另一个实施例,在约2~8℃下的约12个月、18个月,或24个月后,冻干的细菌或李斯特菌可显示出至少约60%、65%、70%、75%,或80%的生存力。
储存后,冻干的细菌或李斯特菌菌株可以可选地用溶剂或稀释剂(例如水)重建。作为一个实施例,溶剂或稀释剂可以是用于培养细菌或李斯特菌菌株的合适培养基。冻干的细菌或李斯特菌菌株的重建和再水化方法是众所周知的。在一个实施例中,所使用的溶剂的体积是用于制造冻干的细菌或李斯特菌菌株的冻干前溶液的体积。在另一个实施例中,所使用的溶剂的体积大于用于制造冻干的细菌或李斯特菌菌株的冻干前溶液的体积。在另一个实施例中,所使用的溶剂的体积小于用于制造冻干的细菌或李斯特菌菌株的冻干前溶液的体积。
重建时间可以是任何合适的重建时间。例如,重建时间可以小于大约1、2、3、4、5、6、7、8、9、10、20,或30分钟。在一个具体的实施例中,重建时间小于约2分钟。
III.重组细菌或李斯特菌菌株
本文所公开的冻干组合物和经受本文所公开的冻干方法的组合物包含细菌菌株,例如李斯特菌菌株。这样的细菌菌株可以是重组细菌菌株。此类重组细菌菌株可包含本文所公开的重组融合多肽或如本文其它地方所公开的、编码重组融合多肽的核酸。在一些实施方案中,细菌菌株是李斯特菌菌株,例如单核细胞增生李斯特菌(Lm)菌株。作为疫苗载体,Lm具有许多固有的优势。该细菌无需特殊要求即可在体外高效生长,并且缺乏LPS;LPS是革兰氏阴性细菌(如沙门氏菌)的主要毒性因子。由于在发生严重不良反应时,很容易被抗生素消除,遗传减毒的Lm载体还提供额外的安全性;此外,与某些病毒载体不同,遗传物质不会整合到宿主基因组中。
重组李斯特菌菌株可以是任何李斯特菌菌株。合适的李斯特菌菌株的实例包括斯氏李斯特菌(Listeria seeligeri)、格氏李斯特菌(Listeria grayi)、伊氏李斯特菌(Listeria ivanovii)、墨氏李斯特菌(Listeria murrayi)、威氏李斯特菌(Listeriawelshimeri)、单核细胞增生李斯特菌(Lm),或任何其它已知的李斯特菌。在一些实施方案中,重组李斯特菌属菌株是单核细胞增生李斯特菌种的菌株。单核细胞增生李斯特菌菌株的实例包括以下:单核细胞增生李斯特菌10403S野生型(参见例如Bishop和Hinrichs(1987)J Immunol 139:2005-2009;Lauer et al.(2002)J Bact184:4177-4186);单核细胞增生李斯特菌DP-L4056,其为噬菌体消除的(phage cured)(参见例如Lauer et al.(2002)J Bact184:4177-4186);单核细胞增生李斯特菌DP-L4027,其为噬菌体治愈的并且具有hly基因缺失(参见例如Lauer et al.(2002)J Bact184:4177-4186;Jones和Portnoy(1994)Infect Immunity65:5608-5613);单核细胞增生李斯特菌DP-L4029,其为噬菌体治愈的并具有actA基因缺失(参见例如Lauer et al.(2002)J Bact184:4177-4186;Skoble et al.(2000)J Cell Biol 150:527-538);单核细胞增生李斯特菌DP-L4042(delta PEST)(参见例如Brockstedt et al.(2004)Proc Natl AcadSci.USA101:13832-13837和支持信息);单核细胞增生李斯特菌DP-L4097(LLO-S44A)(参见例如Brockstedt et al.(2004)Proc NatlAcad Sci USA 101:13832-13837和支持信息);单核细胞增生李斯特菌DP-L4364(deltalplA;脂酸蛋白连接酶)(参见,例如,Brockstedt et al.(2004)Proc Natl Acad Sci USA101:13832-13837和支持信息);单核细胞增生李斯特菌DP-L4405(delta inlA)(参见例如Brockstedt et al.(2004)Proc Natl Acad Sci USA 101:13832-13837和支持信息);单核细胞增生李斯特菌DP-L4406(delta inlB)(参见例如Brockstedt et al.(2004)Proc NatlAcad Sci USA 101:13832-13837和支持信息);单核细胞增生李斯特菌CS-LOOO1(deltaactA;deltainlB)(参见例如Brockstedt et al.(2004)Proc Natl Acad Sci USA 101:13832-13837和支持信息);单核细胞增生李斯特菌CS-L0002(delta actA;delta lplA)(参见例如Brockstedt et al.(2004)Proc Natl Acad Sci USA 101:13832-13837和支持信息);单核细胞增生李斯特菌CS-L0003(LLO L461T;delta lplA)(参见例如Brockstedt etal.(2004)Proc Natl Acad Sci USA 101:13832-13837和支持信息);单核细胞增生李斯特菌DP-L4038(delta actA;LLO L461T)(参见例如Brockstedt et al.(2004)Proc NatlAcad Sci USA 101:13832-13837和支持信息)单核细胞增生李斯特菌DP-L4384(LLO S44A;LLO L461T)(参见例如Brockstedt et al.(2004)Proc Natl Acad Sci USA 101:13832-13837和支持信息);带有lplA1缺失的单核细胞增生李斯特菌菌株(编码脂酸盐蛋白连接酶LplA1)(参见例如O'Riordan et al.(2003)Science 302:462-464);单核细胞增生李斯特菌DP-L4017(具有LLO L461T的10403S)(参见例如US7,691,393);单核细胞增生李斯特菌EGD(参见例如GenBank登录号AL591824)。在另一个实施方案中,李斯特菌菌株是单核细胞增生李斯特菌EGD-e(参见GenBank登录号NC_003210;ATCC登录号BAA-679);单核细胞增生李斯特菌DP-L4029(actA缺失,可选地与uvrAB缺失组合(DP-L4029uvrAB)(参见例如US 7,691,393);单核细胞增生李斯特菌actA-/inlB-双突变体(参见例如ATCC登录号PTA-5562);单核细胞增生李斯特菌lplA突变体或hly突变体(参见例如US 2004/0013690);单核细胞增生李斯特菌dal/dat双突变体(参见例如US 2005/0048081)。其它单核细胞增生李斯特菌菌株包括被修饰(例如通过质粒和/或通过基因组整合)以包含编码以下基因之一或其任何组合的核酸:hly(LLO;李斯特菌溶血素);iap(p60);inlA;inlB;inlC;dal(丙氨酸消旋酶);dat(D-氨基酸氨基转移酶);plcA;plcB;actA;或任何介导单壁囊泡的生长、扩散、分解,双壁囊泡的分解,与宿主的结合,被宿主细胞摄取的核酸。上述参考文献中的每一篇出于所有目的通过引用整体并入本文。
重组细菌或李斯特菌可以具有野生型毒力、可以具有减毒力(attenuatedvirulence),或者可以是无毒力的。例如,重组的李斯特菌可以具有足够的毒力,以逃脱吞噬体或吞噬溶酶体并进入胞质溶胶。此类李斯特菌菌株也可以是减毒活(live-attenuated)李斯特菌菌株,其包含至少一种本文其它地方公开的减毒突变(attenuatingmutation)、缺失或失活。在一些实施方案中,重组李斯特菌是减毒的营养缺陷型菌株。营养缺陷型菌株是不能合成其生长所需的特定有机化合物的菌株。此类菌株的例子描述于US8,114,414,出于所有目将其全部内容通过引用并入本文。
在一些实施方案中,重组李斯特菌菌株缺乏抗生素抗性基因。例如,这种重组李斯特菌菌株可以包含不编码抗生素抗性基因的质粒。然而,本文所提供的一些重组李斯特菌菌株包含质粒,该质粒包含编码抗生素抗性基因的核酸。抗生素抗性基因可用于分子生物学和疫苗制备中常用的常规选择和克隆过程。示例性的抗生素抗性基因包括赋予对氨苄青霉素、青霉素、甲氧西林、链霉素、红霉素、卡那霉素、四环素、氯霉素(CAT)、新霉素、潮霉素,和庆大霉素的抗性的基因产物
A.包含重组融合多肽或编码重组融合多肽的核酸的细菌或李斯特菌菌株
本文所公开的重组细菌菌株(例如李斯特菌菌株)包含本文公开的重组融合多肽或编码如本文其它地方公开的重组融合多肽的核酸。
在包含编码重组融合蛋白的核酸的细菌或李斯特菌菌株中,可以对核酸进行密码子优化。US 2007/0207170示出了单核细胞增生李斯特菌对每个氨基酸所利用的最优化的密码子的实例,出于所有目的将其全文引入本文作为参考。当将核酸中的至少一个密码子替换为与原始序列的密码子相比,单核细胞增生李斯特菌针对该氨基酸所更频繁利用的密码子时,则为对核酸进行密码子优化。
核酸可以存在于细菌或李斯特菌菌株中的附加体质粒中和/或核酸可以基因组整合(genomically integrated)在细菌或李斯特菌菌株中。一些重组细菌或李斯特菌菌株包含编码本文所公开的两种重组融合多肽的两个分离的核酸:附加体质粒中的一种核酸,以及基因组整合在细菌或李斯特菌菌株中的一种核酸。
附加体质粒可以是在体外(细胞培养物中)、体内(宿主中),或体外和体内都稳定维持的质粒。如果在附加体质粒中,则可将编码重组融合多肽的开放阅读框可操作地连接至质粒中的启动子/调控序列。如果基因组整合到细菌或李斯特菌菌株中,则编码重组融合多肽的开放阅读框可以可操作地连接至外源启动子/调控序列或内源启动子/调控序列。用于驱动基因的组成型表达的启动子/调控序列的例子是众所周知的,并包括例如李斯特菌的hly、hlyA、actA、prfA,和p60启动子、链球菌bac启动子、灰色链霉菌(Streptomycesgriseus)sgiA启动子,和苏云金芽孢杆菌phaZ启动子。在某些情况下,插入的目标基因不会被干扰或受到通常由于整合到基因组DNA中而发生的调节限制(regulatoryconstraints),并且在某些情况下,插入的异源基因的存在不会导致细胞自身的重要区域的重排或中断。
这样的重组细菌或李斯特菌菌株可以通过用包含编码重组融合多肽的核酸的质粒或载体转化本文其它地方所描述的细菌或李斯特菌菌株或减毒细菌或李斯特菌菌株来制备。质粒可以是不整合入宿主染色体的附加体质粒。替代地,质粒可以是整合到细菌或李斯特菌菌株的染色体中的整合质粒。本文所使用的质粒也可以是多拷贝质粒。转化细菌的方法是众所周知的,并且包括基于氯化钙感受态细胞的方法、电穿孔法、噬菌体介导的转导、化学转化技术,和物理转化技术。参见例如de Boer et al.(1989)Cell 56:641-649;Miller et al.(1995)FASEB J.9:190-199;Sambrook et al.(1989)Molecular Cloning:ALaboratory Manual,Cold Spring Harbor Laboratory,New York;Ausubel et al.(1997)Current Protocols in Molecular Biology,John Wiley&Sons,New York;Gerhardt etal.,eds.,1994,Methods for General and Molecular Bacteriology,American Societyfor Microbiology,Washington,D.C.;以及Miller,1992,A Short Course in BacterialGenetics,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,出于所有目的将其全部内容通过引用整体并入本文。
可以例如通过使用位点特异性整合载体来制备具有基因组整合的异源核酸的细菌或李斯特菌菌株,由此使用同源重组产生包含整合基因的细菌或李斯特菌。整合载体可以是能够感染细菌或李斯特菌菌株的任何位点特异性整合载体。这样的整合载体可以包含例如PSA attPP'位点、编码PSA整合酶的基因、U153 attPP'位点、编码U153整合酶的基因、A118 attPP'位点、编码A118整合酶的基因,或任何其它已知的attPP'位点或任何其它噬菌体整合酶。
也可以使用任何其它已知的、将异源核酸整合到细菌或李斯特菌染色体中的方法来产生包含整合基因的这种细菌或李斯特菌菌株。同源重组的技术是众所周知的,并且描述于例如Baloglu et al.(2005)Vet Microbiol109(1-2):11-17);Jiang et al.2005)Acta BiochimBiophys Sin(Shanghai)37(1):19-24),和US 6,855,320,出于所有目的将每一篇均通过引用整体并入本文。
还可以使用转座子插入来整合到细菌或李斯特菌染色体中。转座子插入的技术是众所周知的,并且例如由Sun et al.(1990)Infection and Immunity 58:3770-3778描述了DP-L967的构建,出于所有目的通过引用将其整体并入本文。转座子诱变可以实现稳定的基因组插入,但是在基因组中异源核酸插入的位置未知。
还可以使用噬菌体整合位点来实现整合到细菌或李斯特菌染色体中(参见,例如,Lauer et al.(2002)J Bacteriol184(15):4177-4186,其全部内容出于所有目的通过引用并入本文)。例如,整合酶基因和噬菌体(例如U153或PSA李斯特噬菌体(listeriophage))的附着位点可用于将异源基因插入相应的附着位点,该附着位点可以是基因组中的任何适当位点(例如comK或arg tRNA基因的3'末端)。内源原噬菌体可以在异源核酸的整合之前从利用的附着位点消除(cured)。此类方法可导致例如单拷贝整合。为了避免“噬菌体消除步骤”,可以使用基于PSA噬菌体的噬菌体整合系统(参见例如Lauer et al.(2002)JBacteriol 184:4177-4186,其出于所有目的通过引用整体并入本文)。维持整合的基因可能需要例如通过抗生素进行连续选择。替代地,可以建立无需使用抗生素进行选择的、基于噬菌体的染色体整合系统。相反,可以互补(complement)营养缺陷的宿主菌株。例如,可以使用用于临床应用的、基于噬菌体的染色体整合系统,其中使用对必需酶营养缺陷的宿主菌株,该必须酶包括,例如,D-丙氨酸消旋酶(例如Lm dal(-)dat(-))。
也可将接合(conjugation)用于将遗传物质和/或质粒引入细菌中。接合方法是众所周知的,并且在例如Nikodinovic et al.(2006)Plasmid56(3):223-227和Auchtung etal.(2005)Proc Natl Acad Sci USA102(35):12554-12559中描述,将每一篇出于所有目的通过引用整体并入本文。
在一个具体的例子中,重组细菌或李斯特菌菌株可以包含编码重组融合多肽的核酸,该核酸作为具有内源性actA序列(编码ActA蛋白)的开放阅读框或内源性hly序列(编码LLO蛋白),以基因组方式整合入细菌或李斯特菌基因组中。例如,融合多肽的表达和分泌可以在内源性actA启动子和ActA信号序列的控制下,或者可以在内源性hly启动子和LLO信号序列的控制下。作为另一个例子,编码重组融合多肽的核酸可以代替编码ActA蛋白的actA序列或编码LLO蛋白的hly序列。
可以通过任何方式实现重组细菌或李斯特菌菌株的选择。例如,可以使用抗生素选择。抗生素抗性基因可用于分子生物学和疫苗制备中常用的常规选择和克隆过程。示例性的抗生素抗性基因包括赋予对氨苄青霉素、青霉素、甲氧西林、链霉素、红霉素、卡那霉素、四环素、氯霉素(CAT)、新霉素、潮霉素,和庆大霉素的抗性的基因产物。替代地,可以使用营养缺陷型菌株,并且可以使用外源性代谢基因代替或补充抗生素抗性基因来进行选择。例如,为了选择包含编码本文所提供的代谢酶或互补基因的质粒的营养缺陷型细菌,可以使转化的营养缺陷型细菌生长在选择表达编码代谢酶的基因(例如氨基酸代谢基因)或互补基因的培养基中。替代地,可以使用温度敏感性质粒来选择重组体,或用于选择重组体的任何其它已知方式。
B.细菌或李斯特菌菌株的减毒
本文公开的重组细菌菌株(例如重组李斯特菌菌株)可以被减毒。术语“减毒”涵盖细菌引起宿主动物疾病的能力的减弱。例如,尽管减毒的李斯特菌能够在培养物中生长和维持,但与野生型李斯特菌相比,减毒的李斯特菌菌株的致病特性可能会降低。在一些实施方案中,以减毒的李斯特菌在BALB/c小鼠的静脉内接种为例,50%的被接种动物存活的致死剂量(LD50)比野生型李斯特菌的LD50增加至少约10倍、至少约100倍、至少约1,000倍、至少约10,000倍,或至少约100,000倍。因此,李斯特菌的减毒株是一种不会杀死施用其的动物的菌株,或者是仅当所施用的细菌的数量远远大于杀死该动物所需的野生型非减毒细菌的数量时才杀死该动物的菌株。减毒细菌也应解释为在一般环境中不能复制的细菌,因为其中不存在其生长所需的营养。因此,细菌限于在提供所需营养的受控环境中复制。减毒株对环境安全,因为它们无法不受控制地复制。
(1)对细菌和李斯特菌菌株减毒的方法
可以通过任何已知的方式来完成减毒。例如,这种减毒株可能缺乏一种或多种内源性毒力基因或一种或多种内源性代谢基因。本文公开了此类基因的例子,并且可以通过使本文公开的基因中的任何一种或任何组合失活来实现减毒。失活可以例如通过缺失或通过突变(例如失活突变)来实现。术语“突变”包括对序列(核酸或氨基酸序列)的任何类型的突变或修饰,并且可以涵盖缺失、截短、插入、取代、破坏,或易位。例如,突变可包括移码突变、引起蛋白质过早终止的突变,或影响基因表达的调控序列的突变。诱变可以使用重组DNA技术或使用诱变化学品或辐射的传统诱变技术以及随后的突变体选择来完成。在一些实施方案中,由于伴随着低可能性的回复(reversion),因此使用缺失突变体。术语“代谢基因”是指编码与宿主细菌利用或需要的营养素的合成相关或所需的酶的基因。例如,该酶可以参与宿主细菌持续生长所需的营养素的合成,或为宿主细菌持续生长所需的营养素的合成所需的酶。术语“毒力”基因包括一种基因,其在生物体基因组中的存在或活性有助于该生物体的致病性(例如使该生物体能够在宿主中实现小生态位的定殖(包括与细胞的附着)、免疫逃逸(逃逸宿主的免疫应答)、免疫抑制(抑制宿主的免疫应答)、进入或退出细胞,或从宿主体内获取营养。
这种减毒株的具体例子是单核细胞增生李斯特菌(Lm)dal(-)dat(-)(Lmdd)。这种减毒株的另一个例子是Lm dal(-)dat(-)ΔactA(LmddA)。参见例如US2011/0142791,出于所有目的通过引用将其全部内容并入本文。LmddA基于李斯特菌菌株,该李斯特菌菌株由于内源毒力基因actA的缺失而减毒。这样的菌株可以通过dal基因的互补,保留用于体内和体外抗原表达的质粒。替代地,LmddA可以是在内源性dal、dat,和actA基因中具有突变的dal/dat/actA李斯特菌。这样的突变可以是例如缺失或其它失活突变。
减毒菌株的另一个具体例子是LmprfA(-)或在prfA基因中具有部分缺失或失活突变的菌株。PrfA蛋白控制包含Lm定殖其脊椎动物宿主所需的必需毒力基因的调节子的表达;因此,prfA突变会大大削弱PrfA激活依赖PrfA的毒力基因的表达的能力。
减毒菌株的另一个具体例子是LminlB(-)actA(-),其中删除了对细菌自然毒力至关重要的两个基因——internalin B和act A。
减毒细菌或李斯特菌菌株的其它例子包括缺乏一种或多种内源毒力基因的细菌或李斯特菌菌株。此类基因的例子包括李斯特菌中的actA、prfA、plcB、plcA、inlA、inlB、inlC、inlJ,和bsh。减毒的李斯特菌菌株也可以是任何上述菌株的双突变体或三突变体。减毒的李斯特菌菌株可包含每个基因的突变或缺失,或包含例如本文提供的任何基因中的最多十个的突变或缺失(例如,包括actA、prfA,和dal/dat基因)。例如,减毒的李斯特菌菌株可以包含内源性internalin C(inlC)基因的突变或缺失和/或内源性actA基因的突变或缺失。或者,减毒的李斯特菌菌株可包含内源性internalin B(inlB)基因的突变或缺失和/或内源性actA基因的突变或缺失。替代地,减毒的李斯特菌菌株可以包含内源的inlB、inlC,和actA基因的突变或缺失。参与该过程的内源性actA基因和/或内源性inlC基因或内源性inlB基因的缺失抑制了李斯特菌向相邻细胞的易位,从而导致高水平的减毒以及作为菌株主链的增强的免疫原性和实用性。减毒的李斯特菌菌株也可以是包含plcA和plcB的突变或缺失的双突变体。在某些情况下,可以从EGD李斯特菌主链构建菌株。
细菌或李斯特菌菌株也可以是在代谢基因中具有突变的营养缺陷型菌株。作为一个实例,该菌株可以缺乏一种或多种内源性氨基酸代谢基因。例如,缺乏D-丙氨酸的李斯特菌的营养缺陷型菌株的产生,例如,可以通过许多众所周知的方式来完成,包括缺失突变、插入突变、移码突变、导致蛋白质过早终止的突变,或影响基因表达的调控序列的突变。在一些实施方案中,使用缺失突变体,因为其伴随着低可能性的营养缺陷型表型的回复。例如,可以在简单的实验室培养测定中测试根据本文提出的方案产生的D-丙氨酸的突变体在没有D-丙氨酸的情况下生长的能力。可以选择在没有该化合物的情况下不能生长的那些突变体。
内源性氨基酸代谢基因的例子包括维生素合成基因、编码泛酸合酶的基因、D-谷氨酸合酶基因、D-丙氨酸氨基转移酶(dat)基因、D-丙氨酸消旋酶(dal)基因、dga、涉及合成二氨基庚二酸(DAP)的基因、涉及合成半胱氨酸合酶A(cysK)的基因、不依赖维生素B12的蛋氨酸合酶、trpA、trpB、trpE、asnB、gltD、gltB、leuA、argG,和thrC。李斯特菌菌株可能缺乏两个或更多个这样的基因(例如dat和dal)。D-谷氨酸的合成部分受dal基因的控制,该基因与D-glu+pyr转化为α-酮戊二酸+D-ala以及其逆反应有关。
作为另一个例子,减毒的李斯特菌菌株可以缺乏内源合酶基因,例如氨基酸合成基因。这样的基因的例子包括folP、编码二氢尿苷合酶家族蛋白的基因、ispD、ispF、编码磷酸烯醇丙酮酸合酶的基因、hisF、hisH、fliI、编码核糖体大亚基假尿苷合酶的基因、ispD、编码双功能GMP合酶/谷氨酰胺转移酶蛋白的基因、cobS、cobB、cbiD、编码尿卟啉-III C甲基转移酶/尿卟啉原-III合酶的基因、cobQ、uppS、truB、dxs、mvaS、dapA、ispG、folC、编码柠檬酸合酶的基因、argJ、编码3-脱氧-D-阿拉伯-庚酮糖-7-磷酸合酶(3-deoxy-7-phosphoheptulonate synthase)的基因、编码吲哚-3-甘油-磷酸合酶的基因、编码邻氨基苯甲酸合酶/谷氨酰胺转移酶组分的基因、menB、编码甲基萘醌特异性异分支酸合酶(menaquinone-specific isochorismate synthase)的基因、编码磷酸核糖甲酰甘氨脒合酶I或II的基因、编码磷酸核糖氨基咪唑-琥珀酰羧胺合酶(phosphoribosylaminoimidazole-succinocarboxamide synthase)的基因、carB、carA、thyA、mgsA、aroB、hepB、rluB、ilvB、ilvN、alsS、fabF、fabH、编码假尿苷合酶的基因、pyrG、truA、pabB,和ATP合酶的基因(例如atpC、atpD-2、aptG、atpA-2等)。
减毒的李斯特菌菌株可能缺乏内源性phoP、aroA、aroC、aroD,或plcB。作为又一个例子,减毒的李斯特菌菌株可以缺乏内源肽转运体(transporter)。例子包括编码ABC转运体/ATP结合/渗透酶蛋白、寡肽ABC转运体/寡肽结合蛋白、寡肽ABC转运体/渗透酶蛋白、锌ABC转运体/锌结合蛋白、糖ABC转运体、磷酸盐转运体、ZIP锌转运体、EmrB/QacA家族的抗药性转运体、硫酸盐转运体、质子依赖性寡肽转运体、镁转运体、甲酸盐/亚硝酸盐转运体、亚精胺/腐胺ABC转运体、Na/Pi-共转运体、磷酸糖转运体、谷氨酰胺ABC转运体、主要易化物(facilitator)家族转运体、甘氨酸甜菜碱/L-脯氨酸ABC转运体、钼ABC转运体、胶酸(techoic acid)ABC转运体、钴ABC转运体、铵转运体、氨基酸ABC转运体、细胞分裂ABC转运体、锰ABC转运体、铁化合物ABC转运体、麦芽糖/麦芽糊精ABC转运体、Bcr/CflA家族的耐药性转运体,以及上述蛋白质之一的亚基的基因。
其它减毒细菌和李斯特菌菌株可能缺乏内源性代谢酶,该内源性代谢酶代谢用于细菌生长过程、复制过程、细胞壁合成、蛋白质合成、脂肪酸代谢,或其它任何生长或复制过程的氨基酸。同样,减毒菌株可能缺乏内源性代谢酶,该内源性代谢酶可以催化细胞壁合成中所使用的氨基酸的形成、可以催化细胞壁合成中所使用的氨基酸的合成,或者可以参与用于细胞壁合成的氨基酸的合成。替代地,该氨基酸可用于细胞壁生物合成(biogenesis)。或者,该代谢酶是D-谷氨酸(一种细胞壁成分)的合成酶。
其它减毒的李斯特菌菌株可能缺乏由D-谷氨酸合成基因、dga、alr(丙氨酸消旋酶)基因编码的代谢酶,或与丙氨酸合成有关的任何其它酶。李斯特菌菌株可能缺乏的代谢酶的其它例子包括由以下编码的酶:serC(一种磷酸丝氨酸氨基转移酶)、asd(天冬氨酸β-半醛脱氢酶;参与细胞壁成分,二氨基庚二酸,的合成)、编码gsaB-谷氨酸-1-半醛氨基转移酶(催化由(S)-4-氨基-5-氧戊酸形成5-氨基乙酰丙酸酯)的基因、hemL(催化由(S)-4-氨基-5-氧戊酸形成5-氨基乙酰丙酸酯)、aspB(一种天冬氨酸氨基转移酶,其催化从L-天冬氨酸和2-氧戊二酸形成草酰氧乙酸和L-谷氨酸)、argF-1(参与精氨酸生物合成)、aroE(参与氨基酸生物合成)、aroB(参与3-脱氢奎宁酸酯生物合成)、aroD(参与氨基酸生物合成)、aroC(参与氨基酸生物合成)、hisB(参与组氨酸生物合成)、hisD(参与组氨酸生物合成)、hisG(参与组氨酸生物合成)、metX(参与蛋氨酸生物合成)、proB(参与脯氨酸生物合成)、argR(参与精氨酸生物合成)、argJ(参与精氨酸生物合成)、thil(参与硫胺素生物合成)、LMOf2365_1652(参与色氨酸生物合成)、aroA(参与色氨酸生物合成)、ilvD(参与缬氨酸和异亮氨酸生物合成)、ilvC(参与缬氨酸和异亮氨酸生物合成)、leuA(参与亮氨酸生物合成)、dapF(参与赖氨酸生物合成),和thrB(参与苏氨酸生物合成)(所有GenBank登录号NC_002973)。
减毒的李斯特菌菌株可以通过其它代谢酶(例如tRNA合成酶)的突变而产生。例如,代谢酶可以由trpS基因编码,编码色氨酸-tRNA合成酶。例如,宿主菌株细菌可以是Δ(trpSaroA),并且两种标记都可以包含在整合载体中。
可被突变以产生减毒的李斯特菌菌株的代谢酶的其它例子包括由murE(涉及二氨基庚二酸的合成;GenBank登录号:NC_003485)、LMOf2365_2494(涉及甲壳酸的生物合成)、WecE(脂多糖生物合成蛋白rffA;GenBank登录号:AE014075.1),或amiA(N-乙酰胞壁酰-L-丙氨酸酰胺酶(N-acetylmuramoyl-L-alanine amidase))编码的酶。代谢酶的其它实例包括天冬氨酸转氨酶、组氨丁醇磷酸转氨酶(GenBank登录号NP_466347),或细胞壁磷壁酸糖基化蛋白GtcA。
可以被突变以产生减毒的李斯特菌菌株的代谢酶的其它例子包括用于肽聚糖成分或前体的合成酶。该成分可以是例如UDP-N-乙酰胞壁酰五肽(UDP-N-acetylmuramylpentapeptide)、UDP-N-乙酰基葡糖胺、MurNAc-(五肽)-焦磷酸-十一碳烯醇、GlcNAc-p-(1,4)-MurNAc-(五肽)-焦磷酸十一碳烯醇(GlcNAc-p-(1,4)-MurNAc-(pentapeptide)-pyrophosphorylundecaprenol),或任何其它肽聚糖成分或前体。
可以被突变以产生减毒李斯特菌菌株的代谢酶的其它例子包括由murG、murD、murA-1,或murA-2(均在GenBank登录号NC_002973中提出)编码的代谢酶。替代地,该代谢酶可以是肽聚糖组分或前体的任何其它合成酶。代谢酶也可以是转糖基酶、转肽酶、羧肽酶,任何其它种类的代谢酶,或任何其它代谢酶。例如,代谢酶可以是任何其它李斯特菌代谢酶或任何其它单核细胞增生李斯特菌代谢酶。
通过使其它细菌菌株中的相应种间同源基因突变,可以如上文针对李斯特菌所描述的那样使其它细菌菌株减毒。
(2)减毒细菌和李斯特菌菌株的互补方法
本文公开的减毒细菌或李斯特菌菌株可进一步包含核酸,该核酸包含互补基因或编码与减毒突变互补的代谢酶(例如,与营养缺陷型李斯特菌菌株的营养缺陷型(auxotrophy)互补)。例如,具有编码本文公开的融合多肽的第一开放阅读框的核酸可以进一步包含第二开放阅读框,所述第二开放阅读框包含互补基因或编码互补代谢酶。替代地,第一核酸可编码融合多肽,而分离的第二核酸可包含互补基因或编码互补代谢酶。
互补基因可以是染色体外的或可以整合到细菌或李斯特菌基因组中。例如,营养缺陷型李斯特菌菌株可以包含附加体质粒,所述附加体质粒包括编码代谢酶的核酸。这样的质粒将以附加或染色体外的方式包含在李斯特菌中。替代地,营养缺陷型李斯特菌菌株可包含整合质粒(即整合载体),所述整合质粒包含编码代谢酶的核酸。这样的整合质粒可用于整合入李斯特菌染色体。在一些实施方案中,附加体质粒或整合型质粒缺乏抗生素抗性标记。
替代抗生素抗性基因或除了抗生素抗性基因之外,代谢基因可用于选择。举例而言,为了选择包含编码本文提供的代谢酶或互补基因的质粒的营养缺陷型细菌,可以将转化的营养缺陷型细菌生长在选择表达编码代谢酶的基因(例如氨基酸代谢基因)或互补基因的培养物中。例如,可以用包含用于D-谷氨酸合成的基因的质粒转化用于D-谷氨酸合成的营养缺陷型细菌,并且该营养缺陷型细菌将在不存在D-谷氨酸的情况下生长,而没有用该质粒转化的营养缺陷型细菌或不表达编码D-谷氨酸合成蛋白的质粒的营养缺陷型细菌将不会生长。类似地,当经转化并表达包含编码用于D-丙氨酸合成的氨基酸代谢酶的核酸的质粒时,对于D-丙氨酸合成营养缺陷的细菌将在不存在D-丙氨酸的情况下生长。制备包含或缺乏必需的生长因子、补充剂、氨基酸、维生素、抗生素等的合适培养基的此类方法是众所周知的,并且可商购获得。
一旦在合适的培养基中选择了包含编码本文所提供的代谢酶或互补基因的质粒的营养缺陷型细菌,就可以在选择压力的存在下繁殖该细菌。这种繁殖可以包括使细菌在没有营养缺陷因子的培养基中生长。在营养缺陷型细菌中表达代谢酶或互补基因的质粒的存在确保了该质粒将与细菌一起复制,从而不断选择带有该质粒的细菌。通过调节培养基的体积,可以容易地扩大细菌或李斯特菌菌株的产量;包含质粒的营养缺陷型细菌在所述培养物中生长。
在一个特定的例子中,减毒菌株是在dal和dat中具有缺失或失活突变的菌株(例如,单核细胞增生李斯特菌(Lm)dal(-)dat(-)(Lmdd)或Lm dal(-)dat(-)ΔactA(LmddA)),并且互补基因编码丙氨酸消旋酶(例如由dal基因编码)或D-氨基酸氨基转移酶(例如由dat基因编码)。示例性的丙氨酸消旋酶蛋白可以具有SEQ ID NO:76所示的序列(由SEQ ID NO:78编码;GenBank登录号:AF038438),或者可以是SEQ ID NO:76的同源物、变体、异形体、类似物、片段、同源物片段、变体片段,类似物片段,或异形体片段。丙氨酸消旋酶蛋白也可以是任何其它李斯特菌丙氨酸消旋酶蛋白。或者,丙氨酸消旋酶蛋白可以是任何其它革兰氏阳性丙氨酸消旋酶蛋白或任何其它丙氨酸消旋酶蛋白。示例性的D-氨基酸氨基转移酶蛋白可以具有SEQ ID NO:77所示的序列(由SEQ ID NO:79编码;GenBank登录号:AF038439),或者可以是SEQ ID NO:77的同源物、变体、异形体、类似物、片段、同源物片段、变体片段,类似物片段,或异形体片段。D-氨基酸氨基转移酶蛋白也可以是任何其它李斯特菌D-氨基酸氨基转移酶蛋白。替代地,D-氨基酸氨基转移酶蛋白可以是任何其它革兰氏阳性D-氨基酸氨基转移酶蛋白或任何其它D-氨基酸氨基转移酶蛋白。
在另一个具体的例子中,减毒菌株是在prfA(例如LmprfA(-))中缺失或失活突变的菌株,并且互补基因编码PrfA蛋白。例如,互补基因可以编码恢复部分PrfA功能的突变PrfA(D133V)蛋白。野生型PrfA蛋白的例子在SEQ ID NO:80中示出(由SEQ ID NO:81所示的核酸编码),并且D133V突变PrfA蛋白的例子在SEQ ID NO:82中示出(由SEQ ID NO:83所示的核酸编码)。互补的PrfA蛋白可以是SEQ ID NO:80或82的同源物、变体、异形体、类似物、片段、同源物片段、变体片段,类似物片段,或异形体片段。PrfA蛋白也可以是任何其它李斯特菌PrfA蛋白。替代地,PrfA蛋白可以是任何其它革兰氏阳性PrfA蛋白或任何其它PrfA蛋白。
在另一个实施例中,细菌菌株或李斯特菌菌株可包含actA基因的缺失或失活突变,并且互补基因可包含actA基因,以互补突变并恢复李斯特菌菌株的功能。
其它营养缺陷型菌株和互补系统也可以与本文提供的方法和组合物一起使用。
IV.重组融合多肽
本文公开的重组细菌或李斯特菌菌株中的重组融合多肽可以是任何形式。一些这样的融合多肽可以包含与一种或多种疾病相关的抗原肽融合的含PEST的肽。其它此类重组融合多肽可包含一种或多种与疾病相关的抗原肽,并且其中所述融合多肽不包含含PEST的肽。
重组融合多肽的另一个例子包括从N末端到C末端的细菌分泌序列、泛素(Ub)蛋白,和一种或多种与疾病相关的抗原肽(即串联在一起,例如Ub-肽1-肽2)。替代地,如果使用两种或更多种与疾病相关的抗原肽,则可以使用分离的融合多肽的组合,其中每种抗原肽都融合到其自身的分泌序列和Ub蛋白(例如Ub1-肽1;Ub2-肽2)。
还公开了编码这种重组融合多肽的核酸(称为小基因构建体)。这样的小基因核酸构建体可进一步包含两个或多个开放阅读框,所述开放阅读框通过每个开放阅读框之间的夏因-达尔加诺(Shine-Dalgarno)核糖体结合位点核酸序列连接。例如,小基因核酸构建体可以进一步包含两个至四个开放阅读框,所述开放阅读框通过每个开放阅读框之间的夏因-达尔加诺核糖体结合位点核酸序列连接。每个开放阅读框可编码不同的多肽。在某些核酸构建体中,编码融合多肽羧基末端的密码子后面是两个终止密码子,以确保蛋白质合成的终止。
细菌信号序列可以是李斯特菌信号序列,例如Hly或ActA信号序列,或任何其它已知的信号序列。在其它情况下,信号序列可以是LLO信号序列。示例性的LLO信号序列在SEQID NO:97中列出。该信号序列可以是细菌的,可以是宿主细菌天然的(例如单核细胞增生李斯特菌,比如secA1信号肽),或者可以是宿主细菌异源的。信号肽的具体实例包括来自乳酸乳球菌的Usp45信号肽、来自炭疽芽孢杆菌的保护性抗原信号肽、secA2信号肽(例如来自单核细胞增生李斯特菌的p60信号肽),以及Tat信号肽(例如枯草芽孢杆菌Tat信号肽)(例如PhoD)。在特定的例子中,分泌信号序列来自李斯特菌蛋白,例如ActA300分泌信号或ActA100分泌信号。示例性的ActA信号序列在SEQ ID NO:98中列出。
泛素可为例如全长蛋白(full-length protein)。当进入宿主细胞胞质溶胶时,通过水解酶的作用,表达自本文所提供的核酸构建体的泛素可以在羧基末端切割,以离开表达自核酸构建体的其余重组融合多肽。这释放了融合多肽的氨基末端,在宿主细胞胞质溶胶中产生了肽。
在本文别处详细讨论了融合多肽内的抗原肽的选择、变异,和排列,并且在本文别处更详细讨论了疾病相关的抗原肽的例子。
重组融合多肽可包含一个或多个标签(tag)。例如,重组融合多肽可包含在一个或多个抗原肽的N末端和/或C末端的一个或多个肽标签。标签可以直接与抗原肽融合或通过接头(其例子公开于本文其它地方)与抗原肽连接。标签的例子包括:FLAG标签;2xFLAG标签;3xFLAG标签;His标签、6xHis标签;以及SIINFEKL标签。示例性的SIINFEKL标签在SEQ IDNO:16中示出(由SEQ ID NOS:1-15中示出的任何一种核酸编码)。示例性的3×FLAG标签在SEQ ID NO:32中示出(由SEQ ID NO:17-31中示出的任何一种核酸编码)。示例性变体3×FLAG标签在SEQ ID NO:99中示出。两个或多个标签可以一起使用,例如2×FLAG标签和SIINFEKL标签、3×FLAG标签和SIINFEKL标签,或6×His标签和SIINFEKL标签。如果使用两个或多个标签,则它们可以以任何顺序位于重组融合多肽内的任何位置。例如,两个标签可以在重组融合多肽的C末端、两个标签可以在重组融合多肽的N末端、两个标签可以位于重组融合多肽的内部、一个标签可以在重组融合多肽的C末端,而另一个标签在N末端、一个标签可以在C末端,而另一个标签在重组融合多肽的内部,或者一个标签可以在N末端,而另一个标签在重组融合多肽的内部。其它标签包括几丁质结合蛋白(CBP)、麦芽糖结合蛋白(MBP)、谷胱甘肽S-转移酶(GST)、硫氧还蛋白(TRX),和聚(NANP)。特定的重组融合多肽包含C末端的SIINFEKL标签。这样的标签可以允许容易地检测重组融合蛋白、确认重组融合蛋白的分泌,或通过遵循对这些“标签”序列肽的免疫应答来遵循分泌的融合多肽的免疫原性。可以使用多种试剂来监测这种免疫应答,所述试剂包括,例如,对这些标签具有特异性的单克隆抗体和DNA或RNA探针。
本文公开的重组融合多肽可以由重组李斯特菌菌株表达或可以从用于蛋白质表达和分离的其它载体和细胞系统表达和分离。包含表达此类抗原肽的重组李斯特菌菌株可以用于,例如,包含此类重组李斯特菌的免疫原性组合物中,以及用于包含重组李斯特菌菌株和佐剂的疫苗中。在李斯特菌菌株的宿主细胞系统中的和除李斯特菌以外的宿主细胞系统中的一种或多种抗原肽作为具有非溶血性截短形式的LLO、ActA,或PEST样序列的融合多肽的表达可导致抗原肽的免疫原性增强。
还公开了编码此类重组融合多肽的核酸。核酸可以是任何形式。核酸可以包含DNA或RNA或由DNA或RNA组成,并且可以是单链或双链的。核酸可以是质粒的形式,例如附加体质粒、多拷贝附加体质粒,或整合型质粒。替代地,核酸可以是病毒载体、噬菌体载体,或细菌人工染色体的形式。这样的核酸可以具有一个开放阅读框或可以具有两个或更多个开放阅读框(例如编码重组融合多肽的开放阅读框和编码代谢酶的第二开放阅读框)。在一个实施例中,此类核酸可包含两个或多个开放阅读框,所述开放阅读框通过每个开放阅读框之间的夏因-达尔加诺核糖体结合位点核酸序列连接。例如,核酸可以包含两个至四个开放阅读框,所述开放阅读框通过每个开放阅读框之间的夏因-达尔加诺核糖体结合位点核酸序列连接。每个开放阅读框可编码不同的多肽。在某些核酸中,编码融合多肽羧基末端的密码子后面是两个终止密码子,以确保蛋白质合成的终止。
A.抗原肽
疾病相关肽包括来自在特定疾病中表达的蛋白质的肽。例如,这样的肽可以来自在疾病组织中表达但不在相应的正常组织中表达的蛋白质,或在疾病组织中异常高水平表达的蛋白质。本文所使用的术语“疾病”通常与术语“障碍(disorder)”和“病状(condition)”(如医学病状)是同义词,并且互换使用,因为它们均反映出人体或动物体的异常病状,或损害正常功能的部位之一的异常病状,通常表现为明显的体征和症状,并使人或动物的生命缩短或生活质量降低。与疾病相关的抗原肽的例子可以包括人乳头瘤病毒(HPV)E7或E6、前列腺特异性抗原(PSA)、嵌合的Her2抗原、Her2/neu嵌合抗原。与疾病相关的抗原肽的另一个例子是WT1抗原肽。人乳头瘤病毒可以是HPV 16或HPV18。抗原肽还可以包括可操作地串联连接的HPV16 E6、HPV16 E7、HPV18 E6、HPV18 E7抗原或可操作地连接到HPV抗原肽的HPV16抗原肽。
融合多肽可以包括单个抗原肽,或者可以包括两个或更多个抗原肽。每个抗原肽可以具有足以诱导免疫应答的任何长度,并且每个抗原肽可以具有相同的长度,或者抗原肽可以具有不同的长度。例如,本文公开的抗原肽的长度可以是5-100、15-50,或21-27个氨基酸,或15-100、15-95、15-90、15-85、15-80、15-75、15-70、15-65、15-60、15-55、15-50、15-45、15-40、15-35、15-30、20-100、20-95、20-90、20-85、20-80、20-75、20-70、20-65、20-60、20-55、20-50、20-45、20-40、20-35、20-30、11-21、15-21、21-31、31-41、41-51、51-61、61-71、71-81、81-91、91-101、101-121、121-141、141-161、161-181、181-201、8-27、10-30、10-40、15-30、15-40、15-25、1-10、10-20、20-30、30-40、1-100、5-75、5-50、5-40、5-30、5-20、5-15、5-10、1-75、1-50、1-40、1-30、1-20、1-15、1-10、8-11,或11-16个氨基酸的长度。例如,抗原肽可以是至少15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59,或60个氨基酸的长度。抗原肽的一些具体实施例是21或27个氨基酸的长度。其它抗原肽可以是全长蛋白质或其片段。
作为一个实施例,抗原肽可包含新表位(neoepitope)。这些新表位可为例如患者特异性(即受试者特异性)癌症突变。可以在创建个性化免疫疗法的过程中产生包含新表位的抗原肽,该过程包括将从受试者的癌症样品中提取的核酸与从正常或健康参考样品中提取的核酸进行比较,以识别与正常或健康样本相比,存在于癌症样本中的体细胞突变或序列差异。例如,这些突变或序列差异可以是体细胞的、非同义的错义突变,或体细胞移码突变,并且可以编码表达的氨基酸序列。表达这种体细胞突变或序列差异的肽可以称为“新表位”。癌症特异性新表位可以指在参考样本(例如正常的非癌或种系细胞或组织)中不存在但在癌症样本中发现的表位。例如,这包括在正常的非癌或种系细胞中找到相应的表位,但由于癌细胞中的一个或多个突变,该表位的序列发生变化从而导致新表位的情况。新表位可以包含突变的表位,并且可以在突变的任一侧或两侧都包含非突变的序列。
作为另一个例子,抗原肽可包含复发性癌症突变。每种抗原肽可包含单个复发性癌症突变或可包含两个或更多个复发性癌症突变(例如两个复发性癌症突变)。例如,由于在与癌相关的蛋白质中,突变残基彼此非常接近,所以抗原肽可包含一个以上的复发性癌症突变(例如2个或3个复发性癌症突变)。复发性癌症突变可以是任何类型的突变(例如体细胞错义突变或移码突变)。例如,本文公开的重组融合多肽可包含与两个或多个抗原肽融合的含PEST的肽(即串联,例如PEST-肽1-肽2),或可包含两个或多个不与含PEST的肽融合的抗原肽,其中每个抗原肽都包含一个单一的复发性癌症突变(即蛋白质氨基酸序列中的一个单一的复发性变化,或由基因中单个的、不同的、非同义的、复发性的癌症突变编码的序列),其中至少两个抗原肽包含不同的复发性癌症突变,并且是相同的癌症相关蛋白的片段。替代地,每个抗原肽可包含来自不同的癌症相关蛋白的不同的复发性癌症突变。替代地,可以使用单独的融合多肽的组合,其中每个抗原肽都融合(或不融合)到其自身的含PEST的肽(例如,PEST1-肽1;PEST2-肽2)中。可选地,一些或所有的片段是相同的癌症相关蛋白的非连续片段。非连续片段是指在蛋白质序列中没有顺序地出现的片段(例如,第一个片段由残基10-30组成,第二个片段由残基100-120组成;或者第一个片段由残基10-30组成,第二个片段由残基20-40组成)。可选地,每个抗原肽包含来自单一类型癌症的不同的复发性癌症突变。
复发性癌症突变可以来自癌症相关蛋白。术语“癌症相关蛋白”包括具有在多种类型的癌症中发生、在患有特定类型的癌症的多个受试者中发生,或与一种或多种类型的癌症的发生或发展相关的突变的蛋白。例如,癌症相关蛋白可以是致癌蛋白(即具有可助于癌症进展的活性的蛋白,例如调节细胞生长的蛋白),也可以是抑癌蛋白(即一种通常可减轻癌症形成潜力的蛋白质,例如通过细胞周期的负调控或促进细胞凋亡)。在一些实施方案中,癌症相关蛋白具有“突变热点”。突变热点是蛋白质编码基因中的一个氨基酸位置,其突变(例如通过体细胞替代而不是其它体细胞异常,例如易位、扩增,和缺失)的频率比在没有选择的情况下预期的发生频率更高。这样的热点突变可以在多种类型的癌症中发生和/或可以在多个癌症患者之间共有。突变热点表明整个肿瘤样本群体的选择压力。肿瘤基因组包含复发的癌症突变,这些突变通过影响基因(即肿瘤驱动基因)来“驱动”肿瘤发生,这些基因在发生改变后赋予肿瘤细胞选择性的生长优势。可以识别这类肿瘤驱动基因,例如从背景突变率中识别出突变频率比预期高的基因(即复发);通过识别在肿瘤样品中表现出其它阳性选择信号的基因(例如,与沉默突变相比,非沉默突变的发生率高,或者倾向于功能突变的积累);通过基于以下知识来利用蛋白质序列某些区域中维持突变的趋势,所述知识为:尽管灭活突变沿蛋白质序列分布,功能获得性突变(gain-of-function mutations)倾向于在特定的残基或结构域中出现;或通过利用特定的功能性残基(例如磷酸化位点)中突变的过度表现出现。这些突变中的许多突变经常发生在生物活性蛋白的功能区(例如激酶结构域或结合结构域)或中断活性位点(例如磷酸化位点),从而导致功能丧失或功能获得性突变,或者它们可以以蛋白质的三维结构和/或电荷平衡受到足够的干扰,从而干扰正常功能的方式发生。对大量肿瘤的基因组分析表明,突变通常发生在有限数量的氨基酸位置。因此,大多数常见突变可以由相对少量的潜在肿瘤相关抗原或T细胞表位代表。
“癌症复发突变”是指蛋白质的氨基酸序列的变化,其发生在多种类型的癌症中和/或在患有特定类型的癌症的多个受试者中。与癌症相关的此类突变可导致通常在相应健康组织中不存在的、与肿瘤相关的抗原。
具有跨多种癌症或在多个癌症患者之间发生的具有共同突变的肿瘤驱动基因和癌症相关蛋白是已知的,并且存在跨多个肿瘤样品和多种肿瘤类型之间的测序数据。参见,例如Chang et al.(2016)Nat Biotechnol34(2):155-163;Tamborero et al.(2013)SciRep 3:2650,其每一篇均通过引用整体并入本文。
作为另一个例子,抗原肽可以是异变抗原肽。例如,异变抗原肽可以是包含异变突变(heteroclitic mutation)的癌相关蛋白的片段(即来自癌相关蛋白的氨基酸的连续序列)。异变抗原肽可包含单个异变突变或可包含两个或更多异变突变(例如两个异变突变)。术语“异变的(heteroclitic)”是指产生免疫应答的肽,该免疫应答识别天然肽,该异变肽来源于该天然肽(例如,不包含锚定残基突变的肽)。
本文公开的一些重组融合多肽可包含以下任意组合:包含复发性癌症突变的抗原肽、包含异变突变的抗原肽(例如来自与癌症相关的蛋白质),以及由小基因构建体表达的抗原肽(例如来自与癌症相关的蛋白质)(即:例如异变抗原肽与泛素融合的抗原肽)。例如,这种重组融合多肽可包含与两个或多个抗原肽融合的含PEST的肽,其中至少一个抗原肽来自癌症相关蛋白并包含复发性癌症突变,并且至少一个抗原肽来源于癌症相关蛋白,并包含异变突变。可选地,所述含PEST的肽包含细菌分泌信号序列,且所述融合多肽还包含与羧基末端抗原肽融合的泛素蛋白,其中含PEST的肽、两种或更多种抗原肽、泛素,和羧基末端抗原肽从融合多肽的氨基末端到羧基末端串联排列。
每种抗原肽也可以是亲水的或可以得分达到或低于某个亲水性阈值,其可以预测单核细胞增生李斯特菌或其它感兴趣的细菌的分泌性。例如,可以通过Kyte和Doolittle亲水性指数21氨基酸窗口(21amino acid window)对抗原肽进行评分,并且高于临界值(约1.6)的所有评分都可以排除,因为它们不太可能被单核细胞增生李斯特菌所分泌。同样地,抗原肽或融合多肽的组合可以是亲水的,或者可以得分达到或低于某个亲水性阈值,其可以预测单核细胞增生李斯特菌或其它感兴趣的细菌的分泌性。
抗原肽可以任何方式连接在一起。例如,抗原肽可以彼此直接融合而没有插入序列。替代地,抗原肽可以经一个或多个接头,例如肽接头,彼此间接连接。在某些情况下,一些成对的相邻抗原肽可以彼此直接融合,而其它成对的抗原肽可以通过一个或多个接头间接地彼此连接。可以在每对相邻抗原肽之间使用相同的接头,或者可以在不同对的相邻抗原肽之间使用任何数量的不同接头。另外,可以在一对相邻的抗原肽之间使用一个接头,或者可以在一对相邻的抗原肽之间使用多个接头。
任何合适的序列可以用于肽接头。例如,接头序列的可为例如1至约50个氨基酸的长度。一些接头可以是亲水的。接头可以用于各种目的。例如,接头可用于增加细菌分泌、促进抗原加工、增加融合多肽的柔性、增加融合多肽的刚性。或任何其它目的。在某些情况下,不同的氨基酸接头序列分布在抗原肽之间,或者编码相同氨基酸接头序列的不同核酸分布在抗原肽之间(例如,SEQ ID NOS:84-94),以使重复最小化。这也可以用于减少二级结构,从而允许在Lm重组载体菌株群内编码融合多肽的核酸(例如质粒)的高效的转录、翻译、分泌、维持,或稳定。可以基于例如以下因素中的一个或多个来选择其它合适的肽接头序列:(1)它们采用柔性延伸构象的能力;(2)它们无能力采用可以与抗原肽上的功能性表位相互作用的二级结构;以及(3)缺乏可能与功能性表位反应的疏水或带电残基。例如,肽接头序列可包含Gly、Asn和Ser残基。其它接近中性的氨基酸,例如Thr和Ala也可以用于接头序列。可用作接头的氨基酸序列包括Maratea et al.(1985)Gene 40:39-46;Murphy et al.(1986)Proc Natl Acad Sci USA 83:8258-8262;US 4,935,233;和US 4,751,180所公开的,出于所有目的将每篇均通过引用整体并入本文。接头的具体例子包括表2中的那些(它们中每一个可自身用作接头、可用于包含重复序列的接头中,或用于进一步包含表中一个或多个其它序列的接头中),尽管也可以作出其它设想(参见,例如,Reddy Chichili etal.(2013)Protein Science 22:153–167,出于所有目的通过引用整体并入本文)。除非另有说明,否则“n”代表列出的接头中重复的数目不确定。
表2:接头
肽接头 例子 SEQ ID NO: 假设目的
(GAS)<sub>n</sub> GASGAS 33 柔性
(GSA)<sub>n</sub> GSAGSA 34 柔性
(G)<sub>n</sub>;n=4-8 GGGG 35 柔性
(GGGGS)<sub>n</sub>;n=1-3 GGGGS 36 柔性
VGKGGSGG VGKGGSGG 37 柔性
(PAPAP)<sub>n</sub> PAPAP 38 刚性
(EAAAK)<sub>n</sub>;n=1-3 EAAAK 39 刚性
(AYL)<sub>n</sub> AYLAYL 40 抗原处理
(LRA)<sub>n</sub> LRALRA 41 抗原处理
(RLRA)<sub>n</sub> RLRA 42 抗原处理
B.含PEST的肽
本文公开的重组融合蛋白包括含PEST的肽。含PEST的肽可位于融合多肽的氨基末端(N末端)(即抗原肽的N末端),可位于融合多肽的羧基末端(C末端)(即抗原肽的C末端),或可以嵌入在抗原肽中。在一些重组李斯特菌菌株和方法中,含PEST的肽不是融合多肽的一部分,并且与融合多肽相分离。抗原肽与PEST样序列(如LLO肽)的融合体可以增强抗原肽的免疫原性,并且可以增加细胞介导的和抗肿瘤的免疫应答(即增加细胞介导的和抗肿瘤的免疫性)。参见,例如,Singh et al.(2005)J Immunol 175(6):3663-3673,出于所有目的通过引用整体并入本文。
含PEST的肽是包含PEST序列或PEST样序列的肽。真核蛋白中的PEST序列早已被识别。例如,含有富含脯氨酸(P)、谷氨酸(E)、丝氨酸(S)和苏氨酸(T)(PEST)的氨基酸序列的蛋白质通常,但并非总是,被含有几个带正电氨基酸的簇侧接,具有快速的细胞内半衰期(Rogers et al.(1986)Science 234:364-369,出于所有目的通过引用整体并入本文)。此外,据报道,这些序列将蛋白质靶向泛素-蛋白酶体途径进行降解(Rechsteiner和Rogers(1996)Trends Biochem.Sci.21:267-271,出于所有目的通过引用整体并入本文)。真核细胞也使用该途径来产生与MHC I类(MHC class I)结合的免疫原性肽,并且已经假设在产生免疫原性肽的真核蛋白中具有大量PEST序列(Realini et al.(1994)FEBS Lett.348:109-113,出于所有目的通过引用整体并入本文)。原核蛋白通常不包含PEST序列,因为它们不具有这种酶促途径。然而,已报道在LLO的氨基末端富含脯氨酸(P)、谷氨酸(E)、丝氨酸(S)和苏氨酸(T)氨基酸的PEST样序列,该PEST样序列对于单核细胞增生李斯特菌的致病性而言是必要的(Decatur和Portnoy(2000)Science 290:992-995,出于所有目的通过引用整体并入本文)。LLO中的这种PEST样序列的存在将蛋白质靶向地通过宿主细胞的蛋白水解机制进行破坏,使得一旦LLO发挥了其功能并促进了单核细胞增生李斯特菌从吞噬体或溶酶体液泡中的逸出,其将在损坏细胞之前被摧毁。
对PEST序列和PEST样序列的鉴定是众所周知的,并且描述于例如Rogers et al.(1986)Science 234(4774):364-378以及Rechsteiner和Rogers(1996)TrendsBiochem.Sci.21:267-271,出于所有目的,通过引用将每一篇的全部内容并入本文。可以使用PEST查找程序(PEST-find program)识别PEST序列或PEST样序列。例如,PEST样序列可为富含脯氨酸(P)、谷氨酸(E)、丝氨酸(S),和苏氨酸(T)残基的区域。可选地,PEST样序列可为被含有几个带正电氨基酸的一个或多个簇侧接。例如,PEST样序列可定义为长度为至少12个氨基酸的亲水性链段(strech),并具有高局部浓度的脯氨酸(P)、天冬氨酸(D)、谷氨酸(E)、丝氨酸(S),和/或苏氨酸(T)残基。在某些情况下,PEST样序列不包含带正电荷的氨基酸,即精氨酸(R)、组氨酸(H),和赖氨酸(K)。一些PEST样序列可包含一个或多个内部磷酸化位点,这些位点的磷酸化作用会导致蛋白质降解。
在一个例子中,PEST样序列适合于Rogers等人所公开的算法。在另一个例子中,PEST样序列适合于Rechsteiner和Rogers公开的算法。还可以通过对指定蛋白质序列内带正电荷的氨基酸R、H,和K进行初始扫描来识别PEST样序列。计算带正电的侧翼之间的所有氨基酸,仅进一步考虑那些包含等于或大于窗口大小(window-size)参数的氨基酸数目的模体(motif)。可选地,PEST样序列必须包含至少一个P、至少一个D或E,以及至少一个S或T。
PEST模体的质量可以通过基于关键氨基酸的局部富集以及模体疏水性的计分参数来改进。D、E、P、S和T的富集以质量百分比(w/w)表示,并针对一当量的D或E、一个P,和S或T的一个进行校正。疏水性的计算原则上也可以遵循Kyte和Doolittle(1982)J.Mol.Biol.157:105的方法,出于所有目的通过引用整体并入本文。为了简化计算,使用以下线性转换将Kyte-Doolittle亲水性指数(最初范围为从精氨酸的-4.5到异亮氨酸的+4.5)转换为正整数:亲水指数=10*Kyte-Doolittle亲水指数+45,其得出的值为从精氨酸的0到异亮氨酸的90。
潜在的PEST模体的疏水性也可以计算为每种氨基酸种类的摩尔百分数和疏水性指数的乘积之和。所需的PEST分数是通过以下公式所表示的局部富集项和疏水性项的组合获得的:PEST分数=0.55*DEPST-0.5*疏水性指数。
因此,含PEST的肽可指:使用上述算法,得分至少为+5的肽。替代地,它可以指得分至少为6、至少为7、至少为8、至少为9、至少为10、至少为11、至少为12、至少为13、至少为14、至少为15、至少为16、至少为17、至少为18、至少为19、至少为20、至少为21、至少为22、至少为23、至少为24、至少为25、至少为26、至少为27、至少为28、至少为29、至少为30、至少为32、至少为35、至少为38、至少为40,或至少为45的肽。
也可使用任何其它已知的可用方法或算法,以识别PEST样序列。参见例如CaSPredictor(Garay-Malpartida et al.(2005)Bioinformatics 21Suppl1:i169-76,出于所有目的通过引用整体并入本文)。可以使用的另一种方法是:通过将氨基酸Ser、Thr、Pro、Glu、Asp、Asn,或Gln赋予1的值,为每个适当长度的链段(例如30-35个氨基酸链段)计算PEST指数。每个PEST残基的系数值(CV)为1,另一个AA(非PEST)中的每一个的CV为零。
PEST样氨基酸序列的例子是SEQ ID NOS:43-51中列出的那些。PEST样序列的一个例子是KENSISSMAPPASPPASPKTPIEKKHADEIDK(SEQ ID NO:43)。PEST样序列的另一个例子是KENSISSMAPPASPPASPK(SEQ ID NO:44)。但是,可以使用任何PEST或PEST样氨基酸序列。PEST序列肽是已知的,并且描述于例如US7,635,479;US 7,665,238;和US 2014/0186387,其每一篇出于所有目的通过引用整体并入本文。
PEST样序列可以来自李斯特菌属,例如来自单核细胞增生李斯特菌。例如,单核细胞增生李斯特菌ActA蛋白包含至少四个这样的序列(SEQ ID NO:45-48),其中任何一个都适合用于本文所公开的组合物和方法。其它类似的PEST样序列包括SEQ ID NO:52-54。链球菌属的链球菌溶血素O蛋白也包含一个PEST序列。例如,化脓链球菌(Streptococcuspyogene)链球菌溶血素O在氨基酸35-51处包含PEST序列KQNTASTETTTTNEQPK(SEQ ID NO:49),而马链球菌(Streptococcus equisimilis)链球菌溶血素O在氨基酸38-54处包含PEST样序列KQNTANTETTTTNEQPK(SEQ ID NO:50)。PEST样序列的另一个例子是来自Listeriaseeligeri的溶细胞素,其由Iso基因:RSEVTISPAETPESPPATP(例如SEQ ID NO:51)编码。
替代地,PEST样序列可以衍生自其它原核生物。期望有PEST样氨基酸序列的其它原核生物包括例如其它李斯特菌种。
(1)李斯特菌溶血素O(Listeriolysin O,LLO)
可用于本文公开的组合物和方法中的含PEST肽的一个例子是李斯特菌溶血素O(LLO)肽。LLO蛋白的一个例子是GenBank登录号P13128的蛋白(SEQ ID NO:55;核酸序列在GenBank登录号X15127中列出)。SEQ ID NO:55是包括信号序列的前蛋白。前蛋白的前25个氨基酸是信号序列,当被该蛋白所分泌时,它会从LLO上切割下来,从而产生没有信号序列的、具有504个氨基酸的全长活性LLO蛋白。本文所公开的LLO肽可包含信号序列或可包含不含信号序列的肽。可以使用的示例性LLO蛋白包含以下、基本上由以下组成,或由以下组成:SEQ ID NO:55所示的序列或SEQ ID NO:55的同源物、变体、异形体、类似物、片段、同源物片段、变体片段、类似物片段,和异形体片段。可以使用编码LLO蛋白的片段或LLO蛋白的同源物、变体、异形体、类似物、同源物片段、变体片段,或类似物片段。同源LLO蛋白可以与参考LLO蛋白具有序列同一性,例如大于70%、72%、75%、78%、80%、82%、83%、85%、87%、88%、90%、92%、93%、95%、96%、97%、98%,或99%的序列同一性。
LLO蛋白的另一个例子在SEQ ID NO:56中示出。可以使用的LLO蛋白可以包含以下、基本上由以下组成,或由以下组成:SEQ ID NO:56中所示的序列或SEQ ID NO:56的同源物、变体、异形体、类似物、片段、同源物片段、变体片段、类似物片段,和异形体片段。
LLO蛋白的另一个例子是来自单核细胞增生李斯特菌10403S菌株的LLO蛋白,如GenBank登录号:ZP_01942330或EBA21833所示,或如GenBank登录号:NZ_AARZ01000015或AARZ01000015.1所示的核酸序列所编码。LLO蛋白的另一个例子是来自单核细胞增生李斯特菌4b F2365菌株(参见,例如,GenBank登录号:YP_012823)、EGD-e菌株(参见,例如,GenBank登录号:NP_463733),或任何其它单核细胞增生李斯特菌菌株的LLO蛋白。LLO蛋白的另一个例子是来自黄杆菌目(Flavobacteriales)细菌HTCC2170的LLO蛋白(参见,例如,GenBank登录号:ZP_01106747或EAR01433,或由GenBank登录号:NZ_AAOC01000003编码)。可以使用的LLO蛋白可以包含以下、基本上由以下组成,或由以下组成:任何上述LLO蛋白,或任何上述LLO蛋白的同源物、变体、异形体、类似物、片段、同源物片段、变体片段、类似物片段,和异形体片段。
也可以使用与LLO同源的蛋白质,或其同源物、变体、异形体、类似物、片段、同源物片段、变体片段、类似物片段,和异形体片段。一个这样的例子是蜂房杆菌溶素(alveolysin),其可以在例如Paenibacillus alvei中发现(参见,例如,GenBank登录号:P23564或AAA22224,或由GenBank登录号:M62709编码)。其它此类同源的蛋白质是已知的。
LLO肽可以是全长LLO蛋白或截短的LLO蛋白或LLO片段。同样,LLO肽可以是保留天然LLO蛋白的一种或多种功能或缺乏天然LLO蛋白的一种或多种功能的肽。例如,保留的LLO功能可以使细菌(例如李斯特菌)从吞噬体或吞噬溶酶体中逃逸,或者增强与其融合的肽的免疫原性。保留的功能还可以是溶血功能或抗原功能。替代地,LLO肽可以是非溶血性LLO。LLO的其它功能以及用于评估LLO功能的方法和测定都是已知的。
LLO片段可以是PEST样序列或可以包含PEST样序列。LLO片段可包含一个或多个内部缺失、从C末端的截短,以及从N末端的截短的一种或多种。在某些情况下,LLO片段可以包含一个以上的内部缺失。其它LLO肽可以是具有一个或多个突变的全长LLO蛋白。
一些LLO蛋白或片段相对于野生型LLO具有降低的溶血活性或为非溶血片段。例如,可以通过在羧基末端的激活结构域的缺失或突变、通过半胱氨酸484的缺失或突变,或通过在另一位置的缺失或突变,使LLO蛋白变为非溶血的。
如美国专利8,771,702中详述的,通过胆固醇结合结构域(CBD)的缺失或突变使其它LLO蛋白变为非溶血的,出于所有目的将其整体引入本文作为参考。突变可包括,例如,取代或缺失。整个CBD可以被突变,CBD的部分可以被突变,或者CBD内的特定残基可以被突变。例如,LLO蛋白可包含SEQ ID NO:55的残基C484、W491,和W492(例如C484、W491、W492、C484和W491、C484和W492、W491和W492,或所有三个残基)或当与SEQ ID NO:55最佳比对时相应的残基(例如相应的半胱氨酸或色氨酸残基)中的一个或多个的突变。例如,可以产生突变的LLO蛋白,其中LLO的残基C484、W491,和W492被丙氨酸残基取代,其相对于野生型LLO将大大降低溶血活性。具有C484A、W491A,和W492A突变的LLO突变蛋白被称为“mutLLO”。
作为另一个例子,可以产生具有包含胆固醇结合域的内部缺失的突变LLO蛋白。SEQ ID NO:55的胆固醇结合结构域的序列在SEQ ID NO:74示出。例如,内部缺失可以是1-11个氨基酸缺失、11-50个氨基酸缺失,或更长。同样,突变区域可以是1-11个氨基酸、11-50个氨基酸,或更长(例如1-50、1-11、2-11、3-11、4-11、5-11、6-11、7-11、8-11、9-11、10-11、1-2、1-3、1-4、1-5、1-6、1-7、1-8、1-9、1-10、2-3、2-4、2-5、2-6、2-7、2-8、2-9、2-10、3-4、3-5、3-6、3-7、3-8、3-9、3-10、12-50、11-15、11-20、11-25、11-30、11-35、11-40、11-50、11-60、11-70、11-80、11-90、11-100、11-150、15-20、15-25、15-30、15-35、15-40、15-50、15-60、15-70、15-80、15-90、15-100、15-150、20-25、20-30、20-35、20-40、20-50、20-60、20-70、20-80、20-90、20-100、20-150、30-35、30-40、30-60、30-70、30-80、30-90、30-100,或30-150个氨基酸)。例如,由SEQ ID NO:55的残基470-500、470-510,或480-500组成的突变区将导致包含CBD的缺失序列(SEQ ID NO:55的残基483-493)。然而,突变区域也可以是CBD的片段或可以与CBD的一部分重叠。例如,突变区域可以由SEQ ID NO:55的残基470-490、480-488、485-490、486-488、490-500,或486-510组成。例如,CBD的片段(残基484-492)可被异源序列取代,这将显著降低相对于野生型LLO的溶血活性。例如,可以用来自抗原NY-ESO-1(ESLLMWITQCR;SEQ ID NO:75)的CTL表位代替CBD(ECTGLAWEWWR;SEQ ID NO:74),其包含来自NY-ESO-1的HLA-A2限制性表位157-165。所得的LLO被称为“ctLLO”。
在一些突变的LLO蛋白中,突变的区域可以被异源序列取代。例如,突变区域可以被相等数目的异源氨基酸、较少数目的异源氨基酸,或较大数目的氨基酸(例如1-50、1-11、2-11、3-11、4-11、5-11、6-11、7-11、8-11、9-11、10-11、1-2、1-3、1-4、1-5、1-6、1-7、1-8、1-9、1-10、2-3、2-4、2-5、2-6、2-7、2-8、2-9、2-10、3-4、3-5、3-6、3-7、3-8、3-9、3-10、12-50、11-15、11-20、11-25、11-30、11-35、11-40、11-50、11-60、11-70、11-80、11-90、11-100、11-150、15-20、15-25、15-30、15-35、15-40、15-50、15-60、15-70、15-80、15-90、15-100、15-150、20-25、20-30、20-35、20-40、20-50、20-60、20-70、20-80、20-90、20-100、20-150、30-35、30-40、30-60、30-70、30-80、30-90、30-100,或30-150个氨基酸)所取代。其它突变的LLO蛋白具有一个或多个点突变(例如1个残基、2个残基、3个残基,或更多个残基的点突变)。突变的残基可以是连续的或不连续的。
在一个示例性的实施方案中,LLO肽可以在信号序列中具有缺失并且在CBD中具有突变或置换。
一些LLO肽是N-末端LLO片段(即具有C-末端缺失的LLO蛋白)。一些LLO肽为至少494、489、492、493、500、505、510、515、520,或525个氨基酸长度或492-528个氨基酸长度。例如,LLO片段可以由LLO蛋白的大约前440或441个氨基酸组成(例如,SEQ ID NO:55或56的前441个氨基酸,或当与SEQ ID NO:55或56最佳比对时,另一个LLO蛋白的相应片段)。其它N末端LLO片段可以由LLO蛋白的前420个氨基酸组成(例如,SEQ ID NO:55或56的前420个氨基酸,或者与SEQ ID NO:55或56最佳比对时,另一个LLO蛋白的相应片段)。其它N末端片段可以由LLO蛋白的约氨基酸20-442组成(例如SEQ ID NO:55或56的氨基酸20-442,或者当与SEQ ID NO:55或56最佳比对时,另一LLO蛋白的相应片段)。其它N末端LLO片段包含任何ΔLLO,但没有包含半胱氨酸484的激活域,尤其是没有半胱氨酸484。例如,N末端LLO片段可以对应于LLO蛋白质的前425、400、375、350、325、300、275、250、225、200、175、150、125、100、75、50,或25个氨基酸(例如,SEQ ID NO:55或56的前425、400、375、350、325、300、275、250、225、200、175、150、125、100、75、50,或25个氨基酸,或当与SEQ ID NO:55或56最佳比对时,另一LLO蛋白的相应片段)。在一些实施方案中,该片段包含一个或多个PEST样序列。LLO片段和截短的LLO蛋白可以含有对应于上述特定氨基酸范围中任何一个的同源LLO蛋白的残基。残基数目不必与上面列举的残基数目完全一致(例如,如果同源LLO蛋白相对于本文公开的特定LLO蛋白具有插入或缺失)。N末端LLO片段的例子包括SEQ ID NO:57、58,和59。可以使用的LLO蛋白包含以下,基本上由以下组成,或由以下组成:SEQ ID NO:57、58,或59所示的序列,或SEQ ID NO:57、58,或59的同源物、变体、异形体、类似物、片段、同源物片段、变体片段、类似物片段,和异形体片段。在一些组合物和方法中,使用SEQ ID NO:59中列出的N末端LLO片段。编码SEQ ID NO:59所示的N末端LLO片段的核酸的例子是SEQ ID NO:60。
(2)ActA
可用于本文公开的组合物和方法中的含PEST的肽的另一个例子是ActA肽。ActA是一种表面相关蛋白,在被感染的宿主细胞中充当支架(scaffold),以促进宿主肌动蛋白聚合物的聚合、组装,和激活,从而经过细胞质推出(propel)单核细胞增生李斯特菌。单核细胞增生李斯特菌进入哺乳动物细胞的细胞质不久后会诱导宿主肌动蛋白丝的聚合,并利用肌动蛋白聚合产生的力先在细胞内移动,然后在细胞之间移动。ActA负责介导肌动蛋白成核和基于肌动蛋白的活力。ActA蛋白为宿主细胞骨架成分提供了多个结合位点,从而充当了组装细胞肌动蛋白聚合机制的支架。ActA的N末端与单体肌动蛋白结合,并通过刺激内在肌动蛋白成核活性而充当组成型(constitutively)活性成核促进因子。actA和hly基因都是转录激活因子PrfA调控的10-kb基因簇的成员,而actA在哺乳动物细胞质中被上调约226倍。可以使用编码ActA蛋白或ActA蛋白的同源物、变体、异形体、类似物、同源物片段、变体片段、类似物片段的任何序列。同源ActA蛋白可以与参照ActA蛋白具有序列同一性,例如大于70%、72%、75%、78%、80%、82%、83%、85%、87%、88%、90%、92%、93%、95%、96%、97%、98%,或99%的序列同一性。
ActA蛋白的一个例子包含SEQ ID NO:61所示的序列,基本上由SEQ ID NO:61所示的序列组成,或由SEQ ID NO:61所示的序列组成。ActA蛋白的另一个例子含SEQ ID NO:62所示的序列,基本上由SEQ ID NO:62所示的序列组成,或由SEQ ID NO:62所示的序列组成。与这些序列中的任何一个相对应的前蛋白的前29个氨基酸是信号序列,并在细菌分泌时从ActA蛋白上切割下来。ActA肽可包含信号序列(例如SEQ ID NO:61或62的氨基酸1-29),或可包含不包含信号序列的肽。ActA蛋白的其它例子包含以下,基本上由以下组成,或由以下组成:SEQ ID NO:61或62的同源物、变体、异形体、类似物、同源物片段、变体片段、类似物片段。
ActA蛋白的另一个例子是来自单核细胞增生李斯特菌10403S菌株(GenBank登录号:DQ054585)、NICPBP 54002菌株(GenBank登录号:EU394959)、S3菌株(GenBank登录号:EU394960)、NCTC 5348菌株(GenBank登录号:EU394961)、NICPBP 54006菌株(GenBank登录号:EU394962)、M7菌株(GenBank登录号:EU394963)、S19菌株(GenBank登录号:EU394964),或单核细胞增生李斯特菌的任何其它菌株的ActA蛋白。可以使用的LLO蛋白可以包含以下,基本上由以下组成,或由以下组成:上述的LLO蛋白或上述的LLO蛋白的同源物、变体、异形体、类似物、片段、同源物片段、变体片段、类似物片段,和异形体片段。
ActA肽可以是全长ActA蛋白或截短的ActA蛋白或ActA片段(例如,去除了C末端部分的N末端ActA片段)。在一些实施方案中,截短的ActA蛋白包含至少一个PEST序列(例如多于一个PEST序列)。另外,截短的ActA蛋白可选地包含ActA信号肽。截短的ActA蛋白中包含的PEST样序列的例子包括SEQ ID NO:45-48。一些这样的截短的ActA蛋白包含SEQ ID NOS:45-48所示的至少两个PEST样序列或其同源物、SEQ ID NO:45-48所示的至少三个PEST样序列或其同源物,或SEQ ID NO:45-48所示的所有四个PEST样序列或其同源物。截短的ActA蛋白的例子包括那些包含以下、基本上由以下组成,或由以下组成的截短的ActA蛋白:全长ActA蛋白序列(例如SEQ ID NO:62)的约残基30-122、约残基30-229、约残基30-332、约残基30-200,或约残基30-399。截短的ActA蛋白的其它实例包括那些包含以下、基本上由以下组成,或由以下组成的截短的ActA蛋白:全长ActA蛋白序列(例如SEQ ID NO:62)的前50、100、150、200、233、250、300、390、400,或418个残基。截短的ActA蛋白的其它例子包括那些包含以下、基本上由以下组成,或由以下组成的截短的ActA蛋白:全长ActA蛋白序列(例如SEQID NO:62)的残基200-300或残基300-400。例如,截短的ActA由野生型ActA蛋白的前390个氨基酸组成,如US 7,655,238中所述,其出于所有目的通过引用整体并入本文。作为另一个例子,截短的ActA可以是ActA-N100或其修饰形式(称为ActA-N100*),其中PEST模体已被删除并且包含非保守的QDNKR(SEQ ID NO:73)取代,如US2014/0186387所述,其出于所有目的通过引用整体并入本文。替代地,截短的ActA蛋白可包含对应于以上氨基酸范围之一或本文公开的任何ActA肽的氨基酸范围的同源ActA蛋白的残基。残基数目不必与本文列举的残基数目完全一致(例如,如果同源ActA蛋白相对于本文所用的ActA蛋白具有插入或缺失,则可以相应地调节残基数目)。
截短的ActA蛋白的例子包括,例如,包含以下、基本上由以下组成,或由以下组成的蛋白质:SEQ ID NO:63、64、65,或66所示序列或SEQ ID NO:63、64、65,或66的同源物、变体、异形体、类似物、变体片段、异形体片段,或类似物片段。SEQ ID NO:63被称为ActA/PEST1,由SEQ ID NO:62所示的全长ActA序列的氨基酸30-122组成。SEQ ID NO:64被称为ActA/PEST2或LA229,并由SEQ ID NO:62所示的全长ActA序列的氨基酸30-229组成。SEQ IDNO:65被称为ActA/PEST3,由SEQ ID NO:62所示的全长ActA序列的氨基酸30-332组成。SEQID NO:66被称为ActA/PEST4,并由SEQ ID NO:62所示的全长ActA序列的氨基酸30-399组成。作为一个具体实施例,可以使用由SEQ ID NO:64所示的序列组成的截短的ActA蛋白。
截短的ActA蛋白的例子包括,例如,包含以下、基本上由以下组成,或由以下组成的蛋白质:SEQ ID NO:67、69、70,或72所示序列或SEQ ID NO:67、69、70,或72的同源物、变体、异形体、类似物、变体片段、异形体片段,或类似物片段。作为一个具体实施例,可以使用由SEQ ID NO:67所示的序列(由SEQ ID NO:68所示的核酸编码)组成的截短的ActA蛋白。作为另一个具体实施例,可以使用由SEQ ID NO:70所示的序列(由SEQ ID NO:71所示的核酸编码)组成的截短的ActA蛋白。SEQ ID NO:71是单核细胞增生李斯特菌10403S菌株中编码ActA的前1170个核苷酸。在一些情况下,ActA片段可与异源信号肽融合。例如,SEQ ID NO:72列出了与Hly信号肽融合的ActA片段。
C.产生编码重组融合多肽的免疫疗法构建体
本文还提供了产生编码本文公开的重组融合多肽的免疫疗法构建体或包含本文公开的重组融合多肽的组合物的方法。例如,这样的方法可以包括选择和设计抗原肽,以包括所述免疫疗法构建体(以及例如测试每种抗原肽的亲水性,及如果其得分高于选定的亲水性指数阈值,则修饰或取消选择抗原肽)、设计一种或多种包含每个所选抗原肽的融合多肽,以及产生编码该融合多肽的核酸构建体。
可以根据疏水性或亲水性筛选抗原肽。例如,可以选择抗原肽(如果其为亲水性的或如果其得分最多为或低于某个亲水性阈值),其对在特定感兴趣的细菌(例如单核细胞增生李斯特菌)中的分泌性具有预测性。例如,抗原肽可以通过具有21个氨基酸窗口的Kyte和Doolittle亲水性指数进行评分,所有得分高于临界值(约1.6)的抗原肽都将被排除,因为它们不太可能被单核细胞增生李斯特菌所分泌。参见,例如,Kyte-Doolittle(1982)J MolBiol 157(1):105–132;出于所有目的通过引用将其整体并入本文。替代地,可以改变得分在选定的临界值附近的抗原肽(例如改变抗原肽的长度)。可以使用的其它滑动窗口尺寸(sliding window sizes)包括例如9、11、13、15、17、19、21、23、25、27或更多个氨基酸。例如,滑动窗口的尺寸可以是9-11个氨基酸、11-13个氨基酸、13-15个氨基酸、15-17个氨基酸、17-19个氨基酸、19-21个氨基酸、21-23个氨基酸、23-25个氨基酸,或25-27个氨基酸。可以使用的其它临界值包括,例如,以下范围:1.2-1.4、1.4-1.6、1.6-1.8、1.8-2.0、2.0-2.2、2.2-2.5、2.5-3.0、3.0-3.5、3.5-4.0,或4.0-4.5,或临界值可以是1.4、1.5、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.3、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4,或4.5。临界值可以变化,例如取决于用于递送融合多肽的细菌的属或种。
其它合适的亲/疏水性图(hydropathy plot)或其它合适的量表(scale)包括例如以下所报道的:Rose et al.(1993)Annu Rev Biomol Struct22:381–415;Biswas et al.(2003)Journal of Chromatography A 1000:637–655;Eisenberg(1984)Ann Rev Biochem53:595–623;Abraham和Leo(1987)Proteins:Structure,Function and Genetics 2:130-152;Sweet和Eisenberg(1983)Mol Biol 171:479-488;Bull和Breese(1974)ArchBiochemBiophys161:665-670;Guy(1985)Biophys J 47:61-70;Miyazawa et al.(1985)Macromolecules 18:534-552;Roseman(1988)J Mol Biol 200:513-522;Wolfenden etal.(1981)Biochemistry 20:849-855;Wilson(1981)Biochem J199:31-41;Cowan和Whittaker(1990)Peptide Research 3:75-80;Aboderin(1971)Int J Biochem 2:537-544;Eisenberg et al.(1984)J Mol Biol 179:125-142;Hopp和Woods(1981)Proc NatlAcad SciUSA 78:3824-3828;Manavalan和Ponnuswamy(1978)Nature 275:673-674;Black和Mould(1991)Anal Biochem193:72-82;Fauchere和Pliska(1983)Eur J Med Chem 18:369-375;Janin(1979)Nature 277:491-492;Rao和Argos(1986)BiochimBiophys Acta869:197-214;Tanford(1962)Am Chem Soc 84:4240-4274;Welling et al.(1985)FEBSLett188:215-218;Parker et al.(1986)Biochemistry 25:5425-5431;以及Cowan和Whittaker(1990)Peptide Research 3:75-80,出于所有目的将每一篇均通过引用整体并入本文。
可选地,可以对抗原肽结合受试者的人类白细胞抗原(HLA)类型的能力进行评分(例如使用www.iedb.org上的免疫表位数据库(IED),其包括netMHCpan、ANN、SMMPMBEC.SMM、CombLib_Sidney2008、PickPocket,和netMHCcons),并根据每种抗原肽的最佳MHC结合得分进行排名。其它来源包括TEpredict(tepredict.sourceforge.net/help.html)或其它可用的MHC结合测量量表。对于不同的表达载体(例如沙门氏菌),临界值可能不同。
可选地,可以根据免疫抑制性表位(例如T-reg表位、IL-10诱导性T辅助性表位(IL-10-inducing T helper epitopes)等)筛选抗原肽,以取消选择(deselect)抗原肽或避免免疫性抑制的影响。
可选地,可以使用表位的免疫原性的预测算法来筛选抗原肽。但是,这些算法在预测哪种肽会产生T细胞反应方面最多只有20%的准确性。替代地,不使用筛选/预测算法。替代地,可以通过根据免疫原性筛选抗原肽。例如,这可以包括使一个或多个T细胞与抗原肽接触,并分析免疫原性T细胞应答,其中免疫原性T细胞应答将肽识别为免疫原性肽。这还可以包括使用免疫原性测定来测量CD25、CD44,或CD69中至少一种的分泌,或测量当将一种或多种T细胞与肽接触时,选自包括IFN-γ、TNF-α、IL-1,和IL 2的组的细胞因子的分泌,其中分泌的增加意味着肽被识别为包含一种或多种T细胞表位。
所选的抗原肽可以被安排为潜在融合多肽的一个或多个候选顺序(candidateorder)。如果可用的抗原肽多于单个质粒所能容纳的抗原肽,则可以根据需要/期望向不同的抗原肽分配不同的抗原肽优先级和/或将不同的抗原肽拆分成不同的融合多肽(例如,用于包含在不同的重组李斯特菌菌株中)。优先级可以由,例如,诸如翻译的多肽的相对大小、转录的优先级,和/或总体疏水性之类的因素确定。可以安排抗原肽,使得它们直接连接在一起而无需接头,或被任意数量的抗原肽对之间的任何组合的接头连接,如本文其它地方所更详细公开的。可以基于以下考虑来确定要包含的线性抗原肽的数量:需要的构建体数量对(versus)突变负担、单个质粒的多个表位的翻译和分泌效率,以及包括质粒的每种细菌或Lm所需的MOI。
也对抗原肽或整个融合多肽的组合(即包含抗原肽和含PEST的肽以及任何标签)进行疏水性的评分。例如,可以通过具有滑动的21氨基酸窗口(sliding 21amino acidwindow)的Kyte和Doolittle亲水性指数对整个融合抗原肽或整个融合多肽的亲水性进行评分。如果任何区域的得分高于临界值(例如约1.6),则可以在融合多肽内对抗原肽进行重新排序或混洗(shuffle),直到找到可接受的抗原肽顺序(即其中没有一个区域的得分高于临界值的抗原肽)。替代地,可以去除任何有问题的抗原肽或将其重新设计为不同的大小。替代地或另外地,可以添加或修饰如本文其它地方所公开的抗原肽之间的一个或多个接头,以改变疏水性。与针对单个抗原肽的亲水性测试一样,可以使用其它窗口尺寸,或者可以使用其它临界值(例如,取决于用于递送融合多肽的细菌的属或种)。另外,可以使用其它合适的亲/疏水性图或其它合适的量表。
可选地,可以根据免疫抑制性表位(例,T-reg表位、IL 10诱导性T辅助表位等)来进一步筛选抗原肽或整个融合多肽的组合,以取消选择抗原肽或避免免疫抑制性影响。
然后可以设计和优化编码抗原肽或融合多肽的候选组合的核酸。例如,可以针对增加的翻译水平、表达持续时间、分泌水平、转录水平,及其任何组合来优化序列。例如,增加可以是相对于未优化的对照序列而言的2倍至1000倍、2倍至500倍、2倍至100倍、2倍至50倍、2倍至20倍、2倍至10倍,或3倍至5倍。
例如,可以针对可能在寡核苷酸序列中形成的、降低水平的二级结构来优化融合多肽或编码融合多肽的核酸,或者替代地,进行优化以防止可能修饰序列的任何酶的附着。细菌细胞中的表达可通过例如转录沉默、低mRNA半衰期、二级结构形成、寡核苷酸结合分子(如阻遏物和抑制剂)的附着位点,以及稀有的tRNA池的可用性而受到阻碍。在原始序列中发现了细菌表达中许多问题的根源。RNA的优化可包括修饰顺式作用元件(cis actingelements)、适应性改变其GC含量、针对细菌细胞的非限制性tRNA池修改密码子偏倚,以及避免内部同源区域。因此,优化序列可能包括,例如,调节非常高(>80%)GC含量或非常低(<30%)GC含量的区域。优化序列还可以包括,例如,避免一个或多个以下顺式作用序列模体:内部TATA盒、chi位点,和核糖体进入位点;富含AT或富含GC的序列延伸;重复序列和RNA二级结构;(隐蔽性)剪接供体和受体位点;分支点;或其组合。优化表达还可以包括将序列元件添加到基因的侧翼区域和/或质粒中的其它地方。
对序列的优化还可以包括例如使密码子使用适应宿主基因(例如单核细胞增生李斯特菌基因)的密码子偏倚。例如,可用于单核细胞增生李斯特菌的密码子包括A=GCA、G=GGT、L=TTA、Q=CAA、V=GTT、C=TGT、H=CAT、M=ATG、R=CGT、W=TGG、D=GAT、I=ATT、N=AAC、S=TCT、Y=TAT、E=GAA、K=AAA、P=CCA、T=ACA、F=TTC,及STOP=TAA。
可以产生编码融合多肽的核酸,并将其引入递送载体,例如细菌菌株或李斯特菌菌株。其它递送载体可能适用于DNA免疫疗法或肽免疫疗法,例如牛痘病毒或病毒样颗粒。一旦产生了编码融合多肽的质粒并将其引入细菌菌株或李斯特菌菌株中,就可以对细菌或李斯特菌菌株进行培养和表征,以确认包含抗原肽的融合多肽的表达和分泌。
V.免疫原性组合物、药物组合物,和疫苗
还提供了包含本文公开的冻干的重组细菌或李斯特菌菌株的免疫原性组合物、药物组合物,或疫苗,可选地,其中冻干的重组细菌或李斯特菌菌株通过溶解在一定量的溶剂中来重建。包含李斯特菌菌株的免疫原性组合物可由于其包含李斯特菌菌株而固有地具有免疫原性,和/或该组合物还可包含佐剂。其它免疫原性组合物包括DNA免疫疗法或肽免疫疗法组合物。
术语“免疫原性组合物”是指包含抗原的任何组合物,该抗原在受试者暴露于该组合物后,在受试者中引发针对该抗原的免疫应答。免疫原性组合物引起的免疫应答可为针对特定抗原或针对抗原上的特定表位。
免疫原性组合物可以包含本文公开的单个冻干的或重建的重组细菌或李斯特菌菌株,或者其可以包含本文公开的多个不同的冻干的或重建的重组细菌或李斯特菌菌株。包含第一重组融合多肽的细菌或李斯特菌菌株不同于包含第二重组融合多肽的细菌或李斯特菌菌株,例如,如果第一重组融合多肽包含一个抗原肽,则第二重组融合多肽不包含该抗原肽。两种重组融合多肽可以包括一些相同的抗原肽,并且仍然被认为是不同的。可以将这种不同的冻干的或重建的重组细菌或李斯特菌菌株同时给予受试者或依序给予受试者。当包含本文公开的冻干的或重建的重组李斯特菌菌株(或重组融合多肽或核酸)的药物具有不同的剂型和/或以不同的给药时间表给药时(例如,混合物中的一种组合物至少每天给药一次,而另一种的给药频率则较低,例如每周一次、每两周一次,或每三周一次),顺序给药可能特别有用。多个冻干的或重建的重组细菌或李斯特菌菌株可各自包含不同组的抗原肽。替代地,两个或多个冻干的或重建的重组细菌或李斯特菌菌株可包含同一组抗原肽(例如不同顺序的同一组抗原肽)。
免疫原性组合物可以另外包含佐剂(例如两种或更多种佐剂)、细胞因子、趋化因子,或其组合。可选地,免疫原性组合物可以另外包含抗原呈递细胞(APC),其对于受试者而言可以是自体的或可以是同种异体的。
术语“佐剂”包括增强对抗原的免疫应答的化合物或混合物。例如,佐剂可以是免疫应答的非特异性刺激剂或允许在受试者体内产生储存(depot)的物质,当与本文公开的免疫原性组合物组合时,其提供甚至更增强的和/或更长的免疫应答。佐剂可以有利于,例如,主要是Th1介导的免疫应答、Th1型免疫应答,或Th1介导的免疫应答。同样,相对于抗体介导的应答,佐剂可更倾向于细胞介导的免疫应答。替代地,佐剂可以促进抗体介导的应答。一些佐剂可以通过缓慢释放抗原来增强免疫反应,而其它佐剂可以通过以下任何一种机制来介导其作用:增加细胞浸润、炎症,以及向注射部位的运输,尤其是对于抗原呈递细胞(APC);通过上调共刺激信号或主要组织相容性复合体(MHC)表达来促进APC的激活状态;增强抗原提呈;或诱导细胞因子释放产生间接作用。
佐剂的例子包括皂苷QS21、CpG寡核苷酸、未甲基化的含CpG的寡核苷酸、MPL、TLR激动剂、TLR4激动剂、TLR9激动剂、雷西莫特
Figure BDA0002492522430000761
咪喹莫特(imiquimod)、细胞因子或编码该细胞因子的核酸,趋化因子或编码该趋化因子的核酸、IL-12或编码IL-12的核酸、IL-6或编码IL-6的核酸,以及脂多糖。合适的佐剂的另一个例子是Montanide ISA51。MontanideISA 51包含天然可代谢油和精制乳化剂。合适的佐剂的其它例子包括粒细胞/巨噬细胞集落刺激因子(GM-CSF)或编码其的核酸,以及钥孔血蓝蛋白(KLH)或编码其的核酸。GM-CSF可为,例如,在酵母(S.cerevisiae)载体中生长的人蛋白质。GM-CSF促进造血祖细胞,抗原呈递细胞(APC)、树突状细胞,和T细胞的克隆扩增和分化。
合适的佐剂的另一个例子是去除毒性的李斯特菌溶血素O(dtLLO)蛋白。去除毒性(detoxification)可以通过为三个选定的氨基酸引入点突变来实现,该三个选定的氨基酸对于LLO与胆固醇的结合以及最终的膜孔形成很重要。这三个靶向氨基酸存在于LLO的胆固醇结合域(ECTGLAWEWWR;SEQ ID NO:74)中,并且可以通过PCR引入DNA序列的点突变在序列(EATGLAWEAAR;SEQ ID NO:96)中进行修饰。适于用作佐剂的dtLLO的一个例子由SEQ IDNO:95编码。去除毒性的、非溶血形式的LLO(dtLLO)是肿瘤免疫疗法中的有效佐剂,并且可以通过充当PAMP来激活先天和细胞免疫应答。由与SEQ ID NO:95具有至少90%、95%、96%、97%、98%,或99%同一性的序列编码的dtLLO也适合用作佐剂。
佐剂的其它例子还包括生长因子或编码该生长因子的核酸、细胞群体、弗氏不完全佐剂、磷酸铝、氢氧化铝、BCG(bacille Calmette-Guerin)、明矾(alum)、白介素或编码该白介素的核酸、刺糖苷(quill glycosides)、单磷酰脂质A、脂质体、细菌促分裂原、细菌毒素,或任何其它类型的已知佐剂(参见,例如,Fundamental Immunology,第5版(2003年8月):William E.Paul(编辑);Lippincott Williams&Wilkins Publishers;第43章:Vaccines,GJV Nossal,出于所有目的将其全部内容并入本文作为参考)。
免疫原性组合物可以进一步包含一种或多种免疫调节分子。例子包括干扰素γ、细胞因子、趋化因子,和T细胞刺激剂。
免疫原性组合物可以是疫苗或药物组合物的形式。术语“疫苗”和“药物组合物”是可互换的,并且是指在药学上可接受的载体中用于体内施用于受试者的免疫原性组合物。疫苗可以是,例如,包含在细胞内并由细胞递送的疫苗(例如本文所公开的重组李斯特菌)。疫苗可以防止受试者感染或发展疾病和/或疫苗可以对患有疾病的受试者进行治疗。
“药学上可接受的载体”是指包含免疫原性组合物的运载体,其可被引入受试者中而没有明显的不良影响,并且对免疫原性组合物没有有害影响。即,“药学上可接受的”是指任何安全的配方,其为在本文公开的方法中使用的有效量的至少一种免疫原性组合物的期望的给药途径提供合适的递送。药学上可接受的载体或运载体或赋形剂是众所周知的。合适的药学上可接受的载体及其选择所涉及的因素的描述可在各种容易获得的来源中找到,例如,Remington's Pharmaceutical Sciences,第18版,1990,出于所有目的将其全文引入作为参考。这样的载体可以适合于任何给药途径(例如肠胃外、肠内(例如口服),或局部施用)。可以缓冲这样的药物组合物,例如,根据免疫原性组合物的稳定性和给药途径,将pH保持在pH 4.0至9.0的特定期望值。
合适的药学上可接受的载体包括,例如,无菌水、盐溶液(如盐水)、葡萄糖、缓冲溶液(如磷酸盐缓冲溶液或碳酸氢盐缓冲溶液)、醇、阿拉伯胶、植物油、苄醇、聚乙二醇、明胶、碳水化合物(例如乳糖、直链淀粉或淀粉)、硬脂酸镁、滑石粉、硅酸、粘性石蜡、白石蜡、甘油、藻酸盐、透明质酸、胶原蛋白、香料油、脂肪酸单甘油酯和甘油二酯、季戊四醇脂肪酸酯、羟基甲基纤维素、聚乙烯吡咯烷酮等。药物组合物或疫苗还可包括辅助剂,包括,例如,稀释剂、稳定剂(例如糖和氨基酸)、防腐剂、湿润剂、乳化剂、pH缓冲剂、黏度增强添加剂(viscosity enhancing additives)、润滑剂、影响渗透压的盐、缓冲剂、维生素、色素、调味剂、芳香族物质等不会与免疫原性组合物产生有害反应的物质。
对于液体配方(例如,在其中冻干的重组细菌或李斯特菌菌株通过溶解在一定量的溶剂中而重建的实施方案中),例如,药学上可接受的载体可以是水溶液或非水溶液、悬浮液、乳剂,或油。非水溶剂包括例如丙二醇、聚乙二醇,和可注射的有机酯(例如油酸乙酯)。水性载体包括,例如,水、醇/水溶液、乳液或悬浮液(包括盐水和缓冲介质)。油的例子包括石油、动物、植物,或合成来源的油,例如花生油、大豆油、矿物油、橄榄油、葵花油,和鱼肝油。固体载体/稀释剂包括,例如,胶质、淀粉(例如玉米淀粉、预糊化淀粉)、糖(例如乳糖、甘露醇、蔗糖,或右旋糖)、纤维素材料(例如微晶纤维素)、丙烯酸酯(例如聚丙烯酸甲酯)、碳酸钙、氧化镁、滑石粉,或它们的混合物。
可选地,可以配制缓释或定向释放的药物组合物或疫苗。这可以通过例如使用脂质体或组合物来实现,在该组合物中,活性化合物被可不同程度降解的涂层(例如通过微囊化、多层涂层等)保护。这样的组合物可以配制成立即释放或缓慢释放。还可以将组合物冷冻干燥,并使用获得的冻干物(例如,用于制备注射用产品)。
本文公开的免疫原性组合物、药物组合物,或疫苗还可包含有效预防或治疗癌症的一种或多种其它化合物。例如,另外的化合物可以包含在化学疗法中有用的化合物,例如安吖啶(amsacrine)、博来霉素、白消安(busulfan)、卡培他滨、卡铂、卡马汀、苯丁酸氮芥、顺铂、克拉屈滨、氯法拉滨、可瑞沙星蛋白酶、环磷酰胺、阿糖胞苷、达卡巴嗪、放线菌素、道诺霉素、多西他赛(docetaxel)、阿霉素(doxorubicin)、表柔比星、依托泊苷、氟达拉滨、5-氟尿嘧啶(5-FU)、吉西他滨、格立得植入剂(Gliadelimplants)、羟基脲(hydroxycarbamide)、伊达比星、异环磷酰胺、伊立替康、亚叶酸(leucovorin)、脂质体阿霉素、脂质体柔红霉素(liposomaldaunorubicin)、洛莫司汀、美法仑、巯嘌呤、美司钠、氨甲蝶呤、丝裂霉素(mitomycin),米托蒽醌、奥沙利铂、紫杉醇(Taxol)、培美曲塞、喷司他丁(pentostatin)、甲基苄肼、雷地曲塞、赛特铂(satraplatin)、链脲佐菌素、tegafur-uracil、替莫唑胺、替尼泊苷、噻替哌、硫鸟嘌呤、拓泊替康(topotecan)、苏消安、长春碱、长春新碱、长春地辛、长春瑞宾,或其组合。另外的化合物还可包含其它生物制剂,包括抗HER2抗原的
Figure BDA0002492522430000791
(曲妥珠单抗)、抗VEGF的
Figure BDA0002492522430000792
(贝伐珠单抗),或EGF受体的抗体,例如
Figure BDA0002492522430000793
(西妥昔单抗)和
Figure BDA0002492522430000794
(帕尼单抗)。所述另外的化合物还可包括例如另外的免疫疗法。
另外的化合物还可包含免疫检查点抑制剂拮抗剂,例如PD-1信号通路抑制剂、CD-80/86和CTLA-4信号通路抑制剂、T细胞膜蛋白3(TIM3)信号通路抑制剂、腺苷A2a受体(A2aR)信号通路抑制剂、淋巴细胞激活基因3(LAG3)信号通路抑制剂、杀伤免疫球蛋白受体(KIR)信号通路抑制剂、CD40信号通路抑制剂,或任何其它抗原呈递细胞/T细胞信号通路抑制剂。免疫检查点抑制剂拮抗剂的例子包括抗PD-L1/PD-L2抗体或其片段、抗PD-1抗体或其片段、抗CTLA-4抗体或其片段,或抗B7-H4抗体或其片段。另外的化合物还可包含T细胞刺激剂,例如与T细胞受体共刺激分子结合的抗体或其功能片段、抗原呈递细胞受体结合共刺激分子,或TNF受体超家族成员。T细胞受体共刺激分子可包含例如CD28或ICOS。抗原呈递细胞受体结合共刺激分子可包含,例如,CD80受体、CD86受体,或CD46受体。TNF受体超家族成员可包含,例如,糖皮质激素诱导的TNF受体(GITR)、OX40(CD134受体)、4-1BB(CD137受体),或TNFR25。参见,例如,WO2016100929、WO2016011362,和WO2016011357,出于所有目的将它们每一篇的全部内容通过引用整体并入本文。
VI.治疗方法
本文公开的冻干的细菌或李斯特菌菌株(可选地,其中冻干的重组细菌或李斯特菌菌株通过溶解在一定量的溶剂中而重建)、免疫原性组合物、药物组合物,和疫苗可用于多种方法中。例如,它们可以用于在受试者中诱导或增强抗疾病相关抗原(例如癌症相关抗原或肿瘤相关抗原)免疫应答的方法中、用于在受试者中诱导或增强抗疾病(例如抗肿瘤或癌症)免疫反应的方法中、用于在受试者中治疗疾病(例如肿瘤或癌症)的方法中、用于在受试者中预防疾病(例如肿瘤或癌症)的方法中,或用于保护受试者免于疾病(例如肿瘤或癌症)的方法中。它们还可以用于增加受试者的脾脏和肿瘤中T效应细胞与调节性T细胞(Tregs)的比例的方法中,其中T效应细胞靶向疾病相关抗原。它们还可用于以下方法中:增加受试者中与疾病相关的抗原抗原T细胞的方法、增加患有疾病的受试者的存活时间的方法、延迟受试者中疾病的发作的方法,或减轻受试者中疾病症状的方法。
在受试者中诱导或增强抗疾病相关抗原免疫应答的方法可包括,例如,向受试者施用冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或本文公开的疫苗。由此,可以在受试者中诱导或增强抗疾病相关抗原免疫应答。例如,在冻干或重建的重组李斯特菌菌株的情况下,所述李斯特菌菌株可以表达融合多肽,从而在受试者中引发免疫应答。免疫应答可以包括,例如,T细胞应答,例如CD4+FoxP3-T细胞应答、CD8+T细胞应答,或CD4+FoxP3-和CD8+T细胞应答。此类方法还可以增加受试者的脾脏和肿瘤微环境中T效应细胞与调节性T细胞(Tregs)的比例,从而允许受试者中更深刻的抗肿瘤应答。
在受试者中诱导或增强抗疾病(例如抗癌或抗肿瘤)免疫应答的方法可以包括,例如,向受试者施用本文所公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。由此可以在受试者中诱导或增强抗疾病免疫应答。例如,在重组李斯特菌菌株的情况下,所述李斯特菌菌株可以表达融合多肽,从而在受试者中引发抗疾病反应。
在受试者中治疗疾病(例如癌症或肿瘤)的方法可包括,例如,向对象施用本文所公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。然后,受试者可以针对表达与疾病相关的抗原的疾病发起免疫反应,从而治疗受试者中的疾病。
在受试者中预防疾病(例如肿瘤或癌症)或保护受试者免于疾病发展的方法可包括,例如,向受试者施用本文所公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。然后,受试者可以针对与疾病相关的抗原发起免疫反应,从而预防疾病或保护受试者免于疾病的发展。
在上述某些方法中,施用两种或更多种冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。多种重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗可以以任何顺序或组合顺序施用,或者可以以任何组合同时施用。例如,如果要施用四种不同的李斯特菌菌株,则可以依次地施用它们,可以同时施用它们,或者可以以任意组合的形式施用它们(例如:同时施用第一和第二菌株,随后同时施用第三和第四菌株)。可选地,在顺序施用的情况下,可以在相同的免疫应答期间施用所述组合物。在一些实施方案中,将组合物彼此在0-10或3-7天内施用。多种重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗可各自包含不同组的抗原肽。替代地,两个或更多个可以包含相同组的抗原肽(例如:相同组的抗原肽,顺序不同)。
在某些方法中,疾病是癌症或肿瘤。癌症是哺乳动物的一种生理状况,通常以不受控制的细胞生长和增殖为特征。癌症可以是造血系统恶性肿瘤或实体瘤(即由过度的细胞生长或增殖导致的细胞团块,包括癌前军团(pre-cancerous legions))。转移性癌症是指从其最初开始的地方扩散到体内另一个地方的癌症。由转移性癌细胞形成的肿瘤称为转移性肿瘤或转移,该术语也用于指癌细胞扩散到身体其它部位的过程。通常,转移性癌症与原始或原发性癌症具有相同的名称和相同类型的癌细胞。实体瘤的例子包括黑素瘤、上皮癌、母细胞瘤,和肉瘤。血液系统恶性肿瘤包括例如白血病或淋巴样恶性肿瘤,例如淋巴瘤。癌症的示例性类别包括脑癌、乳腺癌、胃肠道癌、泌尿生殖道癌、妇科癌、头颈癌、血红素癌、皮肤癌,和胸腔癌。脑恶性肿瘤包括,例如,胶质母细胞瘤、高级脑桥胶质瘤、低级胶质瘤、髓母细胞瘤、神经母细胞瘤,和毛细胞型星形细胞瘤(pilocytic astrocytoma)。胃肠道癌症包括,例如,结直肠癌、胆囊癌、肝细胞癌、胰腺癌、PNET癌、胃癌,和食道癌。泌尿生殖系统癌症包括,例如,肾上腺皮质癌、膀胱癌、肾脏嫌色细胞癌、肾癌(透明细胞)、肾癌(乳头状)、横纹肌癌,和前列腺癌。妇科癌症包括,例如,子宫癌肉瘤、子宫内膜癌、浆液性卵巢癌,和宫颈癌。头颈癌包括,例如,甲状腺癌、鼻咽癌、头颈癌,和腺样囊性癌。血红素癌包括,例如,多发性骨髓瘤、骨髓增生异常、套细胞淋巴瘤、急性淋巴细胞白血病(ALL)、非淋巴瘤、慢性淋巴细胞性白血病(CLL),和急性髓细胞性白血病(AML)。皮肤癌包括,例如,皮肤黑素瘤和鳞状细胞癌。胸腔癌包括,例如,鳞状肺癌、小细胞肺癌,和肺腺癌。
这样的癌症的更具体的例子包括鳞状细胞癌或上皮癌(例如口腔鳞状细胞癌)、骨髓瘤、口腔癌、青少年鼻咽血管纤维瘤、神经内分泌肿瘤、肺癌、腹膜癌、肝细胞癌、胃(gastric)或胃(stomach)癌(包括胃肠道癌)、胰腺癌、神经胶质瘤、胶质母细胞瘤、神经胶质瘤、宫颈癌、卵巢癌、肝癌(liver cancer)、膀胱癌、肝细胞癌(hepatoma)、肝细胞癌、乳腺癌、三阴性乳腺癌、结肠癌、直肠癌、结直肠癌、子宫内膜癌或子宫癌(cancer)或癌(carcinoma)、唾液腺癌、肾脏(kidney)或肾(renal)癌(例如肾细胞癌)、前列腺癌、外阴癌、甲状腺癌、肝癌(hepatic carcinoma)、肛门癌、阴茎癌、纤维肉瘤、胆囊癌、骨肉瘤、间皮瘤,以及头颈癌。癌症也可以是脑癌或其它类型的CNS或颅内肿瘤。例如,受试者可以患有星形细胞肿瘤(例如星形细胞瘤、间变性星形细胞瘤、胶质母细胞瘤、毛细胞型星形细胞瘤、室管膜下巨细胞星形细胞瘤(subependymal giant cell astrocytoma)、多形性黄色星形细胞瘤(pleomorphic xanthoastrocytoma))、室管膜细胞瘤(例如室管膜瘤(ependymoma)、间变性室管膜细胞瘤、黏液乳头状室管膜瘤(myxopapillary ependymoma)、室管膜下室管膜瘤(subependymoma))、混合胶质瘤(例如,混合性少突胶质细胞瘤(mixedoligoastrocytoma)、间变型少突星形细胞瘤(anaplastic oligoastrocytoma))、来源不确定的神经上皮性肿瘤(例如,极性胶质母细胞瘤、星形母细胞瘤、大脑胶质瘤病(gliomatosis cerebri)、脉络丛肿瘤(例如,脉络丛乳头状瘤、脉络丛癌)、神经元瘤或混合性神经元-胶质细胞瘤(mixed neuronal-glial tumor)(例如神经节细胞瘤(gangliocytoma)、小脑发育不良性神经节细胞瘤(dyplastic gangliocytoma ofcerebellum)、神经节神经胶质瘤(ganglioglioma)、间变性神经节细胞胶质瘤(anaplasticganglioglioma)、婴儿促结缔组织增生性神经节细胞胶质瘤(desmoplastic infantileganglioma)、中枢神经细胞瘤(central neurocytoma)、胚胎发育不良性神经上皮瘤(dysembryoplasticneuroepthelial tumor)、嗅神经母细胞瘤(olfactoryneuroblastoma))、松果体实质瘤(例如,松果体细胞瘤(pineocytoma)、松果体母细胞瘤(pineoblastoma)、混合的松果体细胞瘤/松果体母细胞瘤),或具有混合的神经母细胞(neuroblastic)或神经胶胚细胞(glioblastic)成分的肿瘤(例如,髓上皮瘤(medulloepithelioma)、髓母细胞瘤、神经母细胞瘤、视网膜母细胞瘤、室管膜母细胞瘤)。
术语“治疗”(treat)或“治疗”(treating)是指治疗和预防用药或预防措施,其中目的是预防或减轻目标疾病的症状。治疗可以包括以下一种或多种:直接影响或治愈、压制(suppressing)、抑制、预防、降低其严重性、延缓其发作、减缓其进展,稳定其进展、诱导其缓解、预防或延迟其转移、减少/改善与疾病有关的症状,或其组合。例如,治疗可以包括增加预期的生存时间。其效果(例如,压制、抑制、预防、减轻其严重程度、延缓其发作、减缓其进展,稳定其进展、诱导其缓解、预防或延迟、减轻/改善其症状等)可以是相对于没有接受治疗或接受安慰剂治疗的对照受试者而言的。术语“治疗”(treat)或“治疗”(treating)也可以指患有该疾病的受试者增加的存活机会百分比或延长的预期存活时间(例如,相对于未接受治疗或接受安慰剂治疗的对照受试者)。在一个例子中,“治疗”是指延迟进展、加快缓解、诱导缓解、增加缓解、加快康复、提高替代疗法的疗效、降低对替代疗法的抵抗力,或其组合(例如,相对于未接受治疗或接受安慰剂治疗的对照受试者)。术语“预防”或“阻碍”可指,例如,延迟症状发作、预防疾病复发、减少复发发作的次数或频率、增加症状发作之间的潜伏期,或其组合。术语“压制”或“抑制”可以指,例如,减轻症状的严重性、减轻急性发作的严重性、减少症状的数量、减少疾病相关症状的发生率、减少症状的潜伏期、改善症状、减轻继发症状、减少继发感染、延长患者生存时间,或上述各项的组合。
术语“受试者”是指需要治疗或易患疾病的哺乳动物(例如人)。术语“受试者”还指接受预防或治疗的哺乳动物(例如人)。受试者可以包括狗、猫、猪、牛、绵羊、山羊、马、大鼠、小鼠、非人类哺乳动物,和人类。术语“受试者”并不一定排除在各个方面都健康且没有或未显示出该疾病迹象的个体。
如果受试者具有至少一种已知的风险因素(例如遗传、生化、家族史,和处境暴露),则该个体患该疾病的风险更高;该风险因素使具有该风险因素的个体比没有该风险因素的个体具有统计学上显著更大的患病风险。
“症状”或“体征”是指医师观察到的疾病的客观证据或受试者感知的疾病的主观证据,例如步态改变。症状或体征可能是疾病的任何表现。症状可能是原发性或继发性。术语“原发性”是指由特定疾病或病症(例如肿瘤或癌症)的直接结果引起的症状,而术语“继发性”是指源自原发性原因或因此导致的症状。本文公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,和疫苗可治疗原发或继发性症状或继发性并发症。
以有效方案施用冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。有效方案指延迟疾病的至少一种体征或症状的发作、降低其严重性、抑制其进一步恶化,和/或改善疾病的至少一种体征或症状的剂量、施用途径和施用频率。替代地,以有效方案施用冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗,有效方案意味着诱导对冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗中的疾病相关抗原的免疫应答的剂量、施用途径和施用频率,或诱导对细菌或李斯特菌菌株本身的免疫应答的剂量、施用途径和施用频率。如果受试者已经患有该疾病,则该方案可以被称为治疗有效方案。如果受试者相对于一般人群而言处于罹患该疾病的较高风险中,但尚未出现症状,则该方案可以称为预防有效方案。在一些情况下,相对于历史对照或同一患者的过去经验,可以在单个患者中观察到治疗或预防功效。在其它情况下,相对于未治疗患者的对照人群,在经治疗患者的临床前或临床试验中可以证明治疗或预防功效。例如,如果经治疗的患者个体所获得的结果比在未通过本文所述方法治疗的可比较患者的对照人群中的平均结果更有利,或者如果在对照临床试验(例如II期、II/III期或III期试验)中的经治疗患者对(versus)对照患者证实了在p<0.05或0.01甚至0.001水平上更有利的结果,则该方案可被视为治疗或预防有效。
重组李斯特菌菌株的示例性剂量为,例如,1×106-1×107CFU、1×107-1×108CFU、1×108-3.31×1010CFU、1×109-3.31×1010CFU、5-500×108CFU、7-500×108CFU、10-500×108CFU、20-500×108CFU、30-500×108CFU、50-500×108CFU、70-500×108CFU、100-500×108CFU、150-500×108CFU、5-300×108CFU、5-200×108CFU、5-15×108CFU、5-100×108CFU、5-70×108CFU、5-50×108CFU、5-30×108CFU、5-20×108CFU、1-30×109CFU、1-20×109CFU、2-30×109CFU、1-10×109CFU、2-10×109CFU、3-10×109CFU、2-7×109CFU、2-5×109CFU,和3-5×109CFU。重组李斯特菌菌株的其它示例性剂量为,例如,1×107生物、1.5×107生物、2×108生物、3×107生物、4×107生物、5×107生物、6×107生物、7×107生物、8×107生物、10×107生物、1.5×108生物、2×108生物、2.5×108生物、3×108生物、3.3×108生物、4×108生物、5×108生物、1×109生物、1.5×109生物、2×109生物、3×109生物、4×109生物、5×109生物、6×109生物、7×109生物、8×109生物、10×109生物、1.5×1010生物、2×1010生物、2.5×1010生物、3×1010生物、3.3×1010生物、4×1010生物,和5×1010生物。剂量可以取决于患者的状况和对先前治疗(如果有的话)的反应,该治疗是预防性的还是治疗性的,以及其它因素。
给药可以通过任何合适的方式进行。例如,给药可以是肠胃外、静脉内、口服、皮下、动脉内、颅内、鞘内、脑室内、腹膜内、局部、鼻内、肌肉内、眼内、直肠内、结膜、透皮、皮内、阴道、直肠、肿瘤内、经癌灶(parcanceral)、经粘膜、血管内、脑室内、吸入(气雾剂)、鼻吸(喷雾)、舌下、气雾剂、栓剂,或其组合。对于鼻内给药或通过吸入给药,合适的是:重组融合多肽、编码重组融合多肽的核酸、重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物的溶液或悬液,或疫苗在合适的载体存在下混合并气雾化(aerosolized)或喷雾化(nebulized)。这样的气雾剂可以包含本文所述的任何冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。给药也可以是栓剂的形式(例如直肠栓剂或尿道栓剂)、用于皮下植入的小丸的形式(例如提供一段时间内的控释),或胶囊的形式。给药也可以通过注射到疾病部位。可以根据以下因素快速确定给药方式:例如受治疗的疾病的确切性质和类型、疾病的严重程度、患者的年龄和总体身体状况、患者的体重、个体患者的反应等。
给药频率可取决于受试者中冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗的半衰期,受试者的状况和给药途径,以及其它因素。该频率可以是,例如,每天、每周、每月、每季度,或不规则的间隔,以响应受试者的状况变化或所治疗的肿瘤或癌症的进展。治疗过程可以取决于受试者的状况和其它因素。例如,治疗过程可以是数周、数月,或数年(例如,长达2年)。例如,可以在第一个疗程后立即或在几天、几周,或几个月的间隔后立即重复给药(剂量),以实现疾病消退或抑制。可以通过任何已知的技术来确定评估,包括诊断方法,例如成像技术、血清生物标志物的分析、活检,或疾病相关症状的存在、不存在,或改善。作为一个具体实施例,可以每3周施用冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗,长达2年。在一个实施例中,以增加的剂量施用本文公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗,以增加T效应细胞与调节性T细胞之比,并产生更有效的抗疾病免疫反应。通过向受试者提供细胞因子,可以进一步增强抗疾病免疫应答;该细胞因子包括,例如,IFN-γ、TNF-α,和其它已知的增强细胞免疫应答的细胞因子。参见,例如,US 6,991,785,其出于所有目的通过引用整体并入本文。
一些方法可以进一步包括用另外的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗“加强”(boosting)受试者,或多次施用冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。“加强”是指对受试者施用额外的剂量。例如,在一些方法中,给予2次加强(或总共3次接种)、给予3次加强、给予4次加强、给予5次加强,或给予6次或更多次加强。给药的剂量数量可以取决于,例如,疾病对治疗的反应。
可选地,在增强接种中使用的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗与用于最初的“初免(priming)”接种的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗相同。替代地,加强剂(booster)不同于初免重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗。可选地,在初免和加强接种中使用相同的剂量。替代地,在加强剂中使用较大的剂量,或在加强剂中使用较小的剂量。初免接种和加强接种之间的时间间隔可以通过实验确定。例如,初免接种和加强接种之间的时间可以是1周、2周、3周、4周、5周、6-8周,或8-10周。
异源的初免加强策略对于增强免疫应答和针对多种病原体的保护已是有效的。参见,例如,Schneider et al.(1999)Immunol.Rev.170:29-38;Robinson(2002)Nat.Rev.Immunol.2:239-250;Gonzalo et al.(2002)Vaccine20:1226-1231;以及Tanghe(2001)Infect.Immun.69:3041-3047,出于所有目的将每一篇通过引用整体并入本文。在初免注射和增强注射中提供不同形式的抗原可以使对抗原的免疫反应最大化。DNA疫苗初免,然后在佐剂中通过蛋白增强或通过病毒载体递送编码抗原的DNA是改善抗原特异性抗体和CD4+T细胞反应或CD8+T细胞反应的一种有效方法。参见,例如,Shiver et al.(2002)Nature415:331-335;Gilbert et al.(2002)Vaccine20:1039-1045;Billaut-Mulot et al.(2000)Vaccine 19:95-102;以及Sin et al.(1999)DNA Cell Biol.18:771-779,出于所有目的将每一篇通过引用整体并入本文。作为一个例子,当受试者用DNA初免疫苗接种,然后通过表达抗原的腺病毒载体增强时,向编码抗原的DNA中添加CRL1005泊洛沙姆(poloxamer)(12kDa,5%POE)可增强T细胞应答。参见,例如,Shiver et al.(2002)Nature415:331-335,出于所有目的通过引用整体并入本文。作为另一个例子,可以施用编码抗原的免疫原性部分的载体构建体以及包含抗原的免疫原性部分的蛋白质。参见,例如,US2002/0165172,出于所有目的通过引用将其全部内容合并于此。类似地,可以通过同时施用(例如,在相同的免疫应答中、在一些实施方案中、在彼此之间的0-10或3-7天内)目标多核苷酸和多肽来增强核酸疫苗接种的免疫应答。参见,例如,US6,500,432,出于所有目的通过引用整体并入本文。
本文公开的治疗方法还可包括施用有效预防或治疗疾病(例如肿瘤或癌症)的一种或多种其它化合物。例如,另外的化合物可以包含在化学疗法中有用的化合物,例如安吖啶(amsacrine)、博来霉素、白消安(busulfan)、卡培他滨、卡铂、卡马汀、苯丁酸氮芥、顺铂、克拉屈滨、氯法拉滨、可瑞沙星蛋白酶、环磷酰胺、阿糖胞苷、达卡巴嗪、放线菌素、道诺霉素、多西他赛(docetaxel)、阿霉素(doxorubicin)、表柔比星、依托泊苷、氟达拉滨、5-氟尿嘧啶(5-FU)、吉西他滨、格立得植入剂(Gliadelimplants)、羟基脲(hydroxycarbamide)、伊达比星、异环磷酰胺、伊立替康、亚叶酸(leucovorin)、脂质体阿霉素、脂质体柔红霉素(liposomaldaunorubicin)、洛莫司汀、美法仑、巯嘌呤、美司钠、氨甲蝶呤、丝裂霉素(mitomycin)、米托蒽醌、奥沙利铂、紫杉醇(Taxol)、培美曲塞、喷司他丁(pentostatin)、甲基苄肼、雷地曲塞、赛特铂(satraplatin)、链脲佐菌素、tegafur-uracil、替莫唑胺、替尼泊苷、噻替哌、硫鸟嘌呤、拓泊替康(topotecan)、苏消安、长春碱、长春新碱、长春地辛、长春瑞宾,或其组合。替代地,另外的化合物还可包含其它生物制剂,包括抗HER2抗原的
Figure BDA0002492522430000881
(曲妥珠单抗)、抗VEGF的
Figure BDA0002492522430000882
(贝伐珠单抗),或EGF受体的抗体,例如
Figure BDA0002492522430000883
(西妥昔单抗)和
Figure BDA0002492522430000884
(帕尼单抗)。替代地,另外的化合物可以包含其它免疫疗法。替代地,该另外的化合物可以是吲哚胺2,3-二加氧酶(IDO)途径抑制剂,例如1-甲基色氨酸(1MT)、1甲基色氨酸(1MT)、坏死素-1(Necrostatin-1)、吡哆醛异烟腙(pyridoxalisonicotinoylhydrazone)、依布硒、5-甲基吲哚-3-甲醛、CAY10581、抗IDO抗体,或小分子IDO抑制剂。IDO抑制可以增强化学治疗剂的药效。本文公开的治疗方法也可以与放射、干细胞治疗、手术,或任何其它治疗组合。
这种另外的化合物或治疗可以施用于本文所公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗之前,施用于本文所公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗之后,或与本文所公开的冻干或重建的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗同时施用。
靶向免疫调节疗法主要集中在共刺激受体的活化上,例如通过使用靶向肿瘤坏死因子受体超家族成员(包括4-1BB、OX40,和GITR(糖皮质激素诱导的TNF受体相关))的激动剂抗体。GITR的调节已显示出在抗肿瘤和疫苗方面的潜力。激动剂抗体的另一个靶标是用于T细胞活化的共刺激信号分子。靶向共刺激信号分子可能导致增强的T细胞活化并促进更有效的免疫反应。共刺激也可能有助于防止来自检查点抑制的抑制作用,并增加抗原特异性T细胞增殖。
基于李斯特菌的免疫疗法通过诱导肿瘤抗原特异性T细胞的从头产生以及通过减少肿瘤微环境中的免疫抑制调节性T细胞(Tregs)和髓样来源的抑制细胞(MDSCs)的数量和活性而起作用,该肿瘤抗原特异性T细胞渗透并破坏肿瘤。T细胞共抑制或共刺激受体(例如,检查点抑制剂CTLA 4、PD 1、TIM 3、LAG3,和共刺激物CD137、OX40、GITR,和CD40)的抗体(或其功能片段)可以与基于李斯特菌的免疫疗法具有协同作用。
因此,一些方法可包括进一步施用包含免疫检查点抑制剂拮抗剂的组合物,所述免疫检查点抑制剂拮抗剂例如:PD-1信号通路抑制剂、CD-80/86和CTLA-4信号通路抑制剂、T细胞膜蛋白3(TIM3)信号通路抑制剂、腺苷A2a受体(A2aR)信号通路抑制剂、淋巴细胞激活基因3(LAG3)信号通路抑制剂、杀伤性免疫球蛋白受体(KIR)信号通路抑制剂、CD40信号通路抑制剂,或任何其它抗原呈递细胞/T细胞信号通路抑制剂。免疫检查点抑制剂拮抗剂的例子包括抗PD-L1/PD-L2抗体或其片段、抗PD-1抗体或其片段、抗CTLA-4抗体或其片段,或抗B7-H4抗体或其片段。例如,可以将抗PD-1抗体以每2周5-10mg/kg、每3周5-10mg/kg、每3周1-2mg/kg、每周1-10mg/kg、每2周1-10mg/kg、每3周1-10mg/kg,或每4周1-10mg/kg的剂量施用给受试者。
同样,一些方法可以进一步包括施用T细胞刺激剂,例如与T细胞受体共刺激分子、抗原呈递细胞受体结合共刺激分子,或TNF受体超家族的成员结合的抗体或其功能片段。T细胞受体共刺激分子可包含,例如,CD28或ICOS。抗原呈递细胞受体结合共刺激分子可包含,例如,CD80受体、CD86受体,或CD46受体。TNF受体超家族成员可包含,例如,糖皮质激素诱导的TNF受体(GITR)、OX40(CD134受体)、4-1BB(CD137受体),或TNFR25。
例如,一些方法可以进一步包括施用有效量的组合物,所述组合物包含与T细胞受体共刺激分子结合的抗体或其功能片段或与结合共刺激分子的抗原呈递细胞受体结合的抗体或其功能片段。该抗体可以是,例如,抗TNF受体抗体或其抗原结合片段(例如,TNF受体超家族成员糖皮质激素诱导的TNF受体(GITR)、OX40(CD134受体)、4-1BB(CD137受体),或TNFR25)、抗OX40抗体或其抗原结合片段,或抗GITR抗体或其抗原结合片段。替代地,可以施用其它激动分子(agonistic molecules)(例如,GITRL、GITRL的活性片段、含有GITRL的融合蛋白、含有GITRL的活性片段的融合蛋白、抗原呈递细胞(APC)/T细胞激动剂、CD134或其配体或其片段、CD137或其配体或片段,或可诱导T细胞共刺激分子(ICOS)或其配体或片段,或激动性小分子)。
在特定的例子中,一些方法可以进一步包括施用抗CTLA-4抗体或其功能片段和/或抗CD137抗体或其功能片段。例如,抗CTLA-4抗体或其功能片段或抗CD137抗体或其功能片段可以在第一剂重组融合多肽、编码重组融合多肽的核酸、重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗之后的约72小时施用,或第一剂重组融合多肽、编码重组融合多肽的核酸、重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗之后的约48小时施用。抗CTLA-4抗体或其功能片段或抗CD137抗体或其功能片段可以,例如,以约0.05mg/kg和约5mg/kg的剂量施用。重组李斯特菌菌株或包含重组李斯特菌菌株的免疫原性组合物可以例如以约1×109CFU的剂量施用。一些这样的方法可以进一步包括施用有效量的抗PD-1抗体或其功能片段。
评估癌症免疫疗法的功效的方法是众所周知的,并且描述于,例如,Dzojic etal.(2006)Prostate 66(8):831-838;Naruishi et al.(2006)Cancer Gene Ther.13(7):658-663;Sehgal et al.(2006)Cancer Cell Int.6:21);以及Heinrich et al.(2007)Cancer Immunol Immunother 56(5):725-730,出于所有目的将每一篇均通过引用整体并入本文。作为一个示例,对于前列腺癌,前列腺癌模型可用于测试本文公开的方法和组合物,例如TRAMP-C2小鼠模型、178-2BMA细胞模型、PAIII腺癌细胞模型、PC 3M模型,或任何其它前列腺癌模型。
替代地或另外地,可以在人类受试者中测试免疫疗法,并且可以使用已知的方法监测功效。此类方法可包括,例如,直接测量CD4+和CD8+T细胞反应,或测量疾病进展(例如,通过确定肿瘤转移的数量或大小,或监测疾病症状,例如咳嗽、胸痛、体重减轻等)。用于评估人类受试者中的癌症免疫疗法的功效的方法是众所周知的,并且描述与,例如,Uenakaet al.(2007)Cancer Immun.7:9和Thomas-Kaskel et al.(2006)Int J Cancer119(10):2428-2434,出于所有目的将每一篇均通过引用整体并入本文。
VII.试剂盒
还提供了包含用于执行本文公开的方法的试剂的试剂盒或包含本文公开的组合物、工具,或仪器的试剂盒。
例如,此类试剂盒可包含本文公开的冻干重组细菌或李斯特菌菌株、本文公开的免疫原性组合物、本文公开的药物组合物,或本文公开的疫苗。此类试剂盒还可包含用于重建冻干的重组细菌或李斯特菌菌株的溶剂或稀释剂。另外,这样的试剂盒可以另外包含说明材料,该说明材料描述了冻干的重组细菌或李斯特菌菌株、免疫原性组合物、药物组合物,或疫苗进行本文所公开的方法的用途。这样的试剂盒可以可选地进一步包括施用器(applicator)。尽管下文描述了模型试剂盒,但是根据本公开,其它有用的试剂盒的内容将是显而易见的。
出于所有目的,上文或下文所引用的所有专利文件、网站、其它出版物、登录号等均以引用的方式整体并入本文,其程度与将每个单独的项目具体并单独地指示为通过引用并入本文的程度相同。如果序列的不同版本在不同时间与登录号相关联,则意指着在本申请的有效申请日与登录号相关联的版本。有效申请日是指实际的申请日或提及登录号的优先权申请(如有的话)的申请日中较早的日期。同样,如果在不同时间发布了出版物,网站等的不同版本,则除非另有说明,是指在本申请的有效申请日最近发布的版本。除非另外明确指出,否则本发明的任何特征、步骤、要素、实施例,或方面可以与任何其它相结合使用。尽管为了清楚和容易理解的目的,已经通过图示和示例的方式对本发明进行了详细描述,但是显而易见的是,可以在所附权利要求的范围内进行某些改变和修改。
实施方案列表
本文公开的主题包括但不限于以下实施方案。
1.一种用于制备包含李斯特菌菌株的冻干组合物的方法,包括:(a)提供组合物,该组合物在包含缓冲剂和蔗糖的配方中包含李斯特菌菌株;(b)在冷冻步骤中,在-32℃至约-80℃的保持温度中冷却步骤(a)中提供的所述组合物;(c)在一级干燥步骤中,将步骤(b)制备的所述组合物在约-10℃至约-30℃的保持温度下暴露于真空中;(d)在二级干燥步骤中,将步骤(c)制备的所述组合物在约-5℃至约25℃的保持温度下暴露于真空中,从而制得所述冻干组合物。
2.实施方案1所述的方法,其中在步骤(a)之前,通过将所述李斯特菌菌株暴露于降低的温度,以在所述李斯特菌菌株中诱导应激反应。
3.实施方案1所述的方法,其中在步骤(a)之前,通过将所述李斯特菌菌株暴露于降低的温度,以在所述李斯特菌菌株中不诱导应激反应。
4.前述任一实施方案所述的方法,其中步骤(a)中的所述组合物中使用的李斯特菌菌株为在步骤(a)前解冻的冷冻李斯特菌菌株。
5.实施方案4所述的方法,其中解冻的所述冷冻李斯特菌菌株的浓度在每毫升约1x10E9至约1x10E10菌落形成单位(CFU)之间。
6.实施方案4或5所述的方法,其中将所述冷冻李斯特菌菌株在约2℃至约37℃下解冻。
7.实施方案6所述的方法,其中将所述冷冻李斯特菌菌株在约20℃至约37℃下解冻。
8.实施方案7所述的方法,其中将所述冷冻李斯特菌菌株在约32℃和约37℃下解冻。
9.实施方案8所述的方法,其中将所述冷冻李斯特菌菌株在约37℃下解冻。
10.实施方案4-9中任一项所述的方法,其中将所述冷冻李斯特菌菌株解冻不超过8小时。
11.实施方案4-10中任一项所述的方法,其中所述冷冻李斯特菌菌株在解冻后,在约2℃至约8℃下保持不超过24小时。
12.实施方案1-3中任一项所述的方法,其中在步骤(a)的所述组合物中所使用的李斯特菌菌株在步骤(a)前新鲜培养。
13.前述任一实施方案所述的方法,其中所述缓冲剂是磷酸盐缓冲剂。
14.前述任一实施方案所述的方法,其中所述配方包含约1%至约5%w/v的蔗糖。
15.实施方案14所述的方法,其中所述配方包含约2%至约3%w/v的蔗糖。
16.实施方案15所述的方法,其中所述配方包含约2.5%w/v的蔗糖。
17.前述任一实施方案所述的方法,其中所述配方包含每毫升约1×10E9至约1×10E10菌落形成单位(CFU)的李斯特菌。
18.前述任一实施方案所述的方法,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
19.实施方案18所述的方法,其中所述配方不包含海藻糖、MSG,或rHSA。
20.前述任一实施方案所述的方法,其中冷冻步骤(b)中的所述保持温度在约-40℃至约-50℃之间。
21.实施方案20所述的方法,其中冷冻步骤(b)中的所述保持温度为约-45℃。
22.前述任一实施方案所述的方法,其中冷冻步骤(b)包括以每分钟约1℃的速率将温度降低至所述保持温度。
23.前述任一实施方案所述的方法,其中冷冻步骤(b)中的所述冷却持续约2小时至约4小时。
24.前述任一实施方案所述的方法,其中冷冻步骤(b)中的所述冷却包括将所述组合物在所述保持温度下保持约2小时。
25.前述任一实施方案所述的方法,其中,一级干燥步骤(c)中的所述保持温度在约-12℃和约-22℃之间。
26.实施方案25所述的方法,其中一级干燥步骤(c)中的所述保持温度在约-17℃和约-19℃之间。
27.实施方案26所述的方法,其中一级干燥步骤(c)中的所述保持温度为约-18℃。
28.前述任一实施方案所述的方法,其中一级干燥步骤(c)包括以每分钟约1℃的速率将温度升高至所述保持温度。
29.前述任一实施方案所述的方法,其中一级干燥步骤(c)进行约25小时至约35小时。
30.前述任一实施方案所述的方法,其中一级干燥步骤(c)的结束为在所述组合物达到所述保持温度后约12至约16小时。
31.前述任一实施方案所述的方法,其中一级干燥步骤(c)处于约0.09毫巴的真空压力下。
32.前述任一实施方案所述的方法,其中,二级干燥步骤(d)中的所述保持温度在约-5℃和约20℃之间。
33.实施方案32所述的方法,其中二级干燥步骤(d)中的所述保持温度在约-5℃和约5℃之间。
34.实施方案33所述的方法,其中二级干燥步骤(d)中的所述保持温度为约0℃。
35.前述任一实施方案所述的方法,其中二级干燥步骤(d)包括以每分钟约0.2℃的速率将温度升高至所述保持温度。
36.前述任一实施方案所述的方法,其中二级干燥步骤(d)进行约1小时至约10小时。
37.前述任一实施方案所述的方法,其中二级干燥步骤(d)包括将所述组合物在所述保持温度下保持约2小时至约6小时。
38.实施方案37所述的方法,其中二级干燥步骤(d)包括将所述组合物在所述保持温度下保持约5小时至约6小时。
39.前述任一实施方案所述的方法,其中二级干燥步骤(d)处于约0.09毫巴的真空压力下。
40.前述任一实施方案所述的方法,其中所述冻干组合物中的残留水分在约1%和约5%之间。
41.实施方案40所述的方法,其中所述冻干组合物中的残留水分在约2%和约4%之间。
42.前述任一实施方案所述的方法,其中所述冻干组合物中的残留水分为至少约2.5%。
43.实施方案42所述的方法,其中所述冻干组合物中的残留水分为至少约3%。
44.前述任一实施方案所述的方法,其中所述冻干组合物在约-20℃至约4℃下储存约12个月后显示出至少约60%的生存力。
45.实施方案44所述的方法,其中所述冻干组合物在约-20℃至约4℃下储存约12个月后显示出至少约75%的生存力。
46.实施方案45所述的方法,其中所述冻干组合物在约-20℃至约4℃下储存约12个月后显示出至少约80%的生存力。
47.前述任一实施方案所述的方法,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株。
48.前述任一项实施方案所述的方法,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株,其中所述缓冲剂是磷酸盐缓冲剂,且其中所述配方包含约2%至约3%w/v的蔗糖,且其中所述配方不包含海藻糖、MSG,或rHSA,且其中每毫升所述配方包含约1x10E9至约1x10E10菌落形成单位(CFU)的李斯特菌;且其中冷冻步骤(a)中的所述保持温度在约-40℃至约-50℃之间,且其中一级干燥步骤(c)中的所述保持温度在-17℃至-19℃之间,且其中二级干燥步骤(d)中的所述保持温度在-1℃至1℃之间,且其中所述冻干组合物中的残留水分为在约2.5%至约4%之间。
49.48所述的方法,其中步骤(a)中的所述组合物中所使用的李斯特菌菌株是在步骤(a)之前解冻的冷冻李斯特菌菌株,且其中解冻的所述冷冻李斯特菌菌株的浓度在每毫升约1x10E9至约1x10E10菌落形成单位(CFU)之间,且其中将所述冷冻李斯特菌菌株在约37℃解冻,且其中所述冷冻李斯特菌菌株的解冻不超过8小时,且其中在解冻后,将所述冷冻李斯特菌菌株在约2℃至约8℃下保持不超过24小时。
50.前述任一项实施方案所述的方法,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
51.实施方案50所述的方法,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码D133V PrfA突变蛋白。
52.实施方案50所述的方法,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码丙氨酸消旋酶或D-氨基酸氨基转移酶,其中所述含PEST的肽是LLO的N末端片段。
53.一种用于李斯特菌菌株的冻干的配方,其包含:(1)所述李斯特菌菌株;(2)磷酸盐缓冲剂;以及(3)蔗糖。
54.实施方案53所述的配方,其中所述李斯特菌菌株是通过将所述李斯特菌菌株暴露于降低的温度下而诱导了应激反应的菌株。
55.实施方案53或54所述的配方,其中所述李斯特菌菌株来自冷冻的李斯特菌原种(stock)。
56.实施方案53或54所述的配方,其中所述李斯特菌菌株来自新鲜培养的李斯特菌原种。
57.实施方案53-56中任一项所述的配方,其中所述配方包含约1%至约5%w/v的蔗糖。
58.实施方案57所述的配方,其中所述配方包含约2%至约3%w/v的蔗糖。
59.实施方案58所述的配方,其中所述配方包含约2.5%w/v的蔗糖。
60.实施方案53-59中任一项的所述的配方,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
61.实施方案60所述的配方,其中所述配方不包含海藻糖、MSG,或rHSA。
62.实施方案53-61中任一项所述的配方,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株。
63.实施方案53-62中任一项所述的配方,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株,且其中所述配方包含约2%至约3%w/v的蔗糖,且其中所述配方不包含海藻糖、MSG,或rHSA。
64.实施方案53-63中任一项所述的配方,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
65.实施方案64的所述的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码D133V PrfA突变蛋白的的第二开放阅读框。
66.实施方案64所述的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码丙氨酸消旋酶或D-氨基酸氨基转移酶的第二开放阅读框,且其中所述含PEST的肽是LLO的N末端片段。
67.通过实施方案1-52中任一项所述的方法生产的冻干组合物。
68.一种冻干组合物,其包含李斯特菌菌株、磷酸盐缓冲剂,和蔗糖。
69.实施方案68所述的冻干组合物,其中所述冻干组合物不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
70.实施方案69所述的冻干组合物,其中所述冻干组合物不包含海藻糖、MSG,或rHSA。
71.实施方案67-70中任一项所述的冻干组合物,其中所述冻干组合物中的残留水分在约1%至约5%之间。
72.实施方案71所述的冻干组合物,其中所述冻干组合物中的残留水分在约2%至约4%之间。
73.实施方案67-72中任一项所述的冻干组合物,其中所述冻干组合物中的残留水分为至少约2.5%。
74.实施方案73所述的冻干组合物,其中所述冻干组合物中的残留水分为至少约3%。
75.一种包含李斯特菌菌株的冻干组合物,其中所述冻干组合物中的残留水分为至少约2.5%。
76.实施方案67-75中任一项所述的冻干组合物,其中所述冻干组合物在约-20℃和约4℃之间储存约12个月后显示出至少约60%的生存力。
77.实施方案76所述的冻干组合物,其中所述冻干组合物在约-20℃和约4℃之间储存约12个月后显示出至少约75%的生存力。
78.实施方案77所述的冻干组合物,其中所述冻干组合物在约-20℃和约4℃之间储存约12个月后显示出至少约80%的生存力。
79.实施方案67-78中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株。
80.实施方案67-79中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株,并且其中所述冻干组合物不包含海藻糖、MSG,或rHSA,且其中所述冻干组合物中的残留水分在2.5%至4%之间。
81.实施方案67-80中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
82.实施方案81所述的冻干组合物,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码D133V PrfA突变蛋白的的第二开放阅读框。
83.实施方案81所述的冻干组合物,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码丙氨酸消旋酶或D-氨基酸氨基转移酶的第二开放阅读框,且其中所述含PEST的肽是LLO的N末端片段。
84.一种制备用于冻干的冷冻李斯特菌菌株的方法,其包含在约20℃至约37℃之间的温度下解冻所述冷冻李斯特菌菌株。
85.实施方案84所述的方法,其中所述温度在约32℃至约37℃之间。
86.实施方案85所述的方法,其中所述温度为约37℃。
87.实施方案84-86中任一项所述的方法,其中将所述冷冻李斯特菌菌株解冻不超过8小时。
88.实施方案84-87中任一项所述的方法,其中所述冷冻李斯特菌菌株在解冻后在约2℃至约8℃下保持不超过24小时。
89.实施方案84-88中任一项所述的方法,其中将所述冷冻李斯特菌菌株在包含缓冲剂和蔗糖的配方中解冻。
90.实施方案89所述的方法,其中所述配方包含约1%至约5%w/v的蔗糖。
91.实施方案90所述的方法,其中所述配方包含约2%至约3%w/v的蔗糖。
92.实施方案91所述的方法,其中所述配方包含约2.5%w/v的蔗糖。
93.实施方案89-92中任一项所述的方法,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
94.实施方案93所述的方法,其中所述配方不包含海藻糖、MSG,或rHSA。
95.实施方案89-94中任一项所述的方法,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株。
96.实施方案89-95中任一项所述的方法,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株,并且其中所述配方包含约2%至约3%w/v的蔗糖,并且其中所述配方不包含包括海藻糖、MSG,或rHSA。
本文所公开的主题还包括但不限于以下实施方案。
1.一种用于生产包含李斯特菌菌株的冻干组合物的方法,其包括:(a)提供组合物,该组合物在包含缓冲剂的配方中包含细菌或李斯特菌菌株;(b)在冷冻步骤中冷却步骤(a)中提供的所述组合物,可选地,其中温度在约-32℃至-80℃之间;(c)在一级干燥步骤中,将步骤(b)制备的组合物暴露于真空中,可选地,其中温度在约-10℃至-30℃之间;以及(d)在二级干燥步骤中将步骤(c)制备的组合物暴露于真空中,可选地,其中温度在约5℃至25℃之间,可选地,其中温度在约5℃至20℃之间,从而制得冻干组合物。
2.实施方案1所述的方法,其中在步骤(a)之前,通过将所述李斯特菌菌株暴露于降低的温度,以在所述李斯特菌菌株中诱导应激反应。
3.实施方案1所述的方法,其中在步骤(a)之前,通过将所述李斯特菌菌株暴露于降低的温度,在所述李斯特菌菌株中不诱导应激反应。
4.前述任一实施方案所述的方法,其中步骤(a)中的所述组合物中使用的李斯特菌菌株为在步骤(a)前解冻的冷冻李斯特菌菌株。
5.实施方案1-3中任一项所述的方法,其中在步骤(a)的所述组合物中所使用的李斯特菌菌株在步骤(a)前新鲜培养。
6.前述任一实施方案所述的方法,其中所述缓冲剂是磷酸盐缓冲剂。
7.前述任一实施方案所述的方法,其中所述配方包含1%至5%w/v的蔗糖。
8.实施方案7所述的方法,其中所述配方包含2%至3%w/v的蔗糖。
9.前述任一实施方案所述的方法,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
10.实施方案9所述的方法,其中所述配方不包含海藻糖、MSG,或rHSA。
11.前述任一实施方案所述的方法,其中冷冻步骤(b)中的温度在-40℃至-50℃之间。
12.前述任一实施方案所述的方法,其中冷冻步骤(b)中的所述冷却持续2-4小时。
13.前述任一实施方案所述的方法,其中,一级干燥步骤(c)中的温度在约-12℃和约-22℃之间。
14.实施方案13所述的方法,其中一级干燥步骤(c)中的温度在约-17℃和约-19℃之间。
15.前述任一实施方案所述的方法,其中一级干燥一级干燥步骤(c)进行20-30小时。
16.前述任一实施方案所述的方法,其中二级干燥步骤(d)中的温度在10℃至20℃之间。
17.前述任一实施方案所述的方法,其中二级干燥步骤(d)进行1-10小时。
18.实施方案17所述的方法,其中二级干燥步骤(d)进行1-3小时。
19.前述任一实施方案所述的方法,其中所述冻干组合物中的残留水分在1%至5%之间。
20.实施方案19所述的方法,其中所述冻干组合物中的残留水分在3%至4%之间。
21.前述任一实施方案所述的方法,其中所述冻干组合物在-20℃或4℃下储存6个月后显示出至少60%的生存力。
22.实施方案21所述的方法,其中所述冻干组合物在-20℃或4℃下储存6个月后显示出至少75%的生存力。
23.实施方案22所述的方法,其中所述冻干组合物在-20℃或4℃下储存6个月后显示出至少80%的生存力。
24.前述任一实施方案所述的方法,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株。
25.前述任一实施方案所述的方法,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株,并且其中所述缓冲剂是磷酸盐缓冲剂,并且其中所述配方包含2%至3%w/v的蔗糖,并且其中所述配方不包含海藻糖、MSG,或rHSA,并且其中一级干燥步骤(c)中的温度在-17℃和-19℃之间,其中二级干燥步骤(d)中的温度在10℃和20℃之间,并且其中所述冻干组合物中的残留水分在3%和4%之间。
26.前述任一实施方案所述的方法,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
27.实施方案26所述的方法,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码D133V PrfA突变蛋白。
28.实施方案26所述的方法,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码丙氨酸消旋酶或D-氨基酸氨基转移酶,其中所述含PEST的肽是LLO的N末端片段。
29.一种用于李斯特菌菌株的冻干的配方,其包含:(1)所述李斯特菌菌株;(2)磷酸盐缓冲剂;和(3)蔗糖。
30.实施方案29所述的配方,其中所述李斯特菌菌株是通过将所述李斯特菌菌株暴露于降低的温度下而诱导了应激反应的菌株。
31.实施方案29或30所述的配方,其中所述李斯特菌菌株来自冷冻的李斯特菌原种。
32.实施方案29或30所述的配方,其中所述李斯特菌菌株来自新鲜培养的李斯特菌原种。
33.实施方案29-32中任一项所述的配方,其中所述配方包含约1%至约5%w/v的蔗糖。
34.实施方案33所述的配方,其中所述配方包含2%至3%w/v的蔗糖。
35.实施方案29-34中任一项所述的配方,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
36.实施方案35所述的配方,其中所述配方不包含海藻糖、MSG,或rHSA。
37.实施方案29-36中任一项所述的配方,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株。
38.实施方案29-37中任一项所述的配方,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株,且其中所述配方包含约2%至约3%w/v的蔗糖,并且其中所述配方不包含海藻糖、MSG,或rHSA。
39.实施方案29-38中任一项所述的配方,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
40.实施方案39所述的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码D133V PrfA突变蛋白。
41.实施方案39所述的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码丙氨酸消旋酶或D-氨基酸氨基转移酶,其中所述含PEST的肽是LLO的N末端片段。
42.通过实施方案1-28中任一项的方法所生产的冻干组合物。
43.一种冻干组合物,其包含李斯特菌菌株、磷酸盐缓冲剂,和蔗糖。
44.实施方案43所述的冻干组合物,其中所述冻干组合物不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
45.实施方案44所述的冻干组合物,其中所述冻干组合物不包含海藻糖、MSG,或rHSA。
46.实施方案42-45中任一项所述的冻干组合物,其中所述冻干组合物中的残留水分在1%和5%之间。
47.实施方案46所述的冻干组合物,其中所述冻干组合物中的残留水分在2%和4%之间。
48.实施方案47所述的冻干组合物,其中所述冻干组合物中的残留水分在3%和4%之间。
49.实施方案42-48中任一项所述的冻干组合物,其中所述冻干组合物在-20℃或4℃下储存6个月后显示出至少60%的生存力。
50.实施方案49所述的冻干组合物,其中所述冻干组合物在-20℃或4℃下储存6个月后显示出至少75%的生存力。
51.实施方案50所述的冻干组合物,其中所述冻干组合物在-20℃或4℃下储存6个月后显示出至少80%的生存力。
52.实施方案42-51中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株。
53.实施方案42-52中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株,且其中所述冻干组合物不包含海藻糖、MSG,或rHSA,且其中所述冻干组合物中的残留水分在3%和4%之间。
54.实施方案42-53中任一项所述的配方,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
55.实施方案54所述的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码D133V PrfA突变蛋白。
56.实施方案54的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码丙氨酸消旋酶或D-氨基酸氨基转移酶,其中所述含PEST的肽是LLO的N末端片段。
序列简述
使用核苷酸碱基的标准字母缩写和氨基酸的三字母代码示出所附序列表中列出的核苷酸和氨基酸序列。核苷酸序列遵循从序列的5'末端开始并向前(即在每行中从左到右)前进到3'末端的标准约定。每个核苷酸序列仅显示一条链,但是任何提及的所显示的链均应理解为包括互补链。氨基酸序列遵循从序列的氨基末端开始并向前(即在每行中从左到右)到达羧基末端的标准约定。
表3:序列描述
Figure BDA0002492522430001061
Figure BDA0002492522430001071
Figure BDA0002492522430001081
Figure BDA0002492522430001091
实施例
实施例1:代表性的药物物质制备和冻干循环。
ADXS-HER2和ADXS-HPV(最终液体药物产品)目前典型的存储温度为-80℃,这会干扰冷链的维护并给供应链带来挑战。单核细胞增生李斯特菌最终药物产品(液体)在冷冻状态下的存储是不便的,因为必须始终严格保持冷链,以确保药物效力并避免潜在的患者风险。ADXS-HER2是经过HER2/Neu融合蛋白转化的减毒重组单核细胞增生李斯特菌(Lm),是被开发以靶向(target)表达HER2的癌症的Lm TechnologyTM免疫疗法候选产品。Axalimogenefilolisbac(ADXS-HPV)是被开发用于治疗HPV相关癌症的Lm TechnologyTM免疫疗法候选物。其为一种基于减毒活单核细胞增生李斯特菌的免疫疗法,该减毒活单核细胞增生李斯特菌分泌靶向HPV相关肿瘤的融合蛋白Lm-LLO-E7。由于必须始终保持冷链以确保药物效力并避免潜在的患者风险,因此以冷冻液态储存最终药物产品非常不便。对能够保持冷链并有利于药物产品在-20℃下长期保存的冻干(lyo)循环的开发将是有益的。因此,进行了研究,以开发有利于药物产品的长期保存的冻干循环。
ADXS-HPV液体冷冻配方的药物物质工艺概述
ADXS-HPV的繁殖完全在由摇摆波浪运动生物反应器(rocking wave motionbioreactor)技术提供的一次性封闭系统内进行。该一次性封闭系统包括用于发酵的20L产品培养袋、用于浓缩和缓冲剂交换的切向流过滤(TFF)和用于DS容器填充的产品歧管。这些组件中的每一个都通过γ射线灭菌。在图20中示出了具有过程中控制(in-processcontrols)的药物物质制造过程流程图。
制备用于pH控制的1M氢氧化钠(NaOH),并使用串联的两个0.2μm过滤器无菌过滤到1L的pH控制袋中。通过切开管道的热封部分来移除消毒过滤器。按照表4制备发酵培养基和pH控制溶液,并通过串联的两个0.2μm过滤器无菌过滤到无菌5L培养基添加袋中。通过切开管道的热封部分来移除消毒过滤器。
表4:发酵培养基配方
Figure BDA0002492522430001101
按照表5制备渗滤/洗涤缓冲剂,并通过两个串联的0.2μm过滤器对其进行无菌过滤,并过滤至无菌的2×10L袋中。通过切开管道的热封部分来移除消毒过滤器。
表5:渗滤洗涤缓冲剂配方
Figure BDA0002492522430001111
将20L培养袋与用于检测溶解氧和pH的探针预先连接。然后将5L生长培养基无菌填充于该培养袋中。然后通过切开管道的热封部分来移除培养基添加袋。
用无菌过滤的压缩O2为摇袋(wave bag)充气。在繁殖过程中,以1L/min的速度连续注入无菌过滤的压缩O2,并通过出口将其移除。摇摆角度(rocking angle)设置为10°,摇摆速率(rocking rate)为每分钟18次。
pH控制袋和葡萄糖进料袋无菌地连接到培养袋。在繁殖过程中,通过集成控制系统自动监控工艺,并控制其温度、pH,和溶解氧。
通过将1mL WCB移入100mL TSB中,从WCB开始过夜培养,并生长约12-16小时,直到OD600约为4。然后,通过无菌转移到摇袋,将100mL过夜培养物用于接种产物培养物。
在接种后四小时,将200mL的葡萄糖加入培养物中。生长进行到OD600为7.5至8.5之间。这相当于大约1×1010CFU/mL。
当OD600达到目标浓度时,使用Readymates将培养袋连接至无菌TFF歧管,以针对配方缓冲剂进行浓缩和渗滤。TFF模块使用孔径为0.2μm的中空纤维过滤器,以满足细胞分离应用中低剪切的要求。
使用蠕动泵将发酵培养物进料到用配方缓冲剂灌注(primed)的TFF系统中。将再循环回路中的大量培养物(bulk culture)设置为8L/hr的流速。将发酵液浓缩5倍至约1000g的质量。
用≥8渗滤体积(diavolumes)(≥8L)进行对收集的浓缩物的渗滤/洗涤。使用焊接到TFF的采样歧管从TFF组件中采样收获的DS。每个样品袋的端口都被热封以移除。
测量样品的OD600并将其用于计算达到OD600为8.0±0.5所需的稀释体积的量。将所需量的配方缓冲剂泵入渗余物袋,以将收获物稀释至所需浓度。所有的体积转移都通过相应的袋中重量的变化来控制。取样并测量收获物以确认达到所需的1×1010CFU/mL的产物浓度。使用采样歧管对DS采样以进行QC分析。
将DS分成分布在四个1L产品袋中的1L等分样品(aliquots),第五个袋子中装有所有剩余的DS。将每个袋子热封以从组件中移除。每个袋子都单独贴上适当的信息,然后保存在-80±10℃下。
表6:药物物质处理参数
控制说明 操作设定点或范围
发酵培养基pH 6.6–7.4
摇摆速率 18次摇摆/分钟
摇摆角度 10°
溶解氧设定点 35%
ADXS-HPV液体冷冻配方的药物产品生产工艺概述
药物产品(DP)的制造过程包括将BDS稀释至1×109CFU/mL的最终浓度,然后将配制的axalimogenefilolisbac无菌填充到无菌的4mL玻璃小瓶中,用13mm的氯丁基瓶塞塞口,用铝制可翻转密封件和聚丙烯圆盘进行过度密封(over sealing)。工艺流程图在图21中示出。
将用1L袋装载的冷冻药物物质(DS)(1L等分样品,最多含5L)保存在-80±10℃下直至制造DP。在环境温度下将DS解冻,目标时间为3小时,以启动DP的生产。
在A级条件下,通过泵将多达5L无菌转移到专用的无菌玻璃瓶组件中。在物料转移过程中,以80-300rpm的速度搅拌酸瓶(carboy)中集中的大量物料,然后使用无菌管焊机将其连接至无菌一次性灌装模块。对于建议的商业流程,使用最终配方缓冲剂执行1:10稀释步骤,以稀释至1×109CFU/mL的目标CFU。
使用无菌的一次性填充线和填充针,通过蠕动泵用1.2mL的DS半自动灌装去热原(depyrogenated)的4mL(DIN 2R I型硼硅酸盐)玻璃小瓶。装满的小瓶立即用消毒的氯丁基塞子塞口。灌装过程中,通过对每300±50个装满的小瓶中的1个小瓶进行重量检查,以控制灌装容量。
完成的小瓶用带有聚丙烯盘的铝压盖翻转密封件过度密封。用0.35%的乙酸溶液从外部擦拭小瓶,然后将其转移到D级房进行100%目视检查。
对小瓶进行目视检查,以检查容器密闭缺陷或产品的非典型外观。大型包装的小瓶在-80±10℃下保存,直到运到标签和包装现场为止。
表7:药物产品过程参数
过程阶段 过程中控制说明 设定点或操作范围
批量搅拌 搅拌速度样品瓶,>3L容量 190–300rpm
批量搅拌 搅拌速度样品瓶,2-3L容量 140–240rpm
批量搅拌 搅拌速度样品瓶,1-2L容量 100–160rpm
批量搅拌 搅拌速度样品瓶,0-1L容量 80–120rpm
无菌灌装 平均线速度 1300±200个小瓶/小时
无菌灌装 调整灌装容量 1.2mL
无菌灌装 最大灌装重量 1.279g
无菌灌装 最小灌装重量 1.181g
无菌灌装 反向脉冲设定(蠕动加药系统) 2–3
无菌灌装 加速设定(蠕动加药系统) 200
无菌灌装 计时器延迟设定(蠕动加药系统) 0.3s
过度密封 平均线速度 300±50个小瓶/小时
过度密封 塞安全设定 12.2cm
过度密封 封盖站垂直高度 9.6cm
过度密封 封盖站水平高度 3.2cm
过度密封 封闭站上止点 7.2cm
过度密封 封闭站下止点 4.2cm
表8A:AxalimogeneFilolisbac药物产品的规格
Figure BDA0002492522430001141
表8B:AxalimogeneFilolisbac药物物质的规格
Figure BDA0002492522430001151
Figure BDA0002492522430001161
作为替代的冻干
药物产品也可以冻干以便长期保存。将具有药物产品的小瓶装载到已冷冻至冷藏温度的冻干机的搁板上,在一些实施方案中,该冷藏温度为约4℃。关闭室门,通过将搁板温度降低至约-4℃并将小瓶保持在此处约30分钟,以将小瓶冷却至刚好高于配方的冰点的温度。然后通过以约0.5℃/min的速率将搁板温度调温(ramp)至-40℃至-50℃之间,或调温至约-45℃,并保持该温度数小时,直至将所有小瓶冷冻,且产品温度接近搁板温度。为了进行一级干燥,将腔室抽真空,并用无菌氮气将压力维持在约0.09毫巴。搁板温度以大约1℃/min的速度升至-18℃至-22℃之间的温度或大约-18℃,并保持在该值,直到所有产品温度都超过搁板温度至少大约10个小时。为了进行二级干燥,将搁板温度以约0.2℃/min的速度升高至最终值20℃,并在此保持至少2小时,同时将压力维持在约0.09毫巴。在该二级干燥时间结束时,将搁板温度降低至约10℃,然后用氮气将压力升高至约500毫巴,并将小瓶在冻干机内塞口。表9示出了代表性的冻干循环。
表9:代表性的冻干循环
Figure BDA0002492522430001171
实施例2:单核细胞增生李斯特菌的冻干参数的优化。
ADXS单核细胞增生李斯特菌(Lm)药物产品目前在含有2.0%蔗糖的磷酸盐缓冲盐水(KH2PO4、Na2HPO4、KCl、NaCl)中配制,推荐的储存条件为-80℃。超低的存储温度为冷链维护和供应链带来挑战。因此,启动了用于开发稳定的冻干药物产品(DP)的开发计划。该计划的目标是开发一种冻干(Lyo)工艺,该工艺有利于药物产品在-20℃或2-8℃下长期储存。用不同的参数进行了一系列实验,以开发和优化配方、细胞的预处理、药物物质的存储/处理以及冻干循环。通过优化各种参数,开发出了稳定的冻干配方,该配方已证明在2-8℃和-20℃下都具有长期(18个月)稳定性。
在以下实验中测试的参数包括配方参数(缓冲剂组成(将细胞冻干于其中的溶液)、赋形剂组成(用于辅助稳定性的非活性物质),和冻干时的OD600)。
用不同的测试参数进行了一系列实验,以开发和优化配方、细胞的预处理,和冻干循环。测试的配方参数包括缓冲剂组成(将细胞冻干于其中的溶液)、赋形剂组成(用于辅助稳定性的非活性物质),和冻干时的OD600。所测试的细胞预处理的参数包括新鲜/冷冻(冻干前药物物质的储存条件)、冻干前诱发应激反应(pH和/或温度的变化),以及药物物质保持时间/温度(药物物质在冻干前解冻并保存的条件)。测试的冻干循环参数包括一级干燥搁板温度(用于使冷冻水升华的热输入)、二级干燥搁板温度(用于对一级干燥后残留的水分进行解吸的热输入),以及附加的退火步骤(将冷冻配方加热至低于0℃的温度,以重新排列冰孔结构,并可能改善初次干燥)。评估冻干运行是否成功的结果包括:随着时间的推移以及在不同条件下(-80℃下的稳定性、2-8℃下的稳定性、-20℃下的稳定性,以及30℃时的加速稳定性)的活细胞计数(VCC)、残留水分,和重建时间。
下述实验识别了一些发现,这些发现似乎增强了冻干产品的稳定性:(1)较高的残留水分改善了冻干产品的稳定性(WP7-Lyo4);(2)在一级干燥中,较高的搁板温度提高了冻干产品的稳定性(WP7-Lyo9);(3)在通过热激冻干之前对细胞进行预处理,提高了冻干产物的稳定性(WP7-Lyo5);(4)与较低的VCC相比,较高的VCC证明冻干药物产品的稳定性略有改善(WP7,循环3);(5)数据表明,将药物物质存储在1L的LDPE袋中并在冻干之前在37℃解冻,可改善冻干药物产品的稳定性(WP7,循环3)。数据表明已经成功开发了在-20℃和2-8℃下长期稳定的冻干药物产品。所得的药物产品在加速和预期的储存条件下均显示出良好的稳定性,以及低的由于冻干而导致的效力损失。
为了识别和表征先导配方,进行了Lyo1和Lyo2实验,其导致识别了两种具有5%蔗糖和5%蔗糖加氨基酸(AA)混合物(最终浓度:36mM精氨酸、57mM谷氨酸,和7mM异亮氨酸)的基于磷酸盐的配方。这些先导配方的特征分析表明它们的临界温度接近,从而可以为两种配方开发出一个循环。残留水分目标和评估实验Lyo3和Lyo4在蔗糖水平为2.5%时显示出较高水分含量的最佳结果,从而允许在2.5%的蔗糖水平上的优化,以进一步开发循环。
冻干循环开发研究的三个主要评估领域包括:(1)筛选缓冲剂和赋形剂的配方开发;(2)开发细胞培养物,以在冻干前对细胞进行预处理;(3)针对目标残留水分(RM)优化冻干循环。表10总结了在冻干(lyo)循环开发中进行的一系列实验,其中测试了不同的参数。
Figure BDA0002492522430001201
Figure BDA0002492522430001211
Figure BDA0002492522430001221
Figure BDA0002492522430001231
实验描述
2.1.冻干配方的筛选和表征。
为了鉴定、优化和表征具有良好稳定性的、可以继续用于进一步的循环开发的2-3个先导配方,进行了两次冻干实验(Lyo1,Lyo2),并生成了6个月的稳定性数据。然后,对来自这项研究的先导配方的临界温度Tc(塌陷温度)、Tg'(冷冻配方的玻璃化转变温度),和Tg(冻干产品的玻璃化转变温度)进行表征。
Lyo1中使用的配方是基于柠檬酸盐、磷酸盐和MOPS的配方。Lyo2中使用的配方只是基于磷酸盐的配方,因为与基于柠檬酸盐和基于MOP的缓冲剂相比,基于磷酸盐的配方具有更好的性能,并且由于它们最接近当前的药物物质配方,因此需要最小的工艺变化。
2.1.1.WP5-Lyo1。
材料和方法。ADXS-HER2药物产品用于本研究。评估OD600=10。配方中使用的缓冲剂和赋形剂如下:配方中使用了三种不同的缓冲剂:柠檬酸盐、磷酸盐;和MOPS(3-(N-吗啉代)丙烷磺酸)。配方中使用的稳定剂混合物成分(赋形剂)包括蔗糖、海藻糖、谷氨酸钠(MSG)和重组人血清白蛋白(rHSA)的各种组合。
研究设计。三种不同的pH缓冲剂与6种不同的赋形剂组合形成18种不同的配方。对于每种配方,将2mL填充于20×6R小瓶中,形成的饼高度(cake height)为~6.54mm。将360个小瓶随机分配在冻干机的3个搁板上以平均边缘效应。~44小时30分钟后,冻干运行完成。在600毫巴下,将小瓶用0.2μm过滤空气封闭。将小瓶转移到2℃-8℃的储存室中并压盖(crimped)。在冻干后和储存6个月后测量残留水分。分析冻干前和冻干后的活细胞计数(VCC)和相应的存活%数据。将涂布培养法用于确定每毫升细胞培养物中存在的微生物的总活细胞计数。用于进行活细胞计数的培养基可能会有所不同,并取决于生物体的生长要求。单核细胞增生李斯特菌样品在胰蛋白酶大豆琼脂(TSA)中培养。
结果。基于磷酸盐和柠檬酸盐的缓冲剂的回收率相当。见图1。残留水分(RM)分析显示,添加MSG后,所有缓冲剂系统中的RM均增加~1.0%-1.5%。如果没有MSG,则RM值的范围为~1.8%至~3.0%。没有明显的%RM上升或下降趋势,表明批间差异(inter-assayvariability)。
多元数据分析(MVDA)证实了继续基于磷酸盐的配方开发的决定,因为没有某一个缓冲剂系统有明显的优越性,而磷酸盐仅需要进行适度的工艺变更。见图1。在4℃下使用稳定性的回归线显示在5:0:0:0的稳定剂混合物组合(蔗糖:海藻糖:MSG:rHSA)下具有最大的一致性。见图1。
MVDA分析还显示,在加速稳定性研究中,在30℃下储存3天的样品显示出与在4℃下储存6个月的样品相当的回收率。见图2A和2B。这表明较高的储存温度会导致生存力丧失更快,并且加速条件可能是在2℃-8℃下的长期储存的可预测数据。冻干饼(lyo-cake)外观总体上良好,没有重大缺陷或回熔(melt-backs)。基于蔗糖的配方在边缘(小瓶的顶冠和底部)显示出轻微的饼收缩。30℃下3天的VCC变化与4℃下6个月的VCC变化相似。图22A示出了在Lyo1实验中的冻干前以及冻干后在不同温度下储存不同时间后的VCC数据(冻干前平均VCC的百分比)。在30℃下3天的加速稳定性类似于在4℃下6个月的稳定性。图22B示出了在Lyo1实验中,冻干后立即的残留水分和在2-8℃下6个月后的残留水分。
2.1.2.WP7-Lyo2。
材料和方法。ADXS-HER2药物产品用于本研究。评估的OD600值(小瓶中的OD代表细胞浓度)在2到20之间,并且评估了两个不同的最终OD600值:OD600=10(与Lyo1相同);OD600=2.0。所用的缓冲剂是基于磷酸盐的缓冲剂,并且所用的稳定剂混合物组分(赋形剂)包括蔗糖、氨基酸(AA)混合物,和rHSA。
研究设计。一种pH缓冲剂、9种不同的赋形剂组合,和2种细菌浓度产生了18种不同的配方。冻干运行的操作与Lyo1相似。对冻干前的样品、冻干前的冷冻样品(-80℃)、冻干后的样品,以及冻干后在2-8℃、-20℃,和-80℃储存1、2、3、6、9、12,或18个月后的样品进行VCC评估。
结果。在OD600=2和OD600=10组中,仅蔗糖(sucrose-only)配方的回收率最高:OD600=10时为2.5%;OD600=2.0时为5%蔗糖。与Lyo1平行,配方和残留水分之间存在相关性。仅包含蔗糖的配方以及包含蔗糖+AA的配方与rHSA配方相比,具有更多的残留水分;rHSA配方更为干燥。与冻干后相比,所有样品在6个月时的RM百分比均增加。MVDA分析表明,rHSA对稳定性有不利影响。在最低的蔗糖浓度(2.5%)和具有较高OD600值(10对2)下,观察到最高的回收率(和最低的变异性)。冻干饼外观类似于Lyo1,且两个OD600小瓶之间没有显著差异。图3示出了不同OD水平和稳定剂组合(OD,稳定剂)的VCC数据。测试了OD水平为2.0、3.0、10.0、12.5、15.0、17.5,和20.0。测试了包含2%和5%蔗糖的稳定剂,可选地与AA混合物一起。冻干前VCC占计数的百分比在所有OD水平和稳定剂组合下均显示相似的斜率。在-20℃下保存1个月的冻干样品显示出介于两者之间的VCC结果。图23A显示了Lyo2实验中在冻干前以及冻干后在不同温度下存储不同时间(数月)的VCC数据(平均冻干前VCC的百分比)。图23B示出了在Lyo2实验中,冻干后立即的残留水分和在2-8℃下6个月后的残留水分。
表11:图23B中的条件总结。
Figure BDA0002492522430001271
结论。在这项研究中,分析了Lyo1中的18种不同配方和Lyo2中的9种不同配方。Lyo1和Lyo2中的两种配方相同,因此总共分析了18+7=25种不同的配方(Lyo1的配方1是Lyo2的配方2,Lyo1的配方5是Lyo2的配方6)。基于来自Lyo1的VCC结果,由于磷酸盐的卓越性能且仅须对当前工艺进行适度的改变,Lyo2的优化是用基于磷酸盐的配方进行的。Lyo1的先导配方是5%的蔗糖,与Lyo2中的其它缓冲剂相比,其表现更好或相同。在Lyo2中,预计氨基酸混合物在长期存储期间会显示出其它保护作用。然后,对Lyo1的先导配方(5%蔗糖)和含氨基酸的配方的临界温度(Tc、Tg,和Tg')进行了表征,发现它们非常接近,从而可以为两种配方研发一个循环。
2.2残留水分目标。
为了获得关于在冻干循环期间干燥样品的过程的信息并建立二级干燥与残留水分含量之间的相关性,进行了Lyo3实验。这使得可以在未来的冻干实验中以特定的残留水分含量为目标。
2.2.1.WP5-Lyo3。
材料和方法。ADXS-HER2药物产品用于本研究。所使用的配方基于磷酸盐,并具有2.5%的蔗糖、5%的蔗糖,和10%的蔗糖。稳定剂混合物包括蔗糖、AA混合物和rHSA的不同组合。评估了两个不同的OD600值:OD600=10和OD600=2.0。
研究设计。在4℃下测试了13天、1个月、3个月,和6个月的稳定性。使用在4℃下储存13天的样品测试加速稳定性,然后将其在30℃下加速1天、2天,或3天。冻干前测定VCC,冻干后测定VCC和RM,以及稳定性,冻干后测定RM。
为了获得有关干燥过程的信息,在不同时间点中断该循环以采集样品,从而分析残留水分(RM)。在一次干燥结束时直接采集第一批样品。在调温(ramp)至二级干燥中所使用的加热速率为0.2℃/min,在调温至二级干燥后直接取样。在+20℃下进行二级干燥8小时(比Lyo2中长3小时)。每2小时取样一次并立即进行分析。根据实时RM数据,如果未达到<1%的目标,则可以延长二次干燥的时间。
结果/结论。如图4所示,从原始VCC水平可以明显看出,rHSA的增加与不稳定性有关,OD600=10时计数较高,而蔗糖水平较低(2.5%)时,结果的变异性最低。6个月的数据进一步证明了这一点。
如图5所示,基于OD的水分结果几乎没有区别;在蔗糖水平为10%和5%时,rHSA增加,RM降低;在蔗糖水平最低(2.5%)且没有rHSA时,结果的变异性最小。
这些实验还表明,通过在不同的工艺步骤(包括一级干燥的结束、调温结束到二级干燥,以及二级干燥中不同的时间点)将产物从冷冻干燥机中取出,可以产生RM在~5%至<1%的期望范围内的材料。
2.3最佳残留水分对于稳定性的影响的评估。
为了优化冻干后的目标残留水分和回收率,进行了Lyo4稳定性研究。
2.3.1WP7-Lyo4。
在WP7-Lyo3下产生的数据提供了原理上的证明,即可以通过在不同的工艺步骤中从冷冻干燥机中取出样品来产生残留水分在~5%至<1%的目标范围内的材料;所述不同的工艺步骤为:(1)一级干燥的结束;(2)调温结束到二级干燥;(3)二次干燥的不同时间点。根据用于2-8℃和30℃的长期稳定性研究的初始数据,生成了用于短期加速应激稳定性(stress stability)的65%RH。残留水分(RM)的目标%为~5%、~3%,和约1%。根据为两种先导配方生成材料时的所有可用数据,所述两种先导配方为:(1)磷酸盐缓冲剂,pH 7.2,5%蔗糖;以及(2)磷酸盐缓冲剂,pH 7.2,2.5%蔗糖。
材料和方法。ADXS-HER2药物产品用于本研究。所使用的配方是基于磷酸盐的,具有2.5%蔗糖和5%蔗糖。OD600值为OD600=20(~2x1010CFU/mL)。通过在不同的工艺步骤中将样品从冷冻干燥机中取出,以控制水分含量;所述的不同的工艺步骤为:(1)一级干燥的结束(残留水分目标为~5%);(2)调温结束到二级干燥(残留水分目标为~3%);(3)二级干燥结束(残留水分目标为~1%)。
研究设计。冻干的操作与Lyo3相似,不同之处在于初始OD值为20。按照Lyo2所述,培养细菌并通过离心,将其浓缩至OD600为~20(~2x1010CFU/mL)。通过在冻干循环中取样的位置来控制水分含量:(1)高水分;一级干燥后;水分为~5.4-5.8%;(2)中等水分;调温后(紧接在搁板温度从一级干燥温度到二级干燥温度的调温之后);水分为~3.7-4.5%;(3)低水分;二级干燥后;水分为~1.1-1.3%。第一批样品直接在一级干燥结束时采集(RM目标为~5%),第二批样品在调温至二级干燥后直接采集(RM目标为~3%)。进行12h的二级干燥,然后取出第三批样品(RM目标为~1%)。取出后,将所有小瓶压盖并保存在2-8℃(包括用于以后的应激稳定性研究的小品)。分析冻干前、冻干后,和加速条件下1、2和3天(30℃)的RM和VCC。将VCC滴度(tilter)测量为计数和占冻干前的计数的百分比。
结果。在这项研究中获得的水分包括(bracket)之前见到的水分。将Lyo4和Lyo2研究相结合,仅关注2.5%和5.0%的蔗糖,并移除了所有关于rHSA的研究,发现在加速条件下具有可比性。最好的结果是在蔗糖水平为2.5%的较高水分含量下。如图6所示,这项研究中实现的RM“包括(bracket)”之前见到的水分。RM结果显示为单个值和平均值。虚线概述了在对Lyo2的长期研究中看到的结果的范围(高和低)。图7A、7B、24A,和24B中示出了加速条件下的可比性。如图7A和7B所示,对于2.5%的蔗糖水平,最好的结果是在较高的水分水平下。图24A示出了在使用2.5%蔗糖的Lyo4实验中,在一级干燥后、调温后、二级干燥后不同温度下储存不同时间后的残留水分(RM)。图24B示出了在使用5.0%蔗糖的Lyo4实验中,在一级干燥后、调温后、二级干燥后不同温度下储存不同时间后的残留水分(RM)。
结论。这项研究证实,在OD600=20的加速条件下,较高的残留水分(RM)导致更好的VCC分布(profile)。在蔗糖含量为2.5%的较高水分水平下,获得加速稳定性的最佳的VCC分布。因此,蔗糖水平固定为2.5%,未来的开发实验的目标残留水分水平定为2.5-3.5%。
2.4.冻干前应激处理的评估。
为了评估冻干前的应激处理及其对冻干材料稳定性的影响,进行了Lyo5。这项研究模拟了发酵过程中可能遇到的应激条件。
对细胞的冷休克、热激,和渗透压休克可诱导参与一般应激反应的基因的表达。对这些休克条件的遗传反应对于保护细胞免受应激损伤和死亡至关重要。因此,可以通过激活应激反应来实现冻干期间更大的细胞存活。为了评估冻干前Lm中应激反应的诱导及其对冻干材料稳定性的影响,进行了WP7-Lyo5。本研究在配方和冻干前通过pH值变化或冷休克引起应激反应。
2.4.1.WP7-Lyo5。
WP7-Lyo5的研究目标是评估Lm中应激反应(冷休克和pH变化)的诱导是否可以改善重建药物产品的生存力。
材料和方法。ADXS-HER2药物产品用于本研究。实验包括以下四个组:(1)组-1:对照培养;(2)组-2:温度变化培养;(3)组-3:pH变化培养;以及(4)组-4:pH变化和温度变化培养(首先是pH变化,然后是温度变化)。为了实现温度变化和pH变化,在从生物反应器中收集细胞后,立即将细胞置于冰浴中或通过添加酸降低pH。这在细胞中诱导应激反应,其激活一组基因,该基因似乎可以更好地准备细胞以应对冻干。该配方基于磷酸盐,含2.5%蔗糖,目标残留水分为3.5%,OD600=10(~1x1010CFU/mL)。在6R小瓶中填充约2mL的药物产品。在30℃下评估1、2,和3天的加速稳定性。
研究设计。一旦生物反应器中的材料达到目标OD600,则移除组-1(对照)和组-2(温度变化)的材料。对组-1的材料进一步处理,直到获得配制的原料(formulated bulk)(原料药物物质)为止,然后将其储存在2-8℃下直至填充小瓶。对于组-2,在冰/盐/水浴中进行温度变化,然后将材料在2-8℃下储存30分钟。然后进一步处理该材料,直到获得配置的原料,然后将其储存在2-8℃下直至填充小瓶。同时,在生物反应器中使用2M HCl进行pH变化至pH=5.25。然后,移除组-3(pH变化)和组-4(pH/温度变化)的材料。进一步处理来自组-3的材料,直到获得配置的原料,然后将其储存在2-8℃下直至填充小瓶。对于组-4,如上文所述进行温度变化,并将材料在2-8℃下储存30分钟。然后进一步处理该材料,直到获得配置的原料。一旦获得所有组的配置的原料,就分析VCC并开始冻干。
冻干运行的操作类似于Lyo4。对于3.5%的目标残留水分,使用2小时的二级干燥时间。在冻干前、冻干后以及在加速条件下1、2和3天(30℃)分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。在-20℃和2-8℃的3个月和6个月(以及9个月、12个月,和18个月)的数据表明所有四个组均具有良好的可比性。见图8(VCC)和图25(RM)。图8示出了针对在-20℃、2-8℃下的稳定性,和加速稳定性评估的每个实验条件(pH变化、温度变化、pH/温度变化和对照)的冻干后VCC的百分比。图25示出了针对2-8℃下的稳定性进行评估的每个实验条件(pH变化、温度变化、pH/温度变化和对照)在T=0时的残留水分水平。与对照或pH变化相比,温度变化条件在长期稳定性方面显示出更稳定的分布。
相对于研究的其它组,数据证明了温度变化样品在-20℃和2-8℃下均具有良好的稳定性。pH变化或pH+温度变化预处理似乎没有益处。数据表明在冻干之前对细胞进行预处理可以增加产品的长期稳定性。数据没有显示出各治疗组之间或长期储存后残留水分的任何明显趋势。
结论。这项研究表明,与对照或pH变化相比,温度变化条件在长期稳定性和加速稳定性条件下更稳定。
2.5.对冻干前的温度变化的评估
为了评估冻干前的温度变化处理及其对冻干材料稳定性的影响,进行了Lyo6。这项研究模拟了在发酵过程中可能遇到的应激条件,并且是为了冻干过程中的冷冻过程而调节(condition)细胞的一种措施。
2.5.1.WP7-Lyo6。
材料和方法。ADXS-HPV药物产品用于本研究。不包括对照组。该配方基于磷酸盐,含2.5%的蔗糖,目标残留水分为3.5%,OD600=10。
研究设计。一旦生物反应器中的物质达到目标OD600,收集所需的体积,并在冰/盐/水浴中进行温度变化,然后将其在2-8℃下储存30分钟。随后将该材料进一步处理,直到获得配置的原料。在冻干之前和之后进行VCC分析,该冻干操作类似于Lyo5,并且在加速条件下的1、2和3天(30℃)时测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。ADXS-HPV的加速结果可与ADXS-HER2相比较。一个月的稳定性与加速的稳定性结果一致。见图9(VCC)和图26(RM)。数据表明在短期加速条件下具有良好的稳定性。-20℃下的数据显示12个月时具有良好的稳定性,而2-8℃的存储在12个月后开始显示VCC损失。数据表明,在-20℃或2-8℃的长期存储后,RM没有明确的趋势。
结论。这项研究证实了冻干的ADXS-HPV构建体产生的结果与ADXS-HER2一致,并证明了冻干平台在不同构建体中的适用性。
2.6.评估降低的一级干燥搁板温度和降低的冷冻温度。
为了评估冷冻温度和一级干燥搁板温度及其对冻干材料稳定性的影响,进行了Lyo7。
2.6.1.WP7-Lyo7。
材料和方法。ADXS-HPV药物产品用于本研究。不包括对照组。该配方基于磷酸盐,含2.5%蔗糖,目标残留水分为3.5%,且OD600=10。所使用的稳定性条件为2-8℃、-20℃,和30℃下的1、2和3天的加速条件。
研究设计。一旦生物反应器中的物质达到目标OD600,收集所需的体积,并在冰/盐/水浴中进行温度变化,然后将其在2-8℃下储存30分钟。随后将该材料进一步处理,直到获得配置的原料。进行冻干的冷冻温度从-40℃降低到-45℃,一级干燥搁板温度从-22℃降低到-30℃。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。随着搁板温度的降低,在加速稳定性方面观察到了重大损失。见图10(VCC)和图27(RM)。冷冻过程中降低搁板温度并不能改善冻干产品的稳定性。
2.7.保持时间研究。
进行了保持时间研究,其中药物产品(DP)在配制后立即冻干或者冷冻、解冻,然后冻干。
2.7.1.WP7-Lyo8。
材料和方法。ADXS-HPV药物产品用于本研究。该配方基于磷酸盐,含2.5%蔗糖,目标残留水分为3.5%,且最终配方材料的OD600=10。所使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。
研究设计。在某些组中(A部分),样品立即被冻干。在其它组(B部分)中,将样品在-80℃冷冻,在2-8℃解冻过夜,然后冻干。分析了冻干前,冻干后和在加速条件下1天、2天,和3天(30℃)的VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。与B部分(冷冻保持)相比,A部分(连续处理)在加速条件下表现出更好的稳定性。见图11(VCC)和图28(RM)。
2.8.对升高的一级干燥搁板温度的评估。
为了评估一级干燥过程中搁板温度的升高及其对冻干材料稳定性的影响,进行了Lyo9。
2.8.1.WP7-Lyo9。
基于先前的观察,较低的一级干燥搁板温度降低了所得药物产品的稳定性,WP7-Lyo9的目标是评估一级干燥期间较高的搁板温度对新鲜冻干(连续加工)的药物产品ADXS11-001(HPV)的稳定性的影响。评估了一级干燥期间的-18℃的搁板温度。将冻干的材料在2-8℃和-20℃下展示稳定性。在30℃/65%RH下的进一步的1、2和3天的加速稳定性。
材料和方法。ADXS-HPV药物产品用于本研究。评估-18℃的搁板温度。进行与先前实验相似的温度改变。该配方基于磷酸盐,含2.5%的蔗糖,残留水分目标为3.5%,且OD600=10。使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。
研究设计。一旦生物反应器中的物质达到目标OD600,收集所需的体积,并在冰/盐/水浴中进行温度变化,然后将其在2-8℃下储存30分钟。随后将该材料进一步处理,直到获得配置的原料。冻干运行的一级干燥搁板温度为-18℃。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。图12示出了针对30℃、-20℃,和2-8℃下的稳定性评估的冻干后的%VCC。图29示出了针对30℃、-20℃,和2-8℃下的稳定性评估的残留水分水平。数据表明,-20℃和2-8℃均可稳定长达12个月。随着搁板温度的升高,观察到加速稳定性的提高。见图12(VCC)和图29(RM)。通常,在蛋白质在一级干燥搁板温度下的冻干中,当一级干燥搁板温度高至足以引起本研究中观察到的塌陷类型,则会导致冻干饼的稳定性降低。但是,这整个细菌配方的趋势似乎是相反的。
结论。这项研究表明,提高一级干燥搁板温度可提高冻干产品的加速稳定性和长期稳定性。
2.9比较在升高的一级干燥温度(-18℃)时的正/负温度变化。
为了比较在升高的一级干燥温度Ts=-18℃时的负[A部分]/正[B部分]温度变化,进行了Lyo10稳定性研究。
2.9.1.WP7-Lyo10。
材料和方法。ADXS-HPV药物产品用于本研究。针对两组材料进行搁板温度为-18℃的评估:(1)A部分材料——收集后立即进行处理(没有进行温度变化);(2)B部分材料——进行温度变化。
配方基于磷酸盐,含2.5%的蔗糖,残留水分目标为3.0%,且OD600=10。使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。
研究设计。一旦生物反应器中的物质达到目标的OD600,收集A部分和B部分所需的体积。立即处理A部分直到灌装小瓶;而对于B部分,在冰/盐/水浴中进行温度变化,然后将材料在2-8℃下储存30分钟。然后将A部分和B部分的材料进一步处理,直到获得配置的原料。冻干运行的一级干燥搁板温度为-18℃,二级干燥时间为2h,以使残留水分为3.0%。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。随着搁板温度的升高,无论有无温度变化,结果都是可比的。见图13(VCC)和图30(RM)。结果证实了先前对升高的搁板温度观察到的良好稳定性。
2.10.在一级干燥温度为-18℃、无温度变化时的稳定性研究和生物活性测定。
为了证实Lyo10的结果,在升高的一级干燥温度,-18℃,且没有温度变化的条件下进行Lyo11稳定性研究。然后将冻干药物产品的生物活性与液体冷冻药物产品进行了比较。
2.10.1.WP7-Lyo11。
材料与方法。本研究采用ADXS-HPV药物产品。在无温度变化的情况下,评估-18℃的搁板温度。配方基于磷酸盐,含2.5%的蔗糖,残留水分目标为2.5-3.0%,且OD600=10。使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。
研究设计。一旦生物反应器中的物质达到目标OD600,收集所需的体积,立即进行处理,直到获得配置的原料。冻干运行时,一级干燥搁板温度为-18℃,目标残留水分为2.5-3.0%。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。数据表明,当搁板温度升高时,为了获得可接受的结果,不需要进行温度变化。见图14(VCC)和图31(RM)。冻干样品可在2-8℃和-20℃的温度下稳定保存12个月。
使用Advs11冷冻配方(5271-15-01)、lyo11(5277WP7 Lyo11)冻干配方,和XFL7-tLLO阴性对照菌株感染MOI分别为2和20的THP1细胞。10-mer肽(YMLDLQPETT,SEQ ID NO:100)用作阳性对照。然后感染的细胞被激活(invocated)20-24小时,收集,并与对10-mer肽特异的T细胞结合。18-24小时后,确定T细胞IFNγ分泌。在低MOI下,冻干配方诱导T细胞中产生更高的IFNγ。在较高的MOI下,冻干配方显示出对IFNγ产生的相似诱导。冻干配方的存活百分比为95%。对于冻干产物,未观察到生物活性的损失,并且对于低MOI,生物活性增加。见图39。
2.11.不同解冻条件下新鲜材料与冷冻材料的稳定性研究
为了确认从Lyo8、Lyo10,和Lyo11获得的结果,进行了稳定性研究Lyo12,其中在新鲜材料和冷冻材料之间进行比较,该冷冻材料以不同方式被解冻。
2.11.1.WP7-Lyo12。
材料和方法。ADXS-HPV药物产品用于这项研究,并且没有进行温度变化。该配方基于磷酸盐,含2.5%蔗糖,目标残留水分为2.5-3.0%,且OD600=10。使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。测试的组为:(1)A组:对照,直接冻干;(2)B组:在<-70℃下冷冻,在2-8℃下解冻;(3)C组:在<-70℃下冷冻,在37℃的水浴中解冻,然后在37℃下孵育4小时。
研究设计。一旦生物反应器中的材料达到目标OD600,就将其收集并分成3个等分样品:A、B和C部分。立即处理A部分,直到获得配置的原料,并在冻干前进行VCC分析。将B部分和C部分材料进行处理,等分并在<-70℃下冷冻。将B部分的材料在2-8℃解冻过夜,并将C部分的材料在37℃的水浴中完全解冻,然后在冻干之前在37℃的水浴中孵育4小时。然后将材料稀释至OD600=10,并进行冻干处理。进行冻干运行,目标残留水分为2.5-3.0%。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。数据显示,与冷冻和解冻的材料相比,连续加工的材料具有更好的稳定性。数据还表明该药物可以在冻干之前存储。见图15(VCC)和图32(RM)。
2.11.2.WP7-Lyo 13。
材料和方法。ADXS-HPV药物产品用于这项研究。该配方基于磷酸盐,含2.5%蔗糖,目标残留水分为2.5-3.0%,且OD600=10。使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。测试的组为:(1)A组:新鲜,直接冻干;(2)B组:在2-8℃下保存3天。
研究设计。一旦生物反应器中的材料达到目标OD600,就将其收集并分成2个等分样品:A和B部分。立即处理A部分,直到获得配置的原料,并在冻干前进行VCC分析。将B部分材料进行处理,等分并在<-70℃下冷冻。将B部分的材料在冻干前于2-8℃下储存3天。然后将材料稀释至OD600=10,并进行冻干处理。进行冻干运行,目标残留水分为2.5-3.0%。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。数据显示,连续加工的材料(直通加工(straight through processing))和在2-8℃下储存长达三天的材料均具有良好的结果。见图16(VCC)和图33(RM)。数据显示,原料药物物质可以在加工前在2-8℃下保存三天,并且在冻干后仍能达到可接受的结果。
结论。这项研究表明,将药物在2-8℃下保持3天仍然可以使冻干药物产品具有可接受的长期稳定性,从而在常规生产过程中增加灵活性。
2.12.产品呈递(presentation)。
2.12.1.WP7-Lyo14。
材料和方法。ADXS-HPV药物产品用于这项研究。该配方基于磷酸盐,含2.5%蔗糖,目标残留水分为2.5-3.0%,且OD600=10。使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。测试的因素为2R小瓶、1×109VCC,和1.2mL填充。
研究设计。一旦生物反应器中的物质达到目标OD600,就将其收集并进行冻干处理。针对2.5-3.0%的目标残留水分进行冻干运行。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。
结果。数据显示在加速条件下的生存力降低,但仍在规格范围内。数据还表明,使用所描述的组合物和方法,2R小瓶呈递适用于冻干。见图17(VCC)和图34(RM)。残留水分为~2%,低于3-4%的目标。
2.13批量规模
材料和方法。ADXS-HPV药物产品用于这项研究。该配方基于磷酸盐,含2.5%蔗糖,目标残留水分为2.5-3.0%,且OD600=10,目标为1×1010CFU/mL。将2mL的ADXS-HPV药物产品添加到约1500个R6小瓶的每个中。所使用的稳定性条件为2-8℃、-20℃,和在30℃下的1、2和3天的加速条件。
研究设计。一旦生物反应器中的物质达到目标OD600,就将其收集并进行冻干处理。针对2.5-3.0%的目标残留水分进行冻干运行。在冻干前、冻干后和加速条件下分析VCC。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。还确定了残留水分(RM)。
结果。所描述的组合物和方法适用于规模批量冻干。加速的稳定性与规模批量的开发相一致。批次规模证明适用于6R小瓶呈递的临床药物供应。见图35-36(VCC),图37-38(RM),和表12。表37中的“H”和“C”分别表示冻干机内的热点和冷点。
表12。
Figure BDA0002492522430001401
2.14.示例性的材料和方法。
pH-缓冲原液。将pH缓冲溶液制成4倍原液。
磷酸盐缓冲原液。制备磷酸盐缓冲原液,使其尽可能类似于当前的药物物质配方,但是不含NaCl和KCl。将其制成4倍原液:将0.8g KH2PO4(无水)和4.6g Na2HPO4(无水)溶于800mL的WFI。用10%HCl将pH调节至7.2。将溶液填充至1000mL的WFI,并用0.2μm过滤器无菌过滤。最终配制的药物产品将包含0.2g/L的KH2PO4(无水)和1.15g/L的Na2HPO4(无水)。
柠檬酸盐缓冲原液。通过在100mL的WFI中溶解0.84g柠檬酸,制备40mM(=4倍)的柠檬酸原液。通过在250mL的WFI中溶解2.94g柠檬酸钠,制备40mM(=4倍)的柠檬酸钠原液。通过使用40mM的柠檬酸溶液将40mM柠檬酸钠溶液的pH值调节至pH=7.2,来制备40mM(=4倍)的柠檬酸盐缓冲原液。用0.2μm过滤器无菌过滤溶液。
MOPS-缓冲原液。通过将2.3125g的MOPS溶解在200mL WFI中来制备40mM(=4倍)的MOPS原液。用10%HCl将pH调节至pH=7.2。用250mL的WFI填充溶液,并用0.2μm过滤器无菌过滤。
40%w/v的蔗糖原液。将200g蔗糖溶解于500mL的WFI中。用0.2μm过滤器无菌过滤溶液。
40%w/v的海藻糖原液。将40g海藻糖溶解于100mL的WFI中。用0.2μm过滤器无菌过滤溶液。
20%w/v的MSG原液。在40mL的WFI中溶解8g的L-谷氨酸单钠盐水合物。用0.2μm过滤器无菌过滤溶液。
20%w/v的rHSA原液。将10g冻干的rHSA(Kerry,rAlbumin EG)溶解于50mL的WFI。用0.2μm过滤器无菌过滤溶液。
用于重悬细菌沉淀的缓冲剂。通过混合140mL的WFI、10mL的40%蔗糖和50mL的分别的4倍pH缓冲原液,制备用于重悬细菌沉淀的1倍缓冲剂,得到1x pH缓冲剂/2%蔗糖。
AA-混合原液。制备200mL的4倍氨基酸原液,其包含144mM的精氨酸、228mM的谷氨酰胺,和28mM的异亮氨酸。参见,例如,Paik et.al.(Biotechnol Prog.2012Nov-Dec;28(6),出于所有目的通过引用整体并入本文。配方的药物物质中的最终氨基酸浓度分别为36mM、57mM,和7mM。制备方法如下:称量5.17g精氨酸(Mw=174.2g/mol),并溶解于50mL的WFI中。将48.52mL(代表5.017g)的该溶液转移到250mL瓶中。称量0.8g的异亮氨酸(Mw=131.17g/mol),并溶解于50mL的WFI中。将45.91mL的该溶液(代表0.735g)转移到相同的250mL瓶中。称量6.71g的谷氨酰胺(Mw=147.13g/mol)并直接转移到该250mL瓶中。将总体积填充至160mL的WFI,并通过在恒定搅拌下添加2N的NaOH将pH小心地调节至pH=7.2。当所有谷氨酰胺溶解且pH稳定后,将体积填充至200mL的WFI。用0.2μm过滤器无菌过滤溶液。
2倍赋形剂储备的制备。将2倍赋形剂储备与细菌储备液以1:1混合以得到OD600为~10或OD600为~2.0的最终配方。通过将适当体积的4倍pH缓冲原液和赋形剂原液混合以将其制备并获得所需浓度。
Lm的培养。将100mL的TSB(30gTSB/1kgWFI,5g酵母提取物/1kgWFI,额外的7.5g葡萄糖/1kgWFI,给出葡萄糖的最终浓度为10g/1kgWFI)在500mL带挡板的摇瓶中预热至37℃。将培养基孵育过夜。第二天,培养基为清澈的。在室温下解冻一个小瓶的Lm RCB(5277-2015-01.01;VCC=2.44×109CFU/mL)。用900μL的小瓶内容物接种培养基。将Lm在37℃,110rpm下孵育5小时15分钟(P1)。此时的OD600为3.59。对于P2,分别用2.5mL的P1接种5个装有500mL的TSB的3L冯巴赫瓶。将培养物在37℃,110rpm下孵育14小时50分钟。合并(pool)培养物,OD600为5.96。
替代地,将50mL的TSB在250mL带挡板的摇瓶中预热至37℃。将培养基孵育过夜。第二天,培养基为清澈的。在室温下解冻一个小瓶的Lm RCB(5277-2015-01.01;VCC=2.44×109CFU/mL)。用600μL的小瓶内容物接种培养基。将Lm在37℃,110rpm下孵育7小时55分钟(P1)。此时的OD600为4.78。对于P2,分别用5.0mL的P1接种将3个装有500mL的TSB的3L冯巴赫瓶。将培养物在37℃,110rpm下孵育14小时30分钟。此时的OD600为5.96。
Lm的浓缩和配方。对于每种pH缓冲剂(磷酸盐、柠檬酸盐和MOPS),将520mL的P2在2,000g,10分钟和室温下离心。丢弃上清液,将沉淀分别重悬于155mL的1x pH缓冲剂2%蔗糖中,并检查OD600值。浓缩后,目标OD600为20:OD600磷酸盐缓冲剂=19.2。OD600柠檬酸盐缓冲剂=18.6。OD600MOPS缓冲剂=18.8。通过将等体积的浓缩细菌与2x浓度的赋形剂储备混合,以获得最终配方,得到的配方的OD600为~10。赋形剂浓度在本文其它地方描述。配制后(在冻干之前)取样进行VCC分析。
替代地,将1,000mL的P2在2,000g,10min和室温下离心。丢弃上清液,将沉淀分别重悬于300mL的1x磷酸盐缓冲剂2%蔗糖中。重悬后,OD600为18.3。该储备用于生成OD600为~10的样品。为了产生OD600为~2的样品,用1x磷酸盐缓冲剂2%蔗糖将该储备稀释4.58倍。稀释后OD600为4.12。通过将等体积的浓缩细菌与2x浓缩赋形剂储备混合,以获得最终配方,得到的配方的OD600为~10或OD600为~2。
2.15.小结。
总之,数据表明加速条件似乎是长期稳定性的良好预测指标,且冻干药物产品可以在2-8℃和-20℃下储存。ADVX-HPV的数据与ADXS-HER2的数据可比,这表明该数据在不同的Lm药物产品中预计是一致的。数据还表明更高的RM是更可取的。例如,低于约1%的水分可能无法提供稳定的Lm产品,但是高达6-7%的水分似乎与3-4%的水分一样稳定。数据还表明温度变化提高了稳定性,而较高的搁板温度(一级干燥步骤)提高了稳定性。2R和6R小瓶的呈递适用于使用所描述的组合物和方法的冻干。与冷冻液体配方相比,生物测定显示冻干材料的良好活性。批量规模适合6R呈递的临床供应。在一些实施方案中,药物产品以1×1010CFU/mL呈递于6R小瓶中。在一些实施方案中,药物产物以1×109CFU/mL呈递于2R小瓶中。
通过温度变化引起的应激反应显著改善了冻干后的生存力。此外,尽管磷酸盐缓冲剂通常并非冻干产品的理想缓冲剂,但与基于柠檬酸盐的缓冲剂和基于MOPS的缓冲剂相比,基于磷酸盐的配方具有更好的性能,并且由于它们与当前的药物物质配方最接近,因此需要最小的工艺变更。在包括蔗糖但不含海藻糖、MSG,或rHSA的配方中观察到最佳的稳定性。与rHSA配方(其更为干燥)相比,仅含蔗糖或含蔗糖+AA的混合物的配方具有更好的残留水分。在最低的蔗糖浓度(约2.5%w/v)下观察到最高的回收率(和最低的变异性)。随着一级干燥步骤中升高的搁板温度(例如约18℃)和增加的残留水分含量(例如约3.5%),观察到稳定性的提高。对于增加的残留水分含量,例如3.5%(高于冻干产品的典型残留水分含量),低至5℃的二级干燥温度是可行的(例如在约5℃至约20℃之间)。
实施例3:单核细胞增生李斯特菌的冻干参数的再现和进一步优化。
用不同的测试参数进行了一系列实验,以再现实施例2的冻干循环,并进一步优化配方、细胞的预处理,以及冻干循环。
3.1.再现之前的冻干循环作为比较基础。
使用与Ryo9至Lyo13相同的冻干循环参数,使用6R小瓶和2mL填充进行了一系列实验(WP2A)。
研究设计。一旦生物反应器中的物质达到目标OD600,就将其收集并进行冻干处理。针对2.5-3.0%的目标残留水分进行冻干运行。在冻干前、冻干后和加速条件(30℃下1、2,和3天)下分析VCC。冻干后和加速条件的3天中还测量了残留水分。在冻干前、冻干后,和加速条件(30℃下1、2,和3天)下还进行了微流成像(MFI)和共振质量测量(RMM)。测量VCC滴度,将其表示为计数和占冻干前的计数的百分比。将水分和VCC数据与相同冻干循环条件下的先前数据进行比较。
结果。冻干后,观察到VCC(CFU/mL)降至80%。见图18。在30℃下,整个储存过程中的VCC恒定长达72小时。初始残留水分(直接进样)平均为2.4%,在30℃的72小时内未观察到增加。MFI和RMM所测量的冻干前和冻干后样品的亚可见颗粒数量可比。粒度分布保持恒定。成功再现了先前的冻干循环。
3.2.研究残留水分含量作为二级干燥搁板温度的函数。
进行了一系列实验(WP2B)以研究残留水分(RM)含量作为二级干燥搁板温度的函数,以预测将导致目标RM为3.5%的二级干燥搁板温度。
研究设计。与WP2A实验相同的填充量为2mL的6R小瓶以及同样的冷冻和一级干燥。二级干燥分以下阶段进行:(1)一级干燥结束时,搁板塞口(stopper shelf)(仅用于RM信息);(2)调温至0℃,保持6小时,搁板塞口;(3)调温至5℃,保持6小时,搁板塞口;(4)调温至15℃,保持6小时,搁板塞口。在冻干之前和冻干之后以及在加速条件下(30℃下的1、2和3天)分析VCC。冻干后和加速条件的3天中还测量了残留水分。在冻干前、冻干后,和加速条件下的1、2,和3天(30℃)下还进行了MFI和RMM。
结果。可以通过使用5℃至15℃之间(例如12℃)的二级干燥温度来获得3.5%的目标RM。见图19。通过MFI和RMM所测量的在不同采样点的样品亚可见颗粒的数量是可比的。不同的SD温度对亚可见粒子水平没有影响。对于WP2A样品,观察到了可比较的颗粒水平。从冻干前到冻干后,未观察到VCC的显著变化。在30℃下72小时后,观察到VCC降低至冻干前的78%-85%。SD温度下没有明显的VCC趋势。
3.3.评估修改的冷冻步骤。
进行了一系列实验(WP3)以探索修改的冷冻步骤,该冷冻步骤具有小瓶在-4℃下的延长的保持时间,以使所有小瓶在刚好高于冷冻温度时达到平衡。
研究设计。使用填充量为2mL的6R小瓶和与WP2A实验相同的循环条件,并进行以下更改:(1)将在-4℃下的保持时间从30分钟延长至大约1小时20分钟;(2)在12℃下进行二级干燥,以达到3.5%RM的目标。在冻干之前和之后以及在加速条件下(30℃下的1、2,和3天)分析VCC。在冻干后和加速条件的3天中还测量了残留水分。在冻干前、冻干后,和加速条件下的1、2,和3天(30℃)下还进行了MFI和RMM。
结果。在约23小时的处理时间后,完成样品的一级干燥(PD)。对于前方小瓶,PD已在18小时后完成。对于后方小瓶(back vials),PD在20小时后完成。PD后,将小瓶在-4℃下平衡83分钟。冻干后,立即分析样品(Tlyo)或保存在30℃(Txxh)。冻干后观察到VCC降至80%,在30℃下储存长达72小时(T30h)后降至70%。冻干后,中心小瓶的RM为2.3%,而非预期的3.5%。MFI所测量的冻干前和冻干后样品的亚可见颗粒数量可比。粒度分布保持恒定。增强的冷冻步骤可能改变了冰晶配方,从而改变了冻干饼的干燥行为,这可能影响了细胞的活力和残留水分。见图40A-B。
3.4.评估修改的冷冻步骤和一级干燥温度。
进行两因素设计研究(WP4)(冷冻步骤和一级干燥温度)。
研究设计。测试了冷冻步骤中搁板从5℃到-45℃的快速冷却。测试调整的一级干燥条件,以减少滤饼的收缩/塌陷。在冻干之前和冻干之后以及在加速条件下(30℃下的1、2和3天)分析VCC。冻干后和加速条件的3天中还测量了残留水分。在冻干前、冻干后,和加速条件下的1、2,和3天(30℃)下还进行了MFI和RMM。
3.5.评估解冻程序(37℃解冻)。
进行了一系列实验(WP6)以评估ADXS-HER2的新解冻程序。先前的解冻程序是将配制的原料材料在2-8℃下解冻过夜。
研究设计。使用填充量为2mL的6R小瓶和与WP2B实验相同的循环条件。将OD600为10的配制的原料材料(formulated bulk material)在37℃下解冻。将细胞沉淀物在37℃解冻,然后用配方缓冲剂稀释至OD600为10。在冻干之前和之后以及在加速条件下(30℃下的1、2,和3天)分析VCC。在冻干后和加速条件的3天中还测量了残留水分。在冻干前、冻干后,和加速条件下的1、2,和3天(30℃)下还进行了MFI和RMM。见图41A-B。
结果。重复WP2B的过程,直到SD温度为5℃。在~25小时的处理时间后完成样品的一级干燥(PD)。Lyo工艺与WP2B可比。冻干后,立即分析样品(Tlyo)或保存在30℃(Txxh)。在Tliq处的CFU/mL与A(配制的原料材料(即药物物质))和B(细胞沉淀物,即已高度浓缩以基本上去除所有配方缓冲剂的药物)之间可比。冻干后,观察到VCC降低至70%和80%。在30℃下储存24小时后,观察到VCC进一步降低至约50%,其在30℃下的72小时后保持不变。
3.6.评估不同的细菌目标浓度(WP7)。
当使用具有退火步骤的冻干循环时,测试了三种不同的细菌目标浓度,以确定细菌浓度对饼外观的影响。
研究设计。制备了三种具有不同OD600值的不同配方:
(a)OD 10:F1000:使用提供的BDS,
(b)OD 2:F0200:31.37ml BDS+118.63ml配方缓冲剂,和
(c)OD 0.65:F0065:10.20ml BDS+139.80ml配方缓冲剂。
HER2材料是使用ADXS平台制造过程提供的(请参见实施例7)。
Figure BDA0002492522430001471
在冻干之前和之后以及在加速条件下的1、2,和3天(30℃)分析VCC。在冻干和加速条件3天后分析残留水分。在冻干前、冻干后,和加速条件下的1、2,和3天(30℃)下分析MFI和RMM。
结果:在~40h的处理时间后,完成样品的一级干燥(PD)(由Pt100传感器和压力传感器的读数指示)。该过程可与WP7循环1相比较;仅将SD温度从5℃更改为0℃,从而以约3.5%的残留水分含量为目标。冻干后,立即分析样品(Tlyo)或分别保存在30℃或2-8℃下。观察到细菌浓度和最终产物的光学外观之间的相关性。细菌浓度越低,观察到的饼收缩越多。F0065和F0200的冻干饼重建速度(~20s)快于F1000(~100s)。见图42A-B。
冻干后,观察到VCC降低至约60%,与细菌浓度无关。冻干后,前方小瓶和中心小瓶的VCC均未观察到差异。甚至检测到前方小瓶的VCC稍高。在30℃下的24小时后,对于两种较低的细菌浓度,观察到VCC进一步降低了10%。在30℃下的72小时后结果保持不变。在2-8℃下的7天后,观察到VCC下降了约20%。见图43。
在加速条件下,活细胞计数(VCC)和生存力显示为稳定。见图44A-B。
3.7.评估2R小瓶呈递(WP8)。
评价了在目标VCC为1×109洗涤时的2R小瓶呈递。另外,比较了冷冻和非冷冻BDS的稳定性。
研究设计。提供了目标VCC为1×109和1×1010的配制的原料材料加上约30%以弥补制造损失。在冻干前,冻干后以及在加速条件下1、2和3天(30℃)分析VCC。在冻干和加速条件3天后分析残留水分。在冻干前、冻干后,和加速条件下的1、2,和3天(30℃)下分析MFI和RMM。
结果。观察到由于冻干造成的损失最小。没有观察到VCC或存活/死亡在加速稳定性方面的显著变化。相对于液体冷冻配方,最初的存活%更高。见图45A-B。
3.8大规模生产(WP7)。
与在中试规模(pilot scale)的冷冻干燥机中进行开发时的冻干运行相比,在大规模生产中,在开始冻干运行之前,BDS的保持时间更长。这项研究的目的是评估这是否会对产品产生影响。
研究设计。冷冻干燥循环开始前一天,APC提供了非冷冻液体原料药物物质(BDS)。使用交付(delivered)的配方缓冲剂将液态BDS稀释至OD600值为0.85(目标VCC为1.3×109CFU/ml)。在进行保持时间研究期间,将稀释后的物质储存在2-8℃下。四个搁板上都装载BDS,并在四个不同的时间点装入冷冻干燥机:开始冷冻干燥处理前的20小时(H20h)、8小时(H8h)、5小时(H5h),和0小时(H0h)。
结果。冻干后,观察到VCC下降(相对于Tliq):在H0h为78%,在H5h为74%,在H8h为73%,在H20h为65%。在30℃下储存72小时后,H20h、H8h,和H5h进一步下降了约10%。在2-8℃下储存后T7天(T7days)的VCC与冻干后的VCC可比。见图46A、46B、47A,和47B。
实施例4:药物产品的冻干和冻干的药物产品的长期室温稳定性。
4.1ADXS11-001中试批次
4.1.1材料与方法
之前的开发实验全部使用小规模的冻干机进行。因为扩大规模并不能保证产品温度和冰含量的动态变化与实验室规模的动态变化相同,因此为了大规模生产,可能需要对冻干循环进行修改。为了评估潜在的规模扩大问题,制造了中试批次(pilot batch),用于概念验证和稳定性研究。药物物质过程是在由摇摆运动生物反应器技术提供的一次性封闭系统中进行的。药物物质制造遵循ADXS平台制造过程。该平台由一次性封闭系统组成,该一次性封闭系统包括用于发酵的20L产品培养袋、用于浓缩和缓冲剂交换的切向流过滤(TFF)歧管以及用于DS填充的容器歧管。将药物物质在2-8℃下放置过夜,用配方缓冲剂稀释至目标OD600,装入DIN 6R小瓶(2.0mL)中并冻干。大约的批次大小为1500小瓶。
表13.用于中试批次的主要包装材料。
Figure BDA0002492522430001491
塞子已交付准备就绪,在使用前未干燥。
4.1.2研究设计
冻干过程在Martin Christ Epsilon 2-12D中试规模的冻干机中进行。由于该冻干机使用皮拉尼真空规作为控制压力的传感器,而非实验室规模的冻干机中使用的MKS传感器,因此必须选择皮拉尼真空规的压力设定点。根据对以前的冻干循环的回顾,其中测量了皮拉尼真空规压力(但未用于对照),发现0.163毫巴的皮拉尼压力等于一级干燥的主要部分的0.090毫巴的MKS压力。由于皮拉尼真空规压力取决于气相的组成,因此随着水的分压在一级干燥结束时降低,皮拉尼压力读数接近MKS压力读数。
表14.用于ADXS11-001中试批次的冻干参数
Figure BDA0002492522430001511
1皮拉尼真空传感器在过程控制中(***0.163不可编程)
2此处定义的主要干燥终点是在TP P100探头的冷点超过-18℃的Ts设定点后14小时
3这样做是为了避免在夜间循环结束后产生真空吸力
4.1.3结果和讨论
表15.过程中的样品的OD600和VCC
处理步骤 OD<sub>600</sub> VCC
WAVE收获 7.9 1.76x10<sup>10</sup>
预配方 17 3.09x10<sup>10</sup>
最终原料配方(bulk formulation)保持后/最终配方 10.2 1.27x10<sup>10</sup>
最终配制的原料(Lyo前 10.2 1.76x 10<sup>10</sup>
通过确定冻干机内每个搁板的热点(H)和冷点(C)的VCC(平板法(plate method))进行冻干机的初步制图(mapping)。数据显示在图48和表16中。
表16.用于中试批次的冻干机内的热点和冷点的VCC和残留水分数据
Figure BDA0002492522430001521
冻干机中的热点和冷点的VCC数据的总结统计表明,热点的平均VCC为7.08E+09CFU/mL,而冷点的平均值为1.032E+10CFU/mL。冻干机中的热点和冷点是根据冻干机中探针的温度确定的。热点倾向于在冻干机的边缘,而冷点倾向于在冻干机的中心。样品编号对应于冻干机中的搁板,并且随H或C位置变化很小。请参阅表17中的CV列。
表17.数据总结
变量 位置 N 平均值 标准差 变异系数(CV)
VCC(CFU/mL) 5 10316000000 531300292 5.15
C 5 7080000000 382883794 5.41
数据显示冻干机内的热点和冷点之间在VCC和RM上的区别。尚不知道VCC的差异是否一定是由于RM的差异所致,还是二者均是冻干饼的某些其它特征的函数。
由Eurofins使用经验证的方法进行释放和稳定性分析。在分析之前,将小瓶用2mL或生理盐水重建。表18提供了释放和稳定性数据。
Figure BDA0002492522430001541
Figure BDA0002492522430001551
Figure BDA0002492522430001561
4.2.1加速稳定性
早期的开发数据表明,在30℃下的加速稳定性可以预示长期的稳定性趋势。将批料储存在30℃下并评估长达63天,以确定产物在加速条件下保持稳定多长时间(图49-53和表19)。
表19.在30℃下储存的ADXS11-001,批号5329PD-17-01的VCC和存活%
Figure BDA0002492522430001571
4.2.2体内测试
ADXS11-001(AXAL)是一种活的减毒的单核细胞增生李斯特菌-李斯特菌溶血素O(Lm-LLO)免疫疗法,其正在临床开发中,用于治疗与人乳头瘤病毒(HPV)相关的癌症。ADXS11-001经过生物工程处理,可分泌抗原-佐剂融合蛋白,该融合蛋白由与HPV 16全长E7蛋白融合的李斯特菌溶血素O(tLLO)的截短片段(tLLO-E7)组成。针对基于Lm的免疫疗法所提出的作用机制是刺激先天免疫系统和适应性免疫系统,以启动联合的抗肿瘤反应,最终导致从头产生肿瘤抗原特异性T细胞,这些T细胞能够浸润和破坏肿瘤。为了确认该产品的生物活性没有受到冻干的不利影响,用ADXS11-001免疫的荷瘤小鼠会产生对HPV16-E7和HPV16-E6特异的CD4+和CD8+T细胞。
在带有TC-1肿瘤的小鼠中评估并比较了冻干的AXAL和临床AXAL控制肿瘤和延长动物存活的能力。在成年雌性C57BL/6小鼠的右胁皮下注射1x105 TC-1肿瘤细胞,然后在肿瘤植入后第8、15,和22天通过IP注射PBS或各种剂量(5x107 CFU、1x108 CFU、2x108 CFU)的冻干AXAL或临床AXAL进行免疫(见图54)。在植入肿瘤后62天监测小鼠的肿瘤生长和总体健康状况。如果肿瘤体积超过2000mm3,则对小鼠实施安乐死。
在用PBS治疗的小鼠中,肿瘤体积持续增加,并且没有动物在第30天后存活(图55-56)。相比之下,所有剂量的冻干AXAL和临床AXAL均显著抑制肿瘤生长并延长动物存活期(图55-56)。值得注意的是,对于每种剂量,冻干AXAL和临床AXAL的肿瘤生长曲线和生存曲线类似。
如图55所示,在荷瘤小鼠植入肿瘤后第8天,用PBS或3种不同剂量的冻干AXAL或临床AXAL对其进行治疗,此后每隔7天治疗一次,共治疗3剂。每周测量肿瘤体积两次。示出了每个剂量组的肿瘤生长曲线。****P<.0001。NS:不显著。
如图56所示,在荷瘤小鼠植入肿瘤后第8天,用PBS或3种不同剂量的冻干AXAL或临床AXAL对其进行治疗,此后每隔7天治疗一次,共治疗3剂。在植入肿瘤后62天监测小鼠的肿瘤生长和总体健康状况。如果肿瘤体积超过2000mm3,则对小鼠实施安乐死。示出了每个剂量组的生存曲线。**P<.01。NS:不显著。
未观察到冻干的AXAL和临床AXAL在控制肿瘤生长和延长TC-1荷瘤小鼠的动物存活能力方面的显著差异。这些数据表明冻干过程不影响AXAL的抗肿瘤活性。
4.3结论
中试批次成功地证明了ADXS DS平台制造工艺在支持冻干药品上的应用。加速稳定性下的存活%和VCC与之前的开发研究一致。
实施例5.冷冻/解冻药物物质并获得与连续加工材料可比的结果的能力5.1WP7,循环3
评估了药物物质的不同储存条件(冷冻与非冷冻2-8℃),以查看冻干循环的改善是否导致经单次冷冻-解冻的DS在冻干后的增加的生存力。
5.2材料与方法
在冷冻干燥循环的前一天,由APC(爱尔兰都柏林)提供冷冻的(A)和非冷冻的液体(B)BDS。在1L的LDPE袋中将约800mL的2-8℃DS和冷冻DS配制为OD600约为14。将冷冻的材料在37℃的水浴中解冻,直到该材料不再包含冰晶(解冻时间:2.5h)。使用配方缓冲剂(在Coriolis制得)将两种药物物质(A和B)稀释至两个不同的OD600值。表20提供了制备的配方和目标OD600值的概观。
表20.配方和OD600目标值
配方 BDS OD<sub>600</sub>值
A0085 冷冻药物物质 0.85
A1300 冷冻药物物质 13
B0085 非冷冻药物物质 0.85
B1300 非冷冻药物物质 13
表21中示出了药物物质和稀释液的测量的OD600值。表22给出了制备的配方的稀释方案。
表21.所交付材料的测量的OD600值。
Figure BDA0002492522430001591
表22.三种配方-F1000、F0200,和F0065的稀释方案。
配方 DS 配方缓冲剂
A0085 14.00mL 186.00mL
A1300 200.00mL -
B0085 15.01mL 184.99mL
B1300 200.0L -
5.3研究设计
冻干过程中的冷冻的进行不包括退火步骤或保持在4℃,因为在先前的实验中未观察到这些步骤对饼外观的积极影响。将小瓶立即冷冻至-45℃,无需保持或退火步骤。二级干燥时间延长至5小时,以获得更均匀的批次,并达到3.5%的目标残留水分含量(RM)。在冻干后,进行RM、VCC、MFI、RMM、重建时间、冻干产品的外观分类,以及通过称重确定失水量。在30℃下分析VCC、MFI、RMM共24小时和72小时。此外,在2-8℃下分析VCC共7天。
表23.WP7,循环3的冻干循环参数
Figure BDA0002492522430001601
*皮拉尼真空规控制
5.4结果与讨论
使用Epsilon 2-12D中试规模冷冻干燥机(Martin Christ,Osterode,德国)进行冻干。在冷冻干燥过程中,监控压力(皮拉尼和MKS)、产品温度、搁板温度,和冷凝器温度。中心小瓶和前方小瓶由PT100传感器监控。
冷冻期间不包括退火步骤,并且将在0℃的二级干燥步骤设置为5h。如PT100传感器和压力传感器的读数所示,所有样品的一级干燥均在约34小时的处理时间后完成。对于前方小瓶,如PT100传感器所示,经过18小时的处理时间后,一级干燥已经完成。样品的干燥与细菌浓度无关。
对于冷冻步骤,将样品立即冷冻至-45℃而无保持步骤或退火步骤。根据PT100传感器,在调温至PD温度之前,前方小瓶未达到-45℃。
在冻干过程中记录视频,以确定何时发生收缩。在视频中,可以看到来自所有四种配方(A0085、A1300、B0085和B1300)的样品,并且收缩似乎发生在一级干燥过程中。中心小瓶的干燥行为可能会略有不同,因为前方小瓶的初次干燥的结束要比中心小瓶的早。
5.5冷冻干燥产品的光学评估
记录了每种配方冻干后的十个中心小瓶的冻干饼的光学外观。四种配方的冻干饼的总体光学外观良好。所有饼都是致密的,没有与玻璃瓶完全接触。对于较高浓度的配方(A1300和B1300),饼高度的收缩以及饼从小瓶壁和瓶底的收缩与具有类似OD600值的上一循环的样品(F1000)可比。较低浓度的样品(A0085和B0085)也是如此。在循环2的较低浓度的配方(F0065)中观察到相似的冻干饼。冻干饼具有与冻干安慰剂相似的光学外观。与循环2一样,观察到细菌浓度与最终产物的光学外观之间的相关性。
5.6饼重量的确定
在循环3期间测定饼的重量和水分损失。通过重量分析法测定每个配方五个小瓶的重量。基于空的小瓶重量、填充后的小瓶重量和冻干后的小瓶重量,计算出饼的重量和水分损失(表24)。较低浓度配方的冻干饼的重量为30mg,而较高浓度配方的冻干饼的重量为40mg。冻干后,测定水分损失为1.17-1.18g。因此,1.2mL的重建体积适合于获得与冻干前相同的细菌浓度。
表24.饼重量和水分损失的测定。
Figure BDA0002492522430001621
5.7重建时间
测量每种配方中两个样品的重建时间,并将其与循环1和循环2的结果进行比较(图57和表25)。高浓度配方(A1300和B1300)的重建时间比低浓度配方(A0085和B0085)的重建时间更长。总体而言,重建时间比WP7的先前循环的重建时间更短。在不包括退火步骤的情况下直接冷冻样品似乎缩短了重建时间。
表25.WP7循环1至循环3的测得的重建时间的概览。
Figure BDA0002492522430001631
泡沫评分:0-无泡沫,1-轻微泡沫,2-中度泡沫,3-强泡沫,4-强而稳定的泡沫。
LP-低压。
5.8微流成像(MFI)
通过MFI分析亚可见颗粒的数量,以确定原料(冷冻的或非冷冻的)或细菌浓度是否对颗粒形成以及颗粒的尺寸分布有影响。亚可见颗粒是肉眼无法观察到的颗粒物质。注射和肠胃外输注中的颗粒物由溶液中无意中存在的、除了气泡以外的流动性未溶解颗粒组成。肠胃外输注中允许的亚可见颗粒的数量有法规限制。在冻干之前(Tliq),冻干燥之后(Tlyo)以及在30℃下储存24小时和72小时之后(T24h和T72h)分析样品。结果示于图58A-D中。在冻干之前和之后以及在30℃下保存长达72h之后,冷冻材料(A0085和A1300)的亚可见颗粒数量没有变化。对于非冷冻材料,在冻干之前检测到更多的颗粒。在其它使用非冷冻材料的实验中也获得了相似的结果。冻干后亚可见颗粒的数量与冷冻材料的结果可比。
5.9共振质量测量(阿基米德)
关于ADXS-HER2样品的负浮力颗粒和正浮力颗粒的含量的RMM分析结果在图59A-D中给出。
冷冻和非冷冻材料的结果相似。在组距(bin size)≥0.3μm的所有时间点和所有存储条件,比较累积的负浮力颗粒数。请注意,低于300,000颗粒/mL(LoQ)的颗粒数仅供参考(数据未经稀释校正,A0085和B0085:稀释200倍,A1300和B1300:稀释5,000倍)。
冻干后,较小的第二颗粒群出现在约300nm处。在所有分析的时间点内,所有配方的颗粒分布均可比。比较负浮力颗粒的差分颗粒计数(differential particle counts)。低于0.3μm组距的值仅供参考而给出(数据未经稀释校正,A0085和B0085:稀释200倍,A1300和B1300:稀释5,000倍)。
由于配方中细菌的浓度不同,因此必须制备不同的稀释液。将A0085和B0085稀释200倍,将A1300和B1300稀释5,000倍。为了避免高估测量固有的乘法误差,未对各个稀释液校正累积计数。此外,由于该方法的定量限(LoQ)约为每毫升300,000个颗粒,稀释校正会提高一些高于LoQ的测量的低颗粒计数,否则这些计数将不予考虑,从而可能无法反映实际的实验条件。
在冻干之前和之后,所有四种配方的亚微米颗粒的数量均未改变(图59A-D)。冷冻和非冷冻材料的结果相似。在冻干之前,检测到一个主要的颗粒群,其大小范围为600–700nm(图60A-D)。冻干后,较小的第二颗粒群出现在300nm左右。在所有分析的时间点内,所有配方的颗粒分布均可比。
5.10卡尔·费休滴定
通过直接注射,分析Tlyo时的RM(图61和表26)。较高浓度的样品(A1300和B1300)的RM达到约3%,较低浓度的样品(A0085和B0085)的RM达到约3.5%。每个配方中五个分析的小瓶的相对标准偏差均低于循环2的相对标准偏差,这最有可能是由于延长的SD时间所致。冷冻和非冷冻材料的结果是可比的。
表26.对于WP7循环3,通过直接注射测量的KF结果的概览。
Figure BDA0002492522430001651
5.11VCC测定
在Tliq下、在冻干之后的Tlyo下、在30℃下储存24小时和72小时(T24h和T72h)以及在2-8℃储存7天之后(T7days),在Tliq下分析活细菌的浓度(VCC,表示为CFU/mL)(图62和表27)。冻干后,观察到较低细菌浓度的VCC降至约60%(相对于Tliq),而较高细菌浓度的VCC降至70-78%。在30℃下孵育72小时后,较低细菌浓度进一步降低约10%,而较高细菌浓度进一步降低约20%。在2-8℃下储存7天后的VCC结果与冻干后的结果可比。与WP2中相同,CFU/mL的结果低于冻干后的目标值:
·A1300(目标OD600为13):1E+10CFU/mL
·A0085(目标OD600为0.85):1E+09CFU/mL
·B1300(目标OD600为13):1E+10CFU/mL
·B0085(目标OD600为0.85):1E+09CFU/mL
APC(爱尔兰,都柏林)再次对每种配方的样品进行了流式细胞术。VCC和存活%结果在图62和表27中给出。
表27.CFU/mL和相对生存力的概述。
Figure BDA0002492522430001661
图63A-B示出了在循环3之后和加速稳定性时的VCC和存活%。由于冻干观察到极小的损失。在加速稳定性时未观察到VCC或存活%的变化。相对于液体冷冻配方,最初的存活%更高,这支持了冻干配方的进一步发展。经过冷冻/解冻的DS表现出良好的加速稳定性,未观察到VCC或活性%的降低。在较低的VCC水平下,观察到新鲜和冷冻材料之间的存活%存在轻微的抵消(offset),这与先前的观察结果一致,即VCC的增加与冻干后的更好回收率相关。
表28.在30℃下存储的WP7,循环4的VCC和存活%
Figure BDA0002492522430001671
5.12结论
用非冷冻和冷冻DS进行冻干运行。测试了两个目标细菌浓度。冷冻过程中不包括退火步骤或保持,因为在之前的循环中没有优势。
所有制剂(两种不同细菌浓度,冷冻和未冷冻的原料)的冻干饼的光学外观是良好的。冻干饼的收缩似乎取决于细菌的浓度。对于较高的细菌浓度,观察到较少的收缩。
重建时间取决于细菌浓度和冷冻步骤。对于较高的细菌浓度,观察到更长的重建时间。与在冷冻期间具有退火步骤的实验(数据未显示)相比,在冷冻期间没有退火步骤的实验中观察到较短的重建时间。
在冻干和在30℃下储存后,亚可见颗粒和亚微米颗粒的数量主要保持不变(通过RMM和MFI分析)。冻干前,非冷冻材料的颗粒数较多。冻干后,检测到大小约为300nm的小颗粒群(通过RMM分析)。
对于最低的细菌浓度,在冻干后,观察到基于板的VCC降低至约60-70%(相对于Tliq)。对于两个较高的细菌浓度,观察到较高的VCC(相对于Tliq为70-78%)。在30℃下保存最多72小时后,观察到10-20%的进一步降低。将DS储存在1L的LDPE袋中并在37℃解冻后,显示出与连续处理的DS相比,加速稳定性的VCC和存活%结果具有可比性。
对VCC和存活%的流式细胞术分析表明对于冷冻和新鲜DS均具有良好的稳定性。新鲜和冷冻DS之间的较低VCC水平略有抵消。
冻干(SD温度为0℃,6小时)后,获得约3%(较高的细菌浓度)和3.5%(较低的细菌浓度)的RM。
通常,使用所施加的方法在冷冻材料和非冷冻材料之间没有观察到差异,这表明DS可以在-80℃下长期存储,从而消除了连续生产的需要。
实施例6.温度和时间对冻干前解冻冷冻药物物质的影响。
解冻的温度和时间会影响稳定性。确定用于解冻冷冻药物物质的合适条件允许在冻干之前将药物物质冷冻和保存。确保解冻后得到高质量的健康细胞可确保所得的冻干药物产品也具有足够高的质量。
6.1原料药物物质的冷冻-解冻(FT)
在整个开发过程中,各种研究评估了在-80℃下储存药物物质(DS)、解冻,和在之后复合制造(compound manufacture)冻干药物产品(DP)批次的能力。这涉及DS的冷冻-解冻。冷冻/解冻循环定义为DS完全解冻,然后在-80℃下储存至少24小时,直到没有冰晶残留。冷冻-解冻带来的应激可能会对冻干产品的产品质量(例如VCC,存活%)产生不利影响。因此,进行了一系列实验以确定DS的最佳存储条件和解冻程序。
6.2DS容器的评估(袋与瓶)
早期的研究评估了存储在瓶中的DS(Vibalogics Experiments Lyo8、Lyo12,和Lyo16,以及科里奥利(Coriolis)WP2A、WP2B,和WP3)。其它的研究将DS在2-8℃过夜解冻(Vibalogics Lyo8和Lyo12和科里奥利WP2B和WP3)或在更短的时间范围内在37℃下解冻(Vibalogics Lyo16和科里奥利WP2A、WP6和WP7-Cycle 1)。后来的研究评估了储存在1L的LDPE袋中并在37℃下融化的DS(WP7循环3)。
6.3DS解冻温度和DS浓度评估
由于对于GMP制造而言,优选将DS放在LDPE袋中储存,而非在瓶中存储,因此,研发工作的重点是在袋中存储时得到更高的VCC和存活%特性(profile)的条件。冷冻/解冻循环定义为DS完全融化,然后在-80℃下储存至少24小时。完成冷冻-解冻研究,以评估在一定范围内DS VCC水平(浓度)和解冻温度下,三个FT循环中的药物物质的VCC和存活%。
FT研究评估了OD600为3.5和6.5的DS。将大约1L的DS装入1L的LDPE袋中,在-80℃冷冻,并在2-8℃、室温(RT),或37℃下进行三个FT循环。将OD600为6.5或OD6003.5的DS袋在4℃的冰箱中解冻36小时、在实验室的工作台上于室温解冻约12小时,或在37℃的培养箱中解冻≤8小时。完全解冻后,取出样品进行分析,将袋子放在-80℃下至少24小时,然后在各自的条件下解冻并为下一个循环重新冷冻。
对于所研究的解冻条件,在三个冷冻-解冻循环中,相对于OD600为3.5的BDS,OD600为6.5的BDS显示出更高的VCC和生存力值,如图64和图65所示。
对于所有除了37℃外的解冻温度,BDS在OD600为3.5时的生存力随着多个冷冻解冻循环而降低。对于OD600为6.5和3.0而言,37℃的解冻显示出冷冻-解冻稳定性。
数据表明,在37℃下将DS解冻导致在所评估的VCC值范围内产品质量得到改善。数据得到了科里奥利实验的进一步支持,该实验评估了以浓缩沉淀物(concentratedpellet)形式存储在瓶中并在2-8℃下融化的DS,其没有产生可接受的加速稳定性特性。基于这些发现,执行了WP7循环3来评估DS的目标存储和解冻条件是否导致相对于未经历FT循环的DS的Lyo DP稳定性的提高。WP7-循环3的结果比较了储存在2-8℃和-80℃的DS和在37℃下解冻的1L的LDPE袋中的1L填充,显示出可比的结果,表明在冻干前将DS冷冻和解冻是可行的。
实施例7.示例性冻干条件
7.1配方
表29.示例性配方。
Figure BDA0002492522430001701
用生理盐水重建药物产品。
7.2药物物质制备与解冻
DS制备由用于发酵的20L培养袋的一次性封闭系统、用于浓缩和缓冲剂交换的切向流过滤(TFF)歧管和用于DS填充的容器歧管组成。DS可以在调剂(compounding)、填充,和冻干之前在2-8℃下保持三天,或在-80℃下冷冻。DS目标浓度为3.5-6.5的OD600。DS的融化在37℃下≤8小时内进行。
7.3冻干循环
表30.示例性冻干循环。
Figure BDA0002492522430001711
*皮拉尼真空传感器是过程控制探头
**此处所定义的一级干燥结束是指冷点的TPP100探针超过18℃的Ts设定点后的14小时。
***仅用于在晚上循环结束后避免真空吸力
7.4残留水分目标
释放时的残留水分目标为>3.0%。
7.4ADXS DS平台流程说明
发酵是在由摇摆运动生物反应器技术提供的一次性封闭系统中进行的。一次性封闭系统由用于发酵的产品培养袋、用于浓缩和缓冲剂交换的切向流过滤(TFF)系统,以及用于药物物质容器填充的产品歧管组成。这些成分中的每一个都通过伽玛射线灭菌,并根据现场质量体系进行接收。
平台使用摇摆运动技术进行发酵。该技术提供了在封闭系统中控制整个处理操作的能力。TFF使用一次性中空纤维模块和一次性过滤路径收获原料DS。
表31提供了发酵培养基和pH控制溶液(1M氢氧化钠)的组成。将接种物的培养物通过串联的两个0.2μm过滤器无菌过滤到无菌的1L玻璃瓶中。将发酵培养基通过两个串联的0.2μm过滤器进行无菌过滤到无菌的10μL玻璃瓶中。
表31.发酵培养基配方表。
Figure BDA0002492522430001721
培养袋预先连接有用于溶解氧(DO)和pH监测的探针。然后将其无菌填充5L的发酵培养基。用0.2μm过滤的压缩氧气和空气给培养袋充气。
在繁殖过程中,以1.0升/分钟的速度连续输送经过过滤的(0.2μm)压缩空气/O2,O2流设定点为50%,并通过通风孔排出。摇摆角度设置为10°。DO控制的速度为设置为18-36rpm的摇摆速率。pH控制瓶无菌连接到培养袋。在繁殖过程中,通过集成控制系统自动监控和控制过程的温度、pH,和溶解氧。
通过将1mL的WCB移入170mL的发酵培养基中,从工作细胞库启动预培养物,并生长大约10小时,直到达到OD600≥3.5。通过将其转移到培养袋中,预培养物可用于接种生产培养物。生长至OD600≥7.5。当OD600达到目标值时,使用Ready Mate连接器将培养袋连接至无菌TFF歧管,以针对配方缓冲剂进行浓缩和渗滤。TFF模块使用孔径为0.2μm的中空纤维过滤器,满足细胞分离应用的低剪切要求。使用蠕动泵将发酵培养物供入TFF系统。将再循环回路中的大量培养物最初设置为流速为约75rpm(约4.5L/min)的流速。将发酵液浓缩5倍至约1000g的质量。使用渗透泵,将其最初设置为20%(约275mL/min)。
用≥7渗滤体积进行所收获的浓缩物的渗滤/洗涤。使用过程中采样歧管从TFF组件中采样渗余的药物物质。测量样品的OD600,并将其用于计算达到目标OD600≤6.5所需的稀释体积。将所需量的配方缓冲剂泵入渗余物袋中,以将渗余物稀释至所需浓度。除了用于控制容积转移的完整的TFF组件之外,所有容积转移均通过相应袋子中的重量变化来控制。取样并测量渗余物,以确认OD600≤6.5。如果OD600尚未充分稀释,则可以进一步稀释。然后将DS分成约1L等分,放入产品袋中。
每个袋被热封以从组件中移除。每个袋子都贴有适当的信息,然后在-70±15℃下保存。
7.6药物物质处理流程图
见图20。
7.7药品产品生产流程图
见图21。
序列表
<110> 阿德瓦希斯公司
<120> 细菌或李斯特菌菌株的冻干组合物和方法
<130> 062384/519152
<150> 62/560,318
<151> 2017-09-19
<160> 100
<170> PatentIn 版本3.5
<210> 1
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 1
gcacgtagta taatcaactt tgaaaaactg taataa 36
<210> 2
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 2
gcacgttcta ttatcaactt cgaaaaacta taataa 36
<210> 3
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 3
gcccgcagta ttatcaattt cgaaaaatta taataa 36
<210> 4
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 4
gcgcgctcta taattaactt cgaaaaactt taataa 36
<210> 5
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 5
gcacgctcca ttattaactt tgaaaaactt taataa 36
<210> 6
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 6
gctcgctcta tcatcaattt cgaaaaactt taataa 36
<210> 7
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 7
gcacgtagta ttattaactt cgaaaagtta taataa 36
<210> 8
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 8
gcacgttcca tcattaactt tgaaaaacta taataa 36
<210> 9
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 9
gctcgctcaa tcatcaactt tgaaaagcta taataa 36
<210> 10
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 10
gctcgctcta tcatcaactt cgaaaaattg taataa 36
<210> 11
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 11
gctcgctcta ttatcaattt tgaaaaatta taataa 36
<210> 12
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 12
gctcgtagta ttattaattt cgaaaaatta taataa 36
<210> 13
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 13
gctcgttcga ttatcaactt cgaaaaactg taataa 36
<210> 14
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 14
gcaagaagca tcatcaactt cgaaaaactg taataa 36
<210> 15
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 15
gcgcgttcta ttattaattt tgaaaaatta taataa 36
<210> 16
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 16
Ala Arg Ser Ile Ile Asn Phe Glu Lys Leu
1 5 10
<210> 17
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 17
gattataaag atcatgacgg agactataaa gaccatgaca ttgattacaa agacgacgat 60
gacaaa 66
<210> 18
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 18
gactataaag accacgatgg cgattataaa gaccatgata ttgactacaa agatgatgat 60
gataag 66
<210> 19
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 19
gattataaag atcatgatgg cgactataaa gatcatgata tcgattacaa agatgacgat 60
gacaaa 66
<210> 20
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 20
gactacaaag atcacgatgg tgactacaaa gatcacgaca ttgattataa agacgatgat 60
gacaaa 66
<210> 21
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 21
gattacaaag atcacgatgg tgattataag gatcacgata ttgattacaa agacgacgac 60
gataaa 66
<210> 22
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 22
gattacaaag atcacgatgg cgattacaaa gatcatgaca ttgactacaa agacgatgat 60
gataaa 66
<210> 23
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 23
gattacaagg atcatgatgg tgattacaaa gatcacgata tcgactacaa agatgatgac 60
gataaa 66
<210> 24
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 24
gactacaaag atcatgatgg tgattacaaa gatcatgaca ttgattataa agatgatgat 60
gacaaa 66
<210> 25
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 25
gattataaag accatgatgg tgattataag gatcatgata tcgattataa ggatgacgac 60
gataaa 66
<210> 26
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 26
gattataaag atcacgatgg cgattataaa gaccacgata ttgattataa agacgacgat 60
gacaaa 66
<210> 27
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 27
gactataaag accacgatgg tgattataaa gatcacgaca tcgactacaa agacgatgat 60
gataaa 66
<210> 28
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 28
gactacaaag atcacgacgg cgattataaa gatcacgata ttgactataa agatgacgat 60
gataaa 66
<210> 29
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 29
gattataaag accatgatgg agattacaaa gatcatgata ttgactataa agacgacgac 60
gataaa 66
<210> 30
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 30
gattataaag atcacgatgg tgactacaaa gatcacgata tcgattataa agacgatgac 60
gataaa 66
<210> 31
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 31
gactacaaag atcacgatgg tgattataaa gaccatgata ttgattacaa agatgatgat 60
gacaaa 66
<210> 32
<211> 22
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 32
Asp Tyr Lys Asp His Asp Gly Asp Tyr Lys Asp His Asp Ile Asp Tyr
1 5 10 15
Lys Asp Asp Asp Asp Lys
20
<210> 33
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 33
Gly Ala Ser Gly Ala Ser
1 5
<210> 34
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 34
Gly Ser Ala Gly Ser Ala
1 5
<210> 35
<211> 4
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 35
Gly Gly Gly Gly
1
<210> 36
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 36
Gly Gly Gly Gly Ser
1 5
<210> 37
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 37
Val Gly Lys Gly Gly Ser Gly Gly
1 5
<210> 38
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 38
Pro Ala Pro Ala Pro
1 5
<210> 39
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 39
Glu Ala Ala Ala Lys
1 5
<210> 40
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 40
Ala Tyr Leu Ala Tyr Leu
1 5
<210> 41
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 41
Leu Arg Ala Leu Arg Ala
1 5
<210> 42
<211> 4
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 42
Arg Leu Arg Ala
1
<210> 43
<211> 32
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 43
Lys Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala
1 5 10 15
Ser Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys
20 25 30
<210> 44
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 44
Lys Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala
1 5 10 15
Ser Pro Lys
<210> 45
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 45
Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg
1 5 10
<210> 46
<211> 28
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 46
Lys Glu Ser Val Val Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met
1 5 10 15
Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys
20 25
<210> 47
<211> 20
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 47
Lys Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro Thr Asp
1 5 10 15
Glu Glu Leu Arg
20
<210> 48
<211> 33
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 48
Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly
1 5 10 15
Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp
20 25 30
Arg
<210> 49
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 49
Lys Gln Asn Thr Ala Ser Thr Glu Thr Thr Thr Thr Asn Glu Gln Pro
1 5 10 15
Lys
<210> 50
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 50
Lys Gln Asn Thr Ala Asn Thr Glu Thr Thr Thr Thr Asn Glu Gln Pro
1 5 10 15
Lys
<210> 51
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 51
Arg Ser Glu Val Thr Ile Ser Pro Ala Glu Thr Pro Glu Ser Pro Pro
1 5 10 15
Ala Thr Pro
<210> 52
<211> 28
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 52
Lys Ala Ser Val Thr Asp Thr Ser Glu Gly Asp Leu Asp Ser Ser Met
1 5 10 15
Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys
20 25
<210> 53
<211> 20
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 53
Lys Asn Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro Thr Asp
1 5 10 15
Glu Glu Leu Arg
20
<210> 54
<211> 33
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 54
Arg Gly Gly Ile Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly
1 5 10 15
Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp
20 25 30
Arg
<210> 55
<211> 529
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 55
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30
Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser
35 40 45
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr
50 55 60
Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly
65 70 75 80
Asp Ala Val Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn
85 90 95
Glu Tyr Ile Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn
100 105 110
Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly
115 120 125
Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val
130 135 140
Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly
145 150 155 160
Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser
165 170 175
Asn Val Asn Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys
180 185 190
Tyr Ala Gln Ala Tyr Pro Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp
195 200 205
Glu Met Ala Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala
210 215 220
Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser
225 230 235 240
Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr
245 250 255
Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys
260 265 270
Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn
275 280 285
Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu
290 295 300
Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp
305 310 315 320
Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn
325 330 335
Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala
340 345 350
Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp
355 360 365
Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro
370 375 380
Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile
385 390 395 400
Lys Asn Asn Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp
405 410 415
Gly Lys Ile Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn
420 425 430
Ile Ser Trp Asp Glu Val Asn Tyr Asp Pro Glu Gly Asn Glu Ile Val
435 440 445
Gln His Lys Asn Trp Ser Glu Asn Asn Lys Ser Lys Leu Ala His Phe
450 455 460
Thr Ser Ser Ile Tyr Leu Pro Gly Asn Ala Arg Asn Ile Asn Val Tyr
465 470 475 480
Ala Lys Glu Cys Thr Gly Leu Ala Trp Glu Trp Trp Arg Thr Val Ile
485 490 495
Asp Asp Arg Asn Leu Pro Leu Val Lys Asn Arg Asn Ile Ser Ile Trp
500 505 510
Gly Thr Thr Leu Tyr Pro Lys Tyr Ser Asn Lys Val Asp Asn Pro Ile
515 520 525
Glu
<210> 56
<211> 529
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 56
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30
Glu Asn Ser Ile Ser Ser Val Ala Pro Pro Ala Ser Pro Pro Ala Ser
35 40 45
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr
50 55 60
Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly
65 70 75 80
Asp Ala Val Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn
85 90 95
Glu Tyr Ile Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn
100 105 110
Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly
115 120 125
Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val
130 135 140
Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly
145 150 155 160
Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser
165 170 175
Asn Val Asn Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys
180 185 190
Tyr Ala Gln Ala Tyr Ser Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp
195 200 205
Glu Met Ala Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala
210 215 220
Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser
225 230 235 240
Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr
245 250 255
Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys
260 265 270
Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn
275 280 285
Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu
290 295 300
Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp
305 310 315 320
Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn
325 330 335
Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala
340 345 350
Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp
355 360 365
Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro
370 375 380
Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile
385 390 395 400
Lys Asn Asn Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp
405 410 415
Gly Lys Ile Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn
420 425 430
Ile Ser Trp Asp Glu Val Asn Tyr Asp Pro Glu Gly Asn Glu Ile Val
435 440 445
Gln His Lys Asn Trp Ser Glu Asn Asn Lys Ser Lys Leu Ala His Phe
450 455 460
Thr Ser Ser Ile Tyr Leu Pro Gly Asn Ala Arg Asn Ile Asn Val Tyr
465 470 475 480
Ala Lys Glu Cys Thr Gly Leu Ala Trp Glu Trp Trp Arg Thr Val Ile
485 490 495
Asp Asp Arg Asn Leu Pro Leu Val Lys Asn Arg Asn Ile Ser Ile Trp
500 505 510
Gly Thr Thr Leu Tyr Pro Lys Tyr Ser Asn Lys Val Asp Asn Pro Ile
515 520 525
Glu
<210> 57
<211> 441
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 57
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30
Glu Asn Ser Ile Ser Ser Val Ala Pro Pro Ala Ser Pro Pro Ala Ser
35 40 45
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr
50 55 60
Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly
65 70 75 80
Asp Ala Val Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn
85 90 95
Glu Tyr Ile Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn
100 105 110
Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly
115 120 125
Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val
130 135 140
Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly
145 150 155 160
Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser
165 170 175
Asn Val Asn Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys
180 185 190
Tyr Ala Gln Ala Tyr Ser Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp
195 200 205
Glu Met Ala Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala
210 215 220
Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser
225 230 235 240
Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr
245 250 255
Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys
260 265 270
Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn
275 280 285
Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu
290 295 300
Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp
305 310 315 320
Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn
325 330 335
Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala
340 345 350
Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp
355 360 365
Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro
370 375 380
Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile
385 390 395 400
Lys Asn Asn Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp
405 410 415
Gly Lys Ile Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn
420 425 430
Ile Ser Trp Asp Glu Val Asn Tyr Asp
435 440
<210> 58
<211> 416
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 58
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30
Glu Asn Ser Ile Ser Ser Val Ala Pro Pro Ala Ser Pro Pro Ala Ser
35 40 45
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr
50 55 60
Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly
65 70 75 80
Asp Ala Val Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn
85 90 95
Glu Tyr Ile Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn
100 105 110
Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly
115 120 125
Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val
130 135 140
Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly
145 150 155 160
Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser
165 170 175
Asn Val Asn Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys
180 185 190
Tyr Ala Gln Ala Tyr Ser Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp
195 200 205
Glu Met Ala Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala
210 215 220
Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser
225 230 235 240
Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr
245 250 255
Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys
260 265 270
Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn
275 280 285
Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu
290 295 300
Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp
305 310 315 320
Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn
325 330 335
Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala
340 345 350
Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp
355 360 365
Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro
370 375 380
Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile
385 390 395 400
Lys Asn Asn Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp
405 410 415
<210> 59
<211> 441
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 59
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30
Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser
35 40 45
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr
50 55 60
Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly
65 70 75 80
Asp Ala Val Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn
85 90 95
Glu Tyr Ile Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn
100 105 110
Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly
115 120 125
Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val
130 135 140
Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly
145 150 155 160
Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser
165 170 175
Asn Val Asn Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys
180 185 190
Tyr Ala Gln Ala Tyr Pro Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp
195 200 205
Glu Met Ala Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala
210 215 220
Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser
225 230 235 240
Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr
245 250 255
Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys
260 265 270
Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn
275 280 285
Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu
290 295 300
Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp
305 310 315 320
Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn
325 330 335
Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala
340 345 350
Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp
355 360 365
Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro
370 375 380
Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile
385 390 395 400
Lys Asn Asn Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp
405 410 415
Gly Lys Ile Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn
420 425 430
Ile Ser Trp Asp Glu Val Asn Tyr Asp
435 440
<210> 60
<211> 1323
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 60
atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacc aattgcgcaa 60
caaactgaag caaaggatgc atctgcattc aataaagaaa attcaatttc atccatggca 120
ccaccagcat ctccgcctgc aagtcctaag acgccaatcg aaaagaaaca cgcggatgaa 180
atcgataagt atatacaagg attggattac aataaaaaca atgtattagt ataccacgga 240
gatgcagtga caaatgtgcc gccaagaaaa ggttacaaag atggaaatga atatattgtt 300
gtggagaaaa agaagaaatc catcaatcaa aataatgcag acattcaagt tgtgaatgca 360
atttcgagcc taacctatcc aggtgctctc gtaaaagcga attcggaatt agtagaaaat 420
caaccagatg ttctccctgt aaaacgtgat tcattaacac tcagcattga tttgccaggt 480
atgactaatc aagacaataa aatagttgta aaaaatgcca ctaaatcaaa cgttaacaac 540
gcagtaaata cattagtgga aagatggaat gaaaaatatg ctcaagctta tccaaatgta 600
agtgcaaaaa ttgattatga tgacgaaatg gcttacagtg aatcacaatt aattgcgaaa 660
tttggtacag catttaaagc tgtaaataat agcttgaatg taaacttcgg cgcaatcagt 720
gaagggaaaa tgcaagaaga agtcattagt tttaaacaaa tttactataa cgtgaatgtt 780
aatgaaccta caagaccttc cagatttttc ggcaaagctg ttactaaaga gcagttgcaa 840
gcgcttggag tgaatgcaga aaatcctcct gcatatatct caagtgtggc gtatggccgt 900
caagtttatt tgaaattatc aactaattcc catagtacta aagtaaaagc tgcttttgat 960
gctgccgtaa gcggaaaatc tgtctcaggt gatgtagaac taacaaatat catcaaaaat 1020
tcttccttca aagccgtaat ttacggaggt tccgcaaaag atgaagttca aatcatcgac 1080
ggcaacctcg gagacttacg cgatattttg aaaaaaggcg ctacttttaa tcgagaaaca 1140
ccaggagttc ccattgctta tacaacaaac ttcctaaaag acaatgaatt agctgttatt 1200
aaaaacaact cagaatatat tgaaacaact tcaaaagctt atacagatgg aaaaattaac 1260
atcgatcact ctggaggata cgttgctcaa ttcaacattt cttgggatga agtaaattat 1320
gat 1323
<210> 61
<211> 633
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 61
Met Arg Ala Met Met Val Val Phe Ile Thr Ala Asn Cys Ile Thr Ile
1 5 10 15
Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp Ser Glu Asp Ser Ser Leu
20 25 30
Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln Pro Ser Glu
35 40 45
Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala Arg Glu Val Ser Ser Arg
50 55 60
Asp Ile Glu Glu Leu Glu Lys Ser Asn Lys Val Lys Asn Thr Asn Lys
65 70 75 80
Ala Asp Leu Ile Ala Met Leu Lys Ala Lys Ala Glu Lys Gly Pro Asn
85 90 95
Asn Asn Asn Asn Asn Gly Glu Gln Thr Gly Asn Val Ala Ile Asn Glu
100 105 110
Glu Ala Ser Gly Val Asp Arg Pro Thr Leu Gln Val Glu Arg Arg His
115 120 125
Pro Gly Leu Ser Ser Asp Ser Ala Ala Glu Ile Lys Lys Arg Arg Lys
130 135 140
Ala Ile Ala Ser Ser Asp Ser Glu Leu Glu Ser Leu Thr Tyr Pro Asp
145 150 155 160
Lys Pro Thr Lys Ala Asn Lys Arg Lys Val Ala Lys Glu Ser Val Val
165 170 175
Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met Gln Ser Ala Asp Glu
180 185 190
Ser Thr Pro Gln Pro Leu Lys Ala Asn Gln Lys Pro Phe Phe Pro Lys
195 200 205
Val Phe Lys Lys Ile Lys Asp Ala Gly Lys Trp Val Arg Asp Lys Ile
210 215 220
Asp Glu Asn Pro Glu Val Lys Lys Ala Ile Val Asp Lys Ser Ala Gly
225 230 235 240
Leu Ile Asp Gln Leu Leu Thr Lys Lys Lys Ser Glu Glu Val Asn Ala
245 250 255
Ser Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu
260 265 270
Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Thr Pro Ser Glu
275 280 285
Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg
290 295 300
Leu Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala
305 310 315 320
Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp
325 330 335
Glu Leu Glu Ile Met Arg Glu Thr Ala Pro Ser Leu Asp Ser Ser Phe
340 345 350
Thr Ser Gly Asp Leu Ala Ser Leu Arg Ser Ala Ile Asn Arg His Ser
355 360 365
Glu Asn Phe Ser Asp Phe Pro Leu Ile Pro Thr Glu Glu Glu Leu Asn
370 375 380
Gly Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser
385 390 395 400
Gly Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile
405 410 415
Asp Arg Leu Ala Asp Leu Arg Asp Arg Gly Thr Gly Lys His Ser Arg
420 425 430
Asn Ala Gly Phe Leu Pro Leu Asn Pro Phe Ile Ser Ser Pro Val Pro
435 440 445
Ser Leu Thr Pro Lys Val Pro Lys Ile Ser Ala Pro Ala Leu Ile Ser
450 455 460
Asp Ile Thr Lys Lys Ala Pro Phe Lys Asn Pro Ser Gln Pro Leu Asn
465 470 475 480
Val Phe Asn Lys Lys Thr Thr Thr Lys Thr Val Thr Lys Lys Pro Thr
485 490 495
Pro Val Lys Thr Ala Pro Lys Leu Ala Glu Leu Pro Ala Thr Lys Pro
500 505 510
Gln Glu Thr Val Leu Arg Glu Asn Lys Thr Pro Phe Ile Glu Lys Gln
515 520 525
Ala Glu Thr Asn Lys Gln Ser Ile Asn Met Pro Ser Leu Pro Val Ile
530 535 540
Gln Lys Glu Ala Thr Glu Ser Asp Lys Glu Glu Met Lys Pro Gln Thr
545 550 555 560
Glu Glu Lys Met Val Glu Glu Ser Glu Ser Ala Asn Asn Ala Asn Gly
565 570 575
Lys Asn Arg Ser Ala Gly Ile Glu Glu Gly Lys Leu Ile Ala Lys Ser
580 585 590
Ala Glu Asp Glu Lys Ala Lys Glu Glu Pro Gly Asn His Thr Thr Leu
595 600 605
Ile Leu Ala Met Leu Ala Ile Gly Val Phe Ser Leu Gly Ala Phe Ile
610 615 620
Lys Ile Ile Gln Leu Arg Lys Asn Asn
625 630
<210> 62
<211> 639
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 62
Met Gly Leu Asn Arg Phe Met Arg Ala Met Met Val Val Phe Ile Thr
1 5 10 15
Ala Asn Cys Ile Thr Ile Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp
20 25 30
Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr
35 40 45
Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala
50 55 60
Arg Glu Val Ser Ser Arg Asp Ile Glu Glu Leu Glu Lys Ser Asn Lys
65 70 75 80
Val Lys Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu Lys Ala Lys
85 90 95
Ala Glu Lys Gly Pro Asn Asn Asn Asn Asn Asn Gly Glu Gln Thr Gly
100 105 110
Asn Val Ala Ile Asn Glu Glu Ala Ser Gly Val Asp Arg Pro Thr Leu
115 120 125
Gln Val Glu Arg Arg His Pro Gly Leu Ser Ser Asp Ser Ala Ala Glu
130 135 140
Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser Glu Leu Glu
145 150 155 160
Ser Leu Thr Tyr Pro Asp Lys Pro Thr Lys Ala Asn Lys Arg Lys Val
165 170 175
Ala Lys Glu Ser Val Val Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser
180 185 190
Met Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys Ala Asn Gln
195 200 205
Lys Pro Phe Phe Pro Lys Val Phe Lys Lys Ile Lys Asp Ala Gly Lys
210 215 220
Trp Val Arg Asp Lys Ile Asp Glu Asn Pro Glu Val Lys Lys Ala Ile
225 230 235 240
Val Asp Lys Ser Ala Gly Leu Ile Asp Gln Leu Leu Thr Lys Lys Lys
245 250 255
Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro Thr Asp Glu
260 265 270
Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn
275 280 285
Ala Pro Thr Pro Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro
290 295 300
Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro Met Leu Leu
305 310 315 320
Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro
325 330 335
Pro Pro Pro Thr Glu Asp Glu Leu Glu Ile Met Arg Glu Thr Ala Pro
340 345 350
Ser Leu Asp Ser Ser Phe Thr Ser Gly Asp Leu Ala Ser Leu Arg Ser
355 360 365
Ala Ile Asn Arg His Ser Glu Asn Phe Ser Asp Phe Pro Leu Ile Pro
370 375 380
Thr Glu Glu Glu Leu Asn Gly Arg Gly Gly Arg Pro Thr Ser Glu Glu
385 390 395 400
Phe Ser Ser Leu Asn Ser Gly Asp Phe Thr Asp Asp Glu Asn Ser Glu
405 410 415
Thr Thr Glu Glu Glu Ile Asp Arg Leu Ala Asp Leu Arg Asp Arg Gly
420 425 430
Thr Gly Lys His Ser Arg Asn Ala Gly Phe Leu Pro Leu Asn Pro Phe
435 440 445
Ile Ser Ser Pro Val Pro Ser Leu Thr Pro Lys Val Pro Lys Ile Ser
450 455 460
Ala Pro Ala Leu Ile Ser Asp Ile Thr Lys Lys Ala Pro Phe Lys Asn
465 470 475 480
Pro Ser Gln Pro Leu Asn Val Phe Asn Lys Lys Thr Thr Thr Lys Thr
485 490 495
Val Thr Lys Lys Pro Thr Pro Val Lys Thr Ala Pro Lys Leu Ala Glu
500 505 510
Leu Pro Ala Thr Lys Pro Gln Glu Thr Val Leu Arg Glu Asn Lys Thr
515 520 525
Pro Phe Ile Glu Lys Gln Ala Glu Thr Asn Lys Gln Ser Ile Asn Met
530 535 540
Pro Ser Leu Pro Val Ile Gln Lys Glu Ala Thr Glu Ser Asp Lys Glu
545 550 555 560
Glu Met Lys Pro Gln Thr Glu Glu Lys Met Val Glu Glu Ser Glu Ser
565 570 575
Ala Asn Asn Ala Asn Gly Lys Asn Arg Ser Ala Gly Ile Glu Glu Gly
580 585 590
Lys Leu Ile Ala Lys Ser Ala Glu Asp Glu Lys Ala Lys Glu Glu Pro
595 600 605
Gly Asn His Thr Thr Leu Ile Leu Ala Met Leu Ala Ile Gly Val Phe
610 615 620
Ser Leu Gly Ala Phe Ile Lys Ile Ile Gln Leu Arg Lys Asn Asn
625 630 635
<210> 63
<211> 93
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 63
Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu
1 5 10 15
Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr
20 25 30
Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Glu Glu Leu Glu Lys
35 40 45
Ser Asn Lys Val Lys Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu
50 55 60
Lys Ala Lys Ala Glu Lys Gly Pro Asn Asn Asn Asn Asn Asn Gly Glu
65 70 75 80
Gln Thr Gly Asn Val Ala Ile Asn Glu Glu Ala Ser Gly
85 90
<210> 64
<211> 200
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 64
Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu
1 5 10 15
Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr
20 25 30
Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Glu Glu Leu Glu Lys
35 40 45
Ser Asn Lys Val Lys Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu
50 55 60
Lys Ala Lys Ala Glu Lys Gly Pro Asn Asn Asn Asn Asn Asn Gly Glu
65 70 75 80
Gln Thr Gly Asn Val Ala Ile Asn Glu Glu Ala Ser Gly Val Asp Arg
85 90 95
Pro Thr Leu Gln Val Glu Arg Arg His Pro Gly Leu Ser Ser Asp Ser
100 105 110
Ala Ala Glu Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser
115 120 125
Glu Leu Glu Ser Leu Thr Tyr Pro Asp Lys Pro Thr Lys Ala Asn Lys
130 135 140
Arg Lys Val Ala Lys Glu Ser Val Val Asp Ala Ser Glu Ser Asp Leu
145 150 155 160
Asp Ser Ser Met Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys
165 170 175
Ala Asn Gln Lys Pro Phe Phe Pro Lys Val Phe Lys Lys Ile Lys Asp
180 185 190
Ala Gly Lys Trp Val Arg Asp Lys
195 200
<210> 65
<211> 303
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 65
Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu
1 5 10 15
Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr
20 25 30
Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Glu Glu Leu Glu Lys
35 40 45
Ser Asn Lys Val Lys Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu
50 55 60
Lys Ala Lys Ala Glu Lys Gly Pro Asn Asn Asn Asn Asn Asn Gly Glu
65 70 75 80
Gln Thr Gly Asn Val Ala Ile Asn Glu Glu Ala Ser Gly Val Asp Arg
85 90 95
Pro Thr Leu Gln Val Glu Arg Arg His Pro Gly Leu Ser Ser Asp Ser
100 105 110
Ala Ala Glu Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser
115 120 125
Glu Leu Glu Ser Leu Thr Tyr Pro Asp Lys Pro Thr Lys Ala Asn Lys
130 135 140
Arg Lys Val Ala Lys Glu Ser Val Val Asp Ala Ser Glu Ser Asp Leu
145 150 155 160
Asp Ser Ser Met Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys
165 170 175
Ala Asn Gln Lys Pro Phe Phe Pro Lys Val Phe Lys Lys Ile Lys Asp
180 185 190
Ala Gly Lys Trp Val Arg Asp Lys Ile Asp Glu Asn Pro Glu Val Lys
195 200 205
Lys Ala Ile Val Asp Lys Ser Ala Gly Leu Ile Asp Gln Leu Leu Thr
210 215 220
Lys Lys Lys Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro
225 230 235 240
Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro Met Leu Leu
245 250 255
Gly Phe Asn Ala Pro Thr Pro Ser Glu Pro Ser Ser Phe Glu Phe Pro
260 265 270
Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro
275 280 285
Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser
290 295 300
<210> 66
<211> 370
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 66
Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu
1 5 10 15
Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr
20 25 30
Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Glu Glu Leu Glu Lys
35 40 45
Ser Asn Lys Val Lys Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu
50 55 60
Lys Ala Lys Ala Glu Lys Gly Pro Asn Asn Asn Asn Asn Asn Gly Glu
65 70 75 80
Gln Thr Gly Asn Val Ala Ile Asn Glu Glu Ala Ser Gly Val Asp Arg
85 90 95
Pro Thr Leu Gln Val Glu Arg Arg His Pro Gly Leu Ser Ser Asp Ser
100 105 110
Ala Ala Glu Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser
115 120 125
Glu Leu Glu Ser Leu Thr Tyr Pro Asp Lys Pro Thr Lys Ala Asn Lys
130 135 140
Arg Lys Val Ala Lys Glu Ser Val Val Asp Ala Ser Glu Ser Asp Leu
145 150 155 160
Asp Ser Ser Met Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys
165 170 175
Ala Asn Gln Lys Pro Phe Phe Pro Lys Val Phe Lys Lys Ile Lys Asp
180 185 190
Ala Gly Lys Trp Val Arg Asp Lys Ile Asp Glu Asn Pro Glu Val Lys
195 200 205
Lys Ala Ile Val Asp Lys Ser Ala Gly Leu Ile Asp Gln Leu Leu Thr
210 215 220
Lys Lys Lys Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro
225 230 235 240
Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro Met Leu Leu
245 250 255
Gly Phe Asn Ala Pro Thr Pro Ser Glu Pro Ser Ser Phe Glu Phe Pro
260 265 270
Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro
275 280 285
Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe
290 295 300
Glu Phe Pro Pro Pro Pro Thr Glu Asp Glu Leu Glu Ile Met Arg Glu
305 310 315 320
Thr Ala Pro Ser Leu Asp Ser Ser Phe Thr Ser Gly Asp Leu Ala Ser
325 330 335
Leu Arg Ser Ala Ile Asn Arg His Ser Glu Asn Phe Ser Asp Phe Pro
340 345 350
Leu Ile Pro Thr Glu Glu Glu Leu Asn Gly Arg Gly Gly Arg Pro Thr
355 360 365
Ser Glu
370
<210> 67
<211> 390
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 67
Met Arg Ala Met Met Val Val Phe Ile Thr Ala Asn Cys Ile Thr Ile
1 5 10 15
Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp Ser Glu Asp Ser Ser Leu
20 25 30
Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln Pro Ser Glu
35 40 45
Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala Arg Glu Val Ser Ser Arg
50 55 60
Asp Ile Lys Glu Leu Glu Lys Ser Asn Lys Val Arg Asn Thr Asn Lys
65 70 75 80
Ala Asp Leu Ile Ala Met Leu Lys Glu Lys Ala Glu Lys Gly Pro Asn
85 90 95
Ile Asn Asn Asn Asn Ser Glu Gln Thr Glu Asn Ala Ala Ile Asn Glu
100 105 110
Glu Ala Ser Gly Ala Asp Arg Pro Ala Ile Gln Val Glu Arg Arg His
115 120 125
Pro Gly Leu Pro Ser Asp Ser Ala Ala Glu Ile Lys Lys Arg Arg Lys
130 135 140
Ala Ile Ala Ser Ser Asp Ser Glu Leu Glu Ser Leu Thr Tyr Pro Asp
145 150 155 160
Lys Pro Thr Lys Val Asn Lys Lys Lys Val Ala Lys Glu Ser Val Ala
165 170 175
Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met Gln Ser Ala Asp Glu
180 185 190
Ser Ser Pro Gln Pro Leu Lys Ala Asn Gln Gln Pro Phe Phe Pro Lys
195 200 205
Val Phe Lys Lys Ile Lys Asp Ala Gly Lys Trp Val Arg Asp Lys Ile
210 215 220
Asp Glu Asn Pro Glu Val Lys Lys Ala Ile Val Asp Lys Ser Ala Gly
225 230 235 240
Leu Ile Asp Gln Leu Leu Thr Lys Lys Lys Ser Glu Glu Val Asn Ala
245 250 255
Ser Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu
260 265 270
Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu
275 280 285
Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg
290 295 300
Leu Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala
305 310 315 320
Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp
325 330 335
Glu Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe
340 345 350
Thr Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser
355 360 365
Gln Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn
370 375 380
Gly Arg Gly Gly Arg Pro
385 390
<210> 68
<211> 1170
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 68
atgcgtgcga tgatggtggt tttcattact gccaattgca ttacgattaa ccccgacata 60
atatttgcag cgacagatag cgaagattct agtctaaaca cagatgaatg ggaagaagaa 120
aaaacagaag agcaaccaag cgaggtaaat acgggaccaa gatacgaaac tgcacgtgaa 180
gtaagttcac gtgatattaa agaactagaa aaatcgaata aagtgagaaa tacgaacaaa 240
gcagacctaa tagcaatgtt gaaagaaaaa gcagaaaaag gtccaaatat caataataac 300
aacagtgaac aaactgagaa tgcggctata aatgaagagg cttcaggagc cgaccgacca 360
gctatacaag tggagcgtcg tcatccagga ttgccatcgg atagcgcagc ggaaattaaa 420
aaaagaagga aagccatagc atcatcggat agtgagcttg aaagccttac ttatccggat 480
aaaccaacaa aagtaaataa gaaaaaagtg gcgaaagagt cagttgcgga tgcttctgaa 540
agtgacttag attctagcat gcagtcagca gatgagtctt caccacaacc tttaaaagca 600
aaccaacaac catttttccc taaagtattt aaaaaaataa aagatgcggg gaaatgggta 660
cgtgataaaa tcgacgaaaa tcctgaagta aagaaagcga ttgttgataa aagtgcaggg 720
ttaattgacc aattattaac caaaaagaaa agtgaagagg taaatgcttc ggacttcccg 780
ccaccaccta cggatgaaga gttaagactt gctttgccag agacaccaat gcttcttggt 840
tttaatgctc ctgctacatc agaaccgagc tcattcgaat ttccaccacc acctacggat 900
gaagagttaa gacttgcttt gccagagacg ccaatgcttc ttggttttaa tgctcctgct 960
acatcggaac cgagctcgtt cgaatttcca ccgcctccaa cagaagatga actagaaatc 1020
atccgggaaa cagcatcctc gctagattct agttttacaa gaggggattt agctagtttg 1080
agaaatgcta ttaatcgcca tagtcaaaat ttctctgatt tcccaccaat cccaacagaa 1140
gaagagttga acgggagagg cggtagacca 1170
<210> 69
<211> 100
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 69
Met Gly Leu Asn Arg Phe Met Arg Ala Met Met Val Val Phe Ile Thr
1 5 10 15
Ala Asn Cys Ile Thr Ile Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp
20 25 30
Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr
35 40 45
Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala
50 55 60
Arg Glu Val Ser Ser Arg Asp Ile Lys Glu Leu Glu Lys Ser Asn Lys
65 70 75 80
Val Arg Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu Lys Glu Lys
85 90 95
Ala Glu Lys Gly
100
<210> 70
<211> 390
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 70
Met Arg Ala Met Met Val Val Phe Ile Thr Ala Asn Cys Ile Thr Ile
1 5 10 15
Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp Ser Glu Asp Ser Ser Leu
20 25 30
Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln Pro Ser Glu
35 40 45
Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala Arg Glu Val Ser Ser Arg
50 55 60
Asp Ile Glu Glu Leu Glu Lys Ser Asn Lys Val Lys Asn Thr Asn Lys
65 70 75 80
Ala Asp Leu Ile Ala Met Leu Lys Ala Lys Ala Glu Lys Gly Pro Asn
85 90 95
Asn Asn Asn Asn Asn Gly Glu Gln Thr Gly Asn Val Ala Ile Asn Glu
100 105 110
Glu Ala Ser Gly Val Asp Arg Pro Thr Leu Gln Val Glu Arg Arg His
115 120 125
Pro Gly Leu Ser Ser Asp Ser Ala Ala Glu Ile Lys Lys Arg Arg Lys
130 135 140
Ala Ile Ala Ser Ser Asp Ser Glu Leu Glu Ser Leu Thr Tyr Pro Asp
145 150 155 160
Lys Pro Thr Lys Ala Asn Lys Arg Lys Val Ala Lys Glu Ser Val Val
165 170 175
Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met Gln Ser Ala Asp Glu
180 185 190
Ser Thr Pro Gln Pro Leu Lys Ala Asn Gln Lys Pro Phe Phe Pro Lys
195 200 205
Val Phe Lys Lys Ile Lys Asp Ala Gly Lys Trp Val Arg Asp Lys Ile
210 215 220
Asp Glu Asn Pro Glu Val Lys Lys Ala Ile Val Asp Lys Ser Ala Gly
225 230 235 240
Leu Ile Asp Gln Leu Leu Thr Lys Lys Lys Ser Glu Glu Val Asn Ala
245 250 255
Ser Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu
260 265 270
Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Thr Pro Ser Glu
275 280 285
Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg
290 295 300
Leu Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala
305 310 315 320
Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp
325 330 335
Glu Leu Glu Ile Met Arg Glu Thr Ala Pro Ser Leu Asp Ser Ser Phe
340 345 350
Thr Ser Gly Asp Leu Ala Ser Leu Arg Ser Ala Ile Asn Arg His Ser
355 360 365
Glu Asn Phe Ser Asp Phe Pro Leu Ile Pro Thr Glu Glu Glu Leu Asn
370 375 380
Gly Arg Gly Gly Arg Pro
385 390
<210> 71
<211> 1170
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 71
atgcgtgcga tgatggtagt tttcattact gccaactgca ttacgattaa ccccgacata 60
atatttgcag cgacagatag cgaagattcc agtctaaaca cagatgaatg ggaagaagaa 120
aaaacagaag agcagccaag cgaggtaaat acgggaccaa gatacgaaac tgcacgtgaa 180
gtaagttcac gtgatattga ggaactagaa aaatcgaata aagtgaaaaa tacgaacaaa 240
gcagacctaa tagcaatgtt gaaagcaaaa gcagagaaag gtccgaataa caataataac 300
aacggtgagc aaacaggaaa tgtggctata aatgaagagg cttcaggagt cgaccgacca 360
actctgcaag tggagcgtcg tcatccaggt ctgtcatcgg atagcgcagc ggaaattaaa 420
aaaagaagaa aagccatagc gtcgtcggat agtgagcttg aaagccttac ttatccagat 480
aaaccaacaa aagcaaataa gagaaaagtg gcgaaagagt cagttgtgga tgcttctgaa 540
agtgacttag attctagcat gcagtcagca gacgagtcta caccacaacc tttaaaagca 600
aatcaaaaac catttttccc taaagtattt aaaaaaataa aagatgcggg gaaatgggta 660
cgtgataaaa tcgacgaaaa tcctgaagta aagaaagcga ttgttgataa aagtgcaggg 720
ttaattgacc aattattaac caaaaagaaa agtgaagagg taaatgcttc ggacttcccg 780
ccaccaccta cggatgaaga gttaagactt gctttgccag agacaccgat gcttctcggt 840
tttaatgctc ctactccatc ggaaccgagc tcattcgaat ttccgccgcc acctacggat 900
gaagagttaa gacttgcttt gccagagacg ccaatgcttc ttggttttaa tgctcctgct 960
acatcggaac cgagctcatt cgaatttcca ccgcctccaa cagaagatga actagaaatt 1020
atgcgggaaa cagcaccttc gctagattct agttttacaa gcggggattt agctagtttg 1080
agaagtgcta ttaatcgcca tagcgaaaat ttctctgatt tcccactaat cccaacagaa 1140
gaagagttga acgggagagg cggtagacca 1170
<210> 72
<211> 226
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 72
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Ser Arg Ala Thr Asp Ser Glu Asp
20 25 30
Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln
35 40 45
Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala Arg Glu Val
50 55 60
Ser Ser Arg Asp Ile Glu Glu Leu Glu Lys Ser Asn Lys Val Lys Asn
65 70 75 80
Thr Asn Lys Ala Asp Leu Ile Ala Met Leu Lys Ala Lys Ala Glu Lys
85 90 95
Gly Pro Asn Asn Asn Asn Asn Asn Gly Glu Gln Thr Gly Asn Val Ala
100 105 110
Ile Asn Glu Glu Ala Ser Gly Val Asp Arg Pro Thr Leu Gln Val Glu
115 120 125
Arg Arg His Pro Gly Leu Ser Ser Asp Ser Ala Ala Glu Ile Lys Lys
130 135 140
Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser Glu Leu Glu Ser Leu Thr
145 150 155 160
Tyr Pro Asp Lys Pro Thr Lys Ala Asn Lys Arg Lys Val Ala Lys Glu
165 170 175
Ser Val Val Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met Gln Ser
180 185 190
Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys Ala Asn Gln Lys Pro Phe
195 200 205
Phe Pro Lys Val Phe Lys Lys Ile Lys Asp Ala Gly Lys Trp Val Arg
210 215 220
Asp Lys
225
<210> 73
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 73
Gln Asp Asn Lys Arg
1 5
<210> 74
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 74
Glu Cys Thr Gly Leu Ala Trp Glu Trp Trp Arg
1 5 10
<210> 75
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 75
Glu Ser Leu Leu Met Trp Ile Thr Gln Cys Arg
1 5 10
<210> 76
<211> 368
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 76
Met Val Thr Gly Trp His Arg Pro Thr Trp Ile Glu Ile Asp Arg Ala
1 5 10 15
Ala Ile Arg Glu Asn Ile Lys Asn Glu Gln Asn Lys Leu Pro Glu Ser
20 25 30
Val Asp Leu Trp Ala Val Val Lys Ala Asn Ala Tyr Gly His Gly Ile
35 40 45
Ile Glu Val Ala Arg Thr Ala Lys Glu Ala Gly Ala Lys Gly Phe Cys
50 55 60
Val Ala Ile Leu Asp Glu Ala Leu Ala Leu Arg Glu Ala Gly Phe Gln
65 70 75 80
Asp Asp Phe Ile Leu Val Leu Gly Ala Thr Arg Lys Glu Asp Ala Asn
85 90 95
Leu Ala Ala Lys Asn His Ile Ser Leu Thr Val Phe Arg Glu Asp Trp
100 105 110
Leu Glu Asn Leu Thr Leu Glu Ala Thr Leu Arg Ile His Leu Lys Val
115 120 125
Asp Ser Gly Met Gly Arg Leu Gly Ile Arg Thr Thr Glu Glu Ala Arg
130 135 140
Arg Ile Glu Ala Thr Ser Thr Asn Asp His Gln Leu Gln Leu Glu Gly
145 150 155 160
Ile Tyr Thr His Phe Ala Thr Ala Asp Gln Leu Glu Thr Ser Tyr Phe
165 170 175
Glu Gln Gln Leu Ala Lys Phe Gln Thr Ile Leu Thr Ser Leu Lys Lys
180 185 190
Arg Pro Thr Tyr Val His Thr Ala Asn Ser Ala Ala Ser Leu Leu Gln
195 200 205
Pro Gln Ile Gly Phe Asp Ala Ile Arg Phe Gly Ile Ser Met Tyr Gly
210 215 220
Leu Thr Pro Ser Thr Glu Ile Lys Thr Ser Leu Pro Phe Glu Leu Lys
225 230 235 240
Pro Ala Leu Ala Leu Tyr Thr Glu Met Val His Val Lys Glu Leu Ala
245 250 255
Pro Gly Asp Ser Val Ser Tyr Gly Ala Thr Tyr Thr Ala Thr Glu Arg
260 265 270
Glu Trp Val Ala Thr Leu Pro Ile Gly Tyr Ala Asp Gly Leu Ile Arg
275 280 285
His Tyr Ser Gly Phe His Val Leu Val Asp Gly Glu Pro Ala Pro Ile
290 295 300
Ile Gly Arg Val Cys Met Asp Gln Thr Ile Ile Lys Leu Pro Arg Glu
305 310 315 320
Phe Gln Thr Gly Ser Lys Val Thr Ile Ile Gly Lys Asp His Gly Asn
325 330 335
Thr Val Thr Ala Asp Asp Ala Ala Gln Tyr Leu Asp Thr Ile Asn Tyr
340 345 350
Glu Val Thr Cys Leu Leu Asn Glu Arg Ile Pro Arg Lys Tyr Ile His
355 360 365
<210> 77
<211> 289
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 77
Met Lys Val Leu Val Asn Asn His Leu Val Glu Arg Glu Asp Ala Thr
1 5 10 15
Val Asp Ile Glu Asp Arg Gly Tyr Gln Phe Gly Asp Gly Val Tyr Glu
20 25 30
Val Val Arg Leu Tyr Asn Gly Lys Phe Phe Thr Tyr Asn Glu His Ile
35 40 45
Asp Arg Leu Tyr Ala Ser Ala Ala Lys Ile Asp Leu Val Ile Pro Tyr
50 55 60
Ser Lys Glu Glu Leu Arg Glu Leu Leu Glu Lys Leu Val Ala Glu Asn
65 70 75 80
Asn Ile Asn Thr Gly Asn Val Tyr Leu Gln Val Thr Arg Gly Val Gln
85 90 95
Asn Pro Arg Asn His Val Ile Pro Asp Asp Phe Pro Leu Glu Gly Val
100 105 110
Leu Thr Ala Ala Ala Arg Glu Val Pro Arg Asn Glu Arg Gln Phe Val
115 120 125
Glu Gly Gly Thr Ala Ile Thr Glu Glu Asp Val Arg Trp Leu Arg Cys
130 135 140
Asp Ile Lys Ser Leu Asn Leu Leu Gly Asn Ile Leu Ala Lys Asn Lys
145 150 155 160
Ala His Gln Gln Asn Ala Leu Glu Ala Ile Leu His Arg Gly Glu Gln
165 170 175
Val Thr Glu Cys Ser Ala Ser Asn Val Ser Ile Ile Lys Asp Gly Val
180 185 190
Leu Trp Thr His Ala Ala Asp Asn Leu Ile Leu Asn Gly Ile Thr Arg
195 200 205
Gln Val Ile Ile Asp Val Ala Lys Lys Asn Gly Ile Pro Val Lys Glu
210 215 220
Ala Asp Phe Thr Leu Thr Asp Leu Arg Glu Ala Asp Glu Val Phe Ile
225 230 235 240
Ser Ser Thr Thr Ile Glu Ile Thr Pro Ile Thr His Ile Asp Gly Val
245 250 255
Gln Val Ala Asp Gly Lys Arg Gly Pro Ile Thr Ala Gln Leu His Gln
260 265 270
Tyr Phe Val Glu Glu Ile Thr Arg Ala Cys Gly Glu Leu Glu Phe Ala
275 280 285
Lys
<210> 78
<211> 1107
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 78
atggtgacag gctggcatcg tccaacatgg attgaaatag accgcgcagc aattcgcgaa 60
aatataaaaa atgaacaaaa taaactcccg gaaagtgtcg acttatgggc agtagtcaaa 120
gctaatgcat atggtcacgg aattatcgaa gttgctagga cggcgaaaga agctggagca 180
aaaggtttct gcgtagccat tttagatgag gcactggctc ttagagaagc tggatttcaa 240
gatgacttta ttcttgtgct tggtgcaacc agaaaagaag atgctaatct ggcagccaaa 300
aaccacattt cacttactgt ttttagagaa gattggctag agaatctaac gctagaagca 360
acacttcgaa ttcatttaaa agtagatagc ggtatggggc gtctcggtat tcgtacgact 420
gaagaagcac ggcgaattga agcaaccagt actaatgatc accaattaca actggaaggt 480
atttacacgc attttgcaac agccgaccag ctagaaacta gttattttga acaacaatta 540
gctaagttcc aaacgatttt aacgagttta aaaaaacgac caacttatgt tcatacagcc 600
aattcagctg cttcattgtt acagccacaa atcgggtttg atgcgattcg ctttggtatt 660
tcgatgtatg gattaactcc ctccacagaa atcaaaacta gcttgccgtt tgagcttaaa 720
cctgcacttg cactctatac cgagatggtt catgtgaaag aacttgcacc aggcgatagc 780
gttagctacg gagcaactta tacagcaaca gagcgagaat gggttgcgac attaccaatt 840
ggctatgcgg atggattgat tcgtcattac agtggtttcc atgttttagt agacggtgaa 900
ccagctccaa tcattggtcg agtttgtatg gatcaaacca tcataaaact accacgtgaa 960
tttcaaactg gttcaaaagt aacgataatt ggcaaagatc atggtaacac ggtaacagca 1020
gatgatgccg ctcaatattt agatacaatt aattatgagg taacttgttt gttaaatgag 1080
cgcataccta gaaaatacat ccattag 1107
<210> 79
<211> 870
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 79
atgaaagtat tagtaaataa ccatttagtt gaaagagaag atgccacagt tgacattgaa 60
gaccgcggat atcagtttgg tgatggtgta tatgaagtag ttcgtctata taatggaaaa 120
ttctttactt ataatgaaca cattgatcgc ttatatgcta gtgcagcaaa aattgactta 180
gttattcctt attccaaaga agagctacgt gaattacttg aaaaattagt tgccgaaaat 240
aatatcaata cagggaatgt ctatttacaa gtgactcgtg gtgttcaaaa cccacgtaat 300
catgtaatcc ctgatgattt ccctctagaa ggcgttttaa cagcagcagc tcgtgaagta 360
cctagaaacg agcgtcaatt cgttgaaggt ggaacggcga ttacagaaga agatgtgcgc 420
tggttacgct gtgatattaa gagcttaaac cttttaggaa atattctagc aaaaaataaa 480
gcacatcaac aaaatgcttt ggaagctatt ttacatcgcg gggaacaagt aacagaatgt 540
tctgcttcaa acgtttctat tattaaagat ggtgtattat ggacgcatgc ggcagataac 600
ttaatcttaa atggtatcac tcgtcaagtt atcattgatg ttgcgaaaaa gaatggcatt 660
cctgttaaag aagcggattt cactttaaca gaccttcgtg aagcggatga agtgttcatt 720
tcaagtacaa ctattgaaat tacacctatt acgcatattg acggagttca agtagctgac 780
ggaaaacgtg gaccaattac agcgcaactt catcaatatt ttgtagaaga aatcactcgt 840
gcatgtggcg aattagagtt tgcaaaataa 870
<210> 80
<211> 237
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 80
Met Asn Ala Gln Ala Glu Glu Phe Lys Lys Tyr Leu Glu Thr Asn Gly
1 5 10 15
Ile Lys Pro Lys Gln Phe His Lys Lys Glu Leu Ile Phe Asn Gln Trp
20 25 30
Asp Pro Gln Glu Tyr Cys Ile Phe Leu Tyr Asp Gly Ile Thr Lys Leu
35 40 45
Thr Ser Ile Ser Glu Asn Gly Thr Ile Met Asn Leu Gln Tyr Tyr Lys
50 55 60
Gly Ala Phe Val Ile Met Ser Gly Phe Ile Asp Thr Glu Thr Ser Val
65 70 75 80
Gly Tyr Tyr Asn Leu Glu Val Ile Ser Glu Gln Ala Thr Ala Tyr Val
85 90 95
Ile Lys Ile Asn Glu Leu Lys Glu Leu Leu Ser Lys Asn Leu Thr His
100 105 110
Phe Phe Tyr Val Phe Gln Thr Leu Gln Lys Gln Val Ser Tyr Ser Leu
115 120 125
Ala Lys Phe Asn Asp Phe Ser Ile Asn Gly Lys Leu Gly Ser Ile Cys
130 135 140
Gly Gln Leu Leu Ile Leu Thr Tyr Val Tyr Gly Lys Glu Thr Pro Asp
145 150 155 160
Gly Ile Lys Ile Thr Leu Asp Asn Leu Thr Met Gln Glu Leu Gly Tyr
165 170 175
Ser Ser Gly Ile Ala His Ser Ser Ala Val Ser Arg Ile Ile Ser Lys
180 185 190
Leu Lys Gln Glu Lys Val Ile Val Tyr Lys Asn Ser Cys Phe Tyr Val
195 200 205
Gln Asn Leu Asp Tyr Leu Lys Arg Tyr Ala Pro Lys Leu Asp Glu Trp
210 215 220
Phe Tyr Leu Ala Cys Pro Ala Thr Trp Gly Lys Leu Asn
225 230 235
<210> 81
<211> 714
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 81
atgaacgctc aagcagaaga attcaaaaaa tatttagaaa ctaacgggat aaaaccaaaa 60
caatttcata aaaaagaact tatttttaac caatgggatc cacaagaata ttgtattttt 120
ctatatgatg gtatcacaaa gctcacgagt attagcgaga acgggaccat catgaattta 180
caatactaca aaggggcttt cgttataatg tctggcttta ttgatacaga aacatcggtt 240
ggctattata atttagaagt cattagcgag caggctaccg catacgttat caaaataaac 300
gaactaaaag aactactgag caaaaatctt acgcactttt tctatgtttt ccaaacccta 360
caaaaacaag tttcatacag cctagctaaa tttaatgatt tttcgattaa cgggaagctt 420
ggctctattt gcggtcaact tttaatcctg acctatgtgt atggtaaaga aactcctgat 480
ggcatcaaga ttacactgga taatttaaca atgcaggagt taggatattc aagtggcatc 540
gcacatagct cagctgttag cagaattatt tccaaattaa agcaagagaa agttatcgtg 600
tataaaaatt catgctttta tgtacaaaat cttgattatc tcaaaagata tgcccctaaa 660
ttagatgaat ggttttattt agcatgtcct gctacttggg gaaaattaaa ttaa 714
<210> 82
<211> 237
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 82
Met Asn Ala Gln Ala Glu Glu Phe Lys Lys Tyr Leu Glu Thr Asn Gly
1 5 10 15
Ile Lys Pro Lys Gln Phe His Lys Lys Glu Leu Ile Phe Asn Gln Trp
20 25 30
Asp Pro Gln Glu Tyr Cys Ile Phe Leu Tyr Asp Gly Ile Thr Lys Leu
35 40 45
Thr Ser Ile Ser Glu Asn Gly Thr Ile Met Asn Leu Gln Tyr Tyr Lys
50 55 60
Gly Ala Phe Val Ile Met Ser Gly Phe Ile Asp Thr Glu Thr Ser Val
65 70 75 80
Gly Tyr Tyr Asn Leu Glu Val Ile Ser Glu Gln Ala Thr Ala Tyr Val
85 90 95
Ile Lys Ile Asn Glu Leu Lys Glu Leu Leu Ser Lys Asn Leu Thr His
100 105 110
Phe Phe Tyr Val Phe Gln Thr Leu Gln Lys Gln Val Ser Tyr Ser Leu
115 120 125
Ala Lys Phe Asn Val Phe Ser Ile Asn Gly Lys Leu Gly Ser Ile Cys
130 135 140
Gly Gln Leu Leu Ile Leu Thr Tyr Val Tyr Gly Lys Glu Thr Pro Asp
145 150 155 160
Gly Ile Lys Ile Thr Leu Asp Asn Leu Thr Met Gln Glu Leu Gly Tyr
165 170 175
Ser Ser Gly Ile Ala His Ser Ser Ala Val Ser Arg Ile Ile Ser Lys
180 185 190
Leu Lys Gln Glu Lys Val Ile Val Tyr Lys Asn Ser Cys Phe Tyr Val
195 200 205
Gln Asn Arg Asp Tyr Leu Lys Arg Tyr Ala Pro Lys Leu Asp Glu Trp
210 215 220
Phe Tyr Leu Ala Cys Pro Ala Thr Trp Gly Lys Leu Asn
225 230 235
<210> 83
<211> 713
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 83
atgaacgctc aagcagaaga attcaaaaaa tatttagaaa ctaacgggat aaaaccaaaa 60
caatttcata aaaaagaact tatttttaac caatgggatc cacaagaata ttgtattttt 120
ctatatgatg gtatcacaaa gctcacgagt attagcgaga acgggaccat catgaattta 180
caatactaca aaggggcttt cgttataatg tctggcttta ttgatacaga aacatcggtt 240
ggctattata atttagaagt cattagcgag caggctaccg catacgttat caaaataaac 300
gaactaaaag aactactgag caaaaatctt acgcactttt tctatgtttt ccaaacccta 360
caaaaacaag tttcatacag cctagctaaa tttaatgttt tttcgattaa cgggaagctt 420
ggctctattt gcggtcaact tttaatcctg acctatgtgt atggtaaaga aactcctgat 480
ggcatcaaga ttacactgga taatttaaca atgcaggagt taggatattc aagtggcatc 540
gcacatagct cagctgttag cagaattatt tccaaattaa agcaagagaa agttatcgtg 600
tataaaaatt catgctttta tgtacaaaat ctgattatct caaaagatat gcccctaaat 660
tagatgaatg gttttattta gcatgtcctg ctacttgggg aaaattaaat taa 713
<210> 84
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 84
ggtggtggag ga 12
<210> 85
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 85
ggtggaggtg ga 12
<210> 86
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 86
ggtggaggag gt 12
<210> 87
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 87
ggaggtggtg ga 12
<210> 88
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 88
ggaggaggtg gt 12
<210> 89
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 89
ggaggtggag gt 12
<210> 90
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 90
ggaggaggag gt 12
<210> 91
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 91
ggaggaggtg ga 12
<210> 92
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 92
ggaggtggag ga 12
<210> 93
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 93
ggtggaggag ga 12
<210> 94
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 合成
<400> 94
ggaggaggag ga 12
<210> 95
<211> 529
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 95
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30
Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser
35 40 45
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr
50 55 60
Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly
65 70 75 80
Asp Ala Val Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn
85 90 95
Glu Tyr Ile Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn
100 105 110
Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly
115 120 125
Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val
130 135 140
Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly
145 150 155 160
Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser
165 170 175
Asn Val Asn Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys
180 185 190
Tyr Ala Gln Ala Tyr Pro Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp
195 200 205
Glu Met Ala Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala
210 215 220
Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser
225 230 235 240
Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr
245 250 255
Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys
260 265 270
Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn
275 280 285
Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu
290 295 300
Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp
305 310 315 320
Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn
325 330 335
Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala
340 345 350
Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp
355 360 365
Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro
370 375 380
Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile
385 390 395 400
Lys Asn Asn Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp
405 410 415
Gly Lys Ile Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn
420 425 430
Ile Ser Trp Asp Glu Val Asn Tyr Asp Pro Glu Gly Asn Glu Ile Val
435 440 445
Gln His Lys Asn Trp Ser Glu Asn Asn Lys Ser Lys Leu Ala His Phe
450 455 460
Thr Ser Ser Ile Tyr Leu Pro Gly Asn Ala Arg Asn Ile Asn Val Tyr
465 470 475 480
Ala Lys Glu Ala Thr Gly Leu Ala Trp Glu Ala Ala Arg Thr Val Ile
485 490 495
Asp Asp Arg Asn Leu Pro Leu Val Lys Asn Arg Asn Ile Ser Ile Trp
500 505 510
Gly Thr Thr Leu Tyr Pro Lys Tyr Ser Asn Lys Val Asp Asn Pro Ile
515 520 525
Glu
<210> 96
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 96
Glu Ala Thr Gly Leu Ala Trp Glu Ala Ala Arg
1 5 10
<210> 97
<211> 25
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 97
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys
20 25
<210> 98
<211> 29
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 98
Met Gly Leu Asn Arg Phe Met Arg Ala Met Met Val Val Phe Ile Thr
1 5 10 15
Ala Asn Cys Ile Thr Ile Asn Pro Asp Ile Ile Phe Ala
20 25
<210> 99
<211> 21
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 99
Asp Tyr Lys Asp His Asp Gly Asp Tyr Lys Asp His Asp Ile Asp Tyr
1 5 10 15
Lys Asp Asp Asp Lys
20
<210> 100
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成
<400> 100
Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr
1 5 10

Claims (96)

1.一种用于制备包含李斯特菌菌株的冻干组合物的方法,包括:
(a)提供组合物,所述组合物在包含缓冲剂和蔗糖的配方中包含李斯特菌菌株;
(b)在冷冻步骤中,在-32℃至约-80℃的保持温度中冷却步骤(a)中提供的所述组合物;
(c)在一级干燥步骤中,将步骤(b)制备的组合物在约-10℃至约-30℃的保持温度下暴露于真空中;以及
(d)在二级干燥步骤中,将步骤(c)制备的组合物在约-5℃至约25℃的保持温度下暴露于真空中,
从而制得所述冻干组合物。
2.根据权利要求1所述的方法,其中在步骤(a)之前,通过将所述李斯特菌菌株暴露于降低的温度,以在所述李斯特菌菌株中诱导应激反应。
3.根据权利要求1所述的方法,其中在步骤(a)之前,通过将所述李斯特菌菌株暴露于降低的温度,以在所述李斯特菌菌株中不诱导应激反应。
4.根据前述任一权利要求所述的方法,其中步骤(a)中的所述组合物中使用的李斯特菌菌株为在步骤(a)前解冻的冷冻李斯特菌菌株。
5.根据权利要求4所述的方法,其中解冻的所述冷冻李斯特菌菌株的浓度在每毫升约1x10E9至约1x10E10菌落形成单位(CFU)之间。
6.根据权利要求4或5所述的方法,其中将所述冷冻李斯特菌菌株在约2℃至约37℃下解冻。
7.根据权利要求6所述的方法,其中将所述冷冻李斯特菌菌株在约20℃至约37℃下解冻。
8.根据权利要求7所述的方法,其中将所述冷冻李斯特菌菌株在约32℃和约37℃下解冻。
9.根据权利要求8所述的方法,其中将所述冷冻李斯特菌菌株在约37℃下解冻。
10.根据权利要求4-9中任一项所述的方法,其中将所述冷冻李斯特菌菌株解冻不超过8小时。
11.根据权利要求4-10中任一项所述的方法,其中所述冷冻李斯特菌菌株在解冻后,在约2℃至约8℃下保持不超过24小时。
12.根据权利要求1-3中任一项所述的方法,其中在步骤(a)的所述组合物中所使用的李斯特菌菌株在步骤(a)前新鲜培养。
13.根据前述任一权利要求所述的方法,其中所述缓冲剂是磷酸盐缓冲剂。
14.根据前述任一权利要求所述的方法,其中所述配方包含约1%至约5%w/v的蔗糖。
15.根据权利要求14所述的方法,其中所述配方包含约2%至约3%w/v的蔗糖。
16.根据权利要求15所述的方法,其中所述配方包含约2.5%w/v的蔗糖。
17.根据前述任一权利要求所述的方法,其中所述配方包含每毫升约1×10E9至约1×10E10菌落形成单位(CFU)的李斯特菌。
18.根据前述任一权利要求所述的方法,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
19.根据权利要求18所述的方法,其中所述配方不包含海藻糖、MSG,或rHSA。
20.根据前述任一权利要求所述的方法,其中冷冻步骤(b)中的所述保持温度在约-40℃至约-50℃之间。
21.根据权利要求20所述的方法,其中所述冷冻步骤(b)中的所述保持温度为约-45℃。
22.根据前述任一权利要求所述的方法,其中冷冻步骤(b)包括以每分钟约1℃的速率将温度降低至所述保持温度。
23.根据前述任一权利要求所述的方法,其中冷冻步骤(b)中的所述冷却持续约2小时至约4小时。
24.根据前述任一权利要求所述的方法,其中冷冻步骤(b)中的所述冷却包括将所述组合物在所述保持温度下保持约2小时。
25.根据前述任一权利要求所述的方法,其中,一级干燥步骤(c)中的所述保持温度在约-12℃和约-22℃之间。
26.根据权利要求25所述的方法,其中所述一级干燥步骤(c)中的所述保持温度在约-17℃和约-19℃之间。
27.根据权利要求26所述的方法,其中所述一级干燥步骤(c)中的所述保持温度为约-18℃。
28.根据前述任一权利要求所述的方法,其中一级干燥步骤(c)包括以每分钟约1℃的速率将温度升高至所述保持温度。
29.根据前述任一权利要求所述的方法,其中一级干燥步骤(c)进行约25小时至约35小时。
30.根据前述任一权利要求所述的方法,其中一级干燥步骤(c)的结束为在所述组合物达到所述保持温度后约12至约16小时。
31.根据前述任一权利要求所述的方法,其中一级干燥步骤(c)处于约0.09毫巴的真空压力下。
32.根据前述任一权利要求所述的方法,其中二级干燥步骤(d)中的所述保持温度在约-5℃和约20℃之间。
33.根据权利要求32所述的方法,其中所述二级干燥步骤(d)中的所述保持温度在约-5℃和约5℃之间。
34.根据权利要求33所述的方法,其中所述二级干燥步骤(d)中的所述保持温度为约0℃。
35.根据前述任一权利要求所述的方法,其中二级干燥步骤(d)包括以每分钟约0.2℃的速率将温度升高至所述保持温度。
36.根据前述任一权利要求所述的方法,其中二级干燥步骤(d)进行约1小时至约10小时。
37.根据前述任一权利要求所述的方法,其中二级干燥步骤(d)包括将所述组合物在所述保持温度下保持约2小时至约6小时。
38.根据权利要求37所述的方法,其中所述二级干燥步骤(d)包括将所述组合物在所述保持温度下保持约5小时至约6小时。
39.根据前述任一权利要求所述的方法,其中二级干燥步骤(d)处于约0.09毫巴的真空压力下。
40.根据前述任一权利要求所述的方法,其中所述冻干组合物中的残留水分在约1%和约5%之间。
41.根据权利要求40所述的方法,其中所述冻干组合物中的所述残留水分在约2%和约4%之间。
42.根据前述任一权利要求所述的方法,其中所述冻干组合物中的残留水分为至少约2.5%。
43.根据权利要求42所述的方法,其中所述冻干组合物中的所述残留水分为至少约3%。
44.根据前述任一权利要求所述的方法,其中所述冻干组合物在约-20℃至约4℃下储存约12个月后显示出至少约60%的生存力。
45.根据权利要求44所述的方法,其中所述冻干组合物在约-20℃至约4℃下储存约12个月后显示出至少约75%的生存力。
46.根据权利要求45所述的方法,其中所述冻干组合物在约-20℃至约4℃下储存约12个月后显示出至少约80%的生存力。
47.根据前述任一权利要求所述的方法,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株。
48.根据前述任一项权利要求所述的方法,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株,且
其中所述缓冲剂是磷酸盐缓冲剂,且
其中所述配方包含约2%至约3%w/v的蔗糖,且
其中所述配方不包含海藻糖、MSG,或rHSA,且
其中每毫升所述配方包含约1x10E9至约1x10E10菌落形成单位(CFU)的李斯特菌;且
其中冷冻步骤(a)中的保持温度在约-40℃至约-50℃之间,且
其中一级干燥步骤(c)中的所述保持温度在-17℃至-19℃之间,且
其中二级干燥步骤(d)中的所述保持温度在-1℃至1℃之间,且
其中所述冻干组合物中的残留水分在约2.5%至约4%之间。
49.根据权利要求48所述的方法,其中步骤(a)中的所述组合物中所使用的李斯特菌菌株是在步骤(a)之前解冻的冷冻李斯特菌菌株,且
其中解冻的所述冷冻李斯特菌菌株的浓度在每毫升约1x10E9至约1x10E10菌落形成单位(CFU)之间,且
其中将所述冷冻李斯特菌菌株在约37℃解冻,且
其中所述冷冻李斯特菌菌株的解冻不超过8小时,且
其中在解冻后,将所述冷冻李斯特菌菌株在约2℃至约8℃下保持不超过24小时。
50.根据前述任一项权利要求所述的方法,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
51.根据权利要求50所述的方法,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码D133V PrfA突变蛋白。
52.根据权利要求50所述的方法,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含第二开放阅读框,所述第二开放阅读框编码丙氨酸消旋酶或D-氨基酸氨基转移酶,其中所述含PEST的肽是LLO的N末端片段。
53.一种用于李斯特菌菌株的冻干的配方,其包含:(1)所述李斯特菌菌株;(2)磷酸盐缓冲剂;以及(3)蔗糖。
54.根据权利要求53所述的配方,其中所述李斯特菌菌株是通过将所述李斯特菌菌株暴露于降低的温度下而诱导了应激反应的菌株。
55.根据权利要求53或54所述的配方,其中所述李斯特菌菌株来自冷冻的李斯特菌原种。
56.根据权利要求53或54所述的配方,其中所述李斯特菌菌株来自新鲜培养的李斯特菌原种。
57.根据权利要求53-56中任一项所述的配方,其中所述配方包含约1%至约5%w/v的蔗糖。
58.根据权利要求57所述的配方,其中所述配方包含约2%至约3%w/v的蔗糖。
59.根据权利要求58所述的配方,其中所述配方包含约2.5%w/v的蔗糖。
60.根据权利要求53-59中任一项的所述的配方,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
61.根据权利要求60所述的配方,其中所述配方不包含海藻糖、MSG,或rHSA。
62.根据权利要求53-61中任一项所述的配方,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株。
63.根据权利要求53-62中任一项所述的配方,其中所述李斯特菌菌株为重组单核细胞增生李斯特菌菌株,且
其中所述配方包含约2%至约3%w/v的蔗糖,且
其中所述配方不包含海藻糖、MSG,或rHSA。
64.根据权利要求53-63中任一项所述的配方,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
65.根据权利要求64的所述的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码D133V PrfA突变蛋白的的第二开放阅读框。
66.根据权利要求64所述的配方,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码丙氨酸消旋酶或D-氨基酸氨基转移酶的第二开放阅读框,且其中所述含PEST的肽是LLO的N末端片段。
67.根据权利要求1-52中任一项所述的方法生产的冻干组合物。
68.一种冻干组合物,其包含李斯特菌菌株、磷酸盐缓冲剂,和蔗糖。
69.根据权利要求68所述的冻干组合物,其中所述冻干组合物不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
70.根据权利要求69所述的冻干组合物,其中所述冻干组合物不包含海藻糖、MSG,或rHSA。
71.根据权利要求67-70中任一项所述的冻干组合物,其中所述冻干组合物中的残留水分在约1%至约5%之间。
72.根据权利要求71所述的冻干组合物,其中所述冻干组合物中的所述残留水分在约2%至约4%之间。
73.根据权利要求67-72中任一项所述的冻干组合物,其中所述冻干组合物中的残留水分为至少约2.5%。
74.根据权利要求73所述的冻干组合物,其中所述冻干组合物中的所述残留水分为至少约3%。
75.一种包含李斯特菌菌株的冻干组合物,其中所述冻干组合物中的残留水分为至少约2.5%。
76.根据权利要求67-75中任一项所述的冻干组合物,其中所述冻干组合物在约-20℃和约4℃之间储存约12个月后显示出至少约60%的生存力。
77.根据权利要求76所述的冻干组合物,其中所述冻干组合物在约-20℃和约4℃之间储存约12个月后显示出至少约75%的生存力。
78.根据权利要求77所述的冻干组合物,其中所述冻干组合物在约-20℃和约4℃之间储存约12个月后显示出至少约80%的生存力。
79.根据权利要求67-78中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株。
80.根据权利要求67-79中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株,并且
其中所述冻干组合物不包含海藻糖、MSG,或rHSA,且
其中所述冻干组合物中的残留水分在2.5%至4%之间。
81.根据权利要求67-80中任一项所述的冻干组合物,其中所述李斯特菌菌株是重组李斯特菌菌株,其包含核酸,所述核酸包含编码融合多肽的第一开放阅读框,其中所述融合多肽包括含PEST的肽,所述含PEST的肽和与疾病相关的抗原肽融合。
82.根据权利要求81所述的冻干组合物,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在prfA中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码D133V PrfA突变蛋白的的第二开放阅读框。
83.根据权利要求81所述的冻干组合物,其中所述重组李斯特菌菌株是减毒的单核细胞增生李斯特菌菌株,其包含在actA、dal,和dat中的缺失或失活突变,其中所述核酸在附加体质粒中,并且包含编码丙氨酸消旋酶或D-氨基酸氨基转移酶的第二开放阅读框,且其中所述含PEST的肽是LLO的N末端片段。
84.一种制备用于冻干的冷冻李斯特菌菌株的方法,其包含在约20℃至约37℃之间的温度下解冻所述冷冻李斯特菌菌株。
85.根据权利要求84所述的方法,其中所述温度在约32℃至约37℃之间。
86.根据权利要求85所述的方法,其中所述温度为约37℃。
87.根据权利要求84-86中任一项所述的方法,其中将所述冷冻李斯特菌菌株解冻不超过8小时。
88.根据权利要求84-87中任一项所述的方法,其中所述冷冻李斯特菌菌株在解冻后在约2℃至约8℃下保持不超过24小时。
89.根据权利要求84-88中任一项所述的方法,其中将所述冷冻李斯特菌菌株在包含缓冲剂和蔗糖的配方中解冻。
90.根据权利要求89所述的方法,其中所述配方包含约1%至约5%w/v的蔗糖。
91.根据权利要求90所述的方法,其中所述配方包含约2%至约3%w/v的蔗糖。
92.根据权利要求91所述的方法,其中所述配方包含约2.5%w/v的蔗糖。
93.根据权利要求89-92中任一项所述的方法,其中所述配方不包含海藻糖、谷氨酸钠(MSG),和重组人血清白蛋白(rHSA)中的一种或多种。
94.根据权利要求93所述的方法,其中所述配方不包含海藻糖、MSG,或rHSA。
95.根据权利要求89-94中任一项所述的方法,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株。
96.根据权利要求89-95中任一项所述的方法,其中所述李斯特菌菌株是重组单核细胞增生李斯特菌菌株,并且
其中所述配方包含约2%至约3%w/v的蔗糖,且
其中所述配方不包含包括海藻糖、MSG,或rHSA。
CN201880073982.3A 2017-09-19 2018-08-29 细菌或李斯特菌菌株的冻干组合物和方法 Pending CN111356760A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762560318P 2017-09-19 2017-09-19
US62/560,318 2017-09-19
PCT/US2018/048586 WO2019060115A1 (en) 2017-09-19 2018-08-29 COMPOSITIONS AND METHODS FOR LYOPHILIZATION OF BACTERIA OR LISTERIA STRAINS

Publications (1)

Publication Number Publication Date
CN111356760A true CN111356760A (zh) 2020-06-30

Family

ID=65809919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880073982.3A Pending CN111356760A (zh) 2017-09-19 2018-08-29 细菌或李斯特菌菌株的冻干组合物和方法

Country Status (12)

Country Link
US (2) US11179339B2 (zh)
EP (1) EP3684912A4 (zh)
JP (2) JP7284156B2 (zh)
KR (1) KR20200044982A (zh)
CN (1) CN111356760A (zh)
AU (2) AU2018336988B2 (zh)
CA (1) CA3075849A1 (zh)
IL (1) IL273255A (zh)
MX (1) MX2020003100A (zh)
NZ (1) NZ762881A (zh)
SG (1) SG11202002157TA (zh)
WO (1) WO2019060115A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012141B2 (en) 2000-03-27 2015-04-21 Advaxis, Inc. Compositions and methods comprising KLK3 of FOLH1 antigen
MA41644A (fr) 2015-03-03 2018-01-09 Advaxis Inc Compositions à base de listeria comprenant un système d'expression de minigènes codant pour des peptides, et leurs procédés d'utilisation
WO2018102584A1 (en) 2016-11-30 2018-06-07 Advaxis, Inc. Immunogenic compositions targeting recurrent cancer mutations and methods of use thereof
CN111356760A (zh) 2017-09-19 2020-06-30 阿德瓦希斯公司 细菌或李斯特菌菌株的冻干组合物和方法
US11738075B2 (en) * 2018-03-20 2023-08-29 National Research Council Of Canada Method for lyophilizing live vaccine strains of Francisella tularensis
CN110106114A (zh) * 2019-05-10 2019-08-09 上海市计量测试技术研究院(中国上海测试中心、华东国家计量测试中心、上海市计量器具强制检定中心) 一种用于单增李斯特菌标准物质的冻干保护剂及冻干保存方法和应用
CN112048545B (zh) * 2020-09-10 2022-11-18 上海创宏生物科技有限公司 一种冻干保护剂、pcr扩增试剂及其冻干方法和应用
AU2021365642A1 (en) * 2020-10-24 2023-06-08 Kula Bio, Inc. Minimal footprint high density fermentation of plant byproducts
CN113287601A (zh) * 2021-05-20 2021-08-24 江苏康进医疗器材有限公司 一种适用于超低温冻存的立体多腔细胞袋
WO2024086605A1 (en) * 2022-10-18 2024-04-25 Takeda Vaccines, Inc. Dengue vaccine formulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060121053A1 (en) * 2004-10-18 2006-06-08 Pamela Sweeney High cell density process for growth of Listeria
US20100297231A1 (en) * 2007-05-18 2010-11-25 Medimmune, Llc Preservation of bioactive materials by freeze dried foam
CN103687611A (zh) * 2011-03-11 2014-03-26 阿德瓦希斯公司 基于李斯特菌属的佐剂

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205132A (en) 1978-07-17 1980-05-27 Microlife Technics, Inc. Lyophilization of bacteria
US4751180A (en) 1985-03-28 1988-06-14 Chiron Corporation Expression using fused genes providing for protein product
US4935233A (en) 1985-12-02 1990-06-19 G. D. Searle And Company Covalently linked polypeptide cell modulators
US5830702A (en) 1990-10-31 1998-11-03 The Trustees Of The University Of Pennsylvania Live, recombinant listeria monocytogenes and production of cytotoxic T-cell response
WO2001072329A1 (en) 2000-03-29 2001-10-04 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing immunogenicity of antigens
US8791237B2 (en) 1994-11-08 2014-07-29 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of non-hodgkins lymphoma
US7662396B2 (en) 2001-03-26 2010-02-16 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US8114414B2 (en) * 1994-11-08 2012-02-14 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical cancer
US7794729B2 (en) 1994-11-08 2010-09-14 The Trustees Of The University Of Pennsylvania Methods and compositions for immunotherapy of cancer
US20070264279A1 (en) 1994-11-08 2007-11-15 Claudia Gravekamp Compositions and methods comprising a MAGE-b antigen
US6051237A (en) 1994-11-08 2000-04-18 The Trustees Of The University Of Pennsylvania Specific immunotherapy of cancer using a live recombinant bacterial vaccine vector
US8956621B2 (en) 1994-11-08 2015-02-17 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical dysplasia
US7820180B2 (en) 2004-09-24 2010-10-26 The Trustees Of The University Of Pennsylvania Listeria-based and LLO-based vaccines
EP2298900A1 (en) 1996-09-17 2011-03-23 Novartis Vaccines and Diagnostics, Inc. Compositions and methods for treating intracellular diseases
US6099848A (en) 1997-11-18 2000-08-08 The Trustees Of The University Of Pennsylvania Immunogenic compositions comprising DAL/DAT double-mutant, auxotrophic, attenuated strains of Listeria and their methods of use
GB9726555D0 (en) 1997-12-16 1998-02-11 Smithkline Beecham Plc Vaccine
WO2001041782A2 (en) 1999-12-09 2001-06-14 Chiron Corporation Method for administering a cytokine to the central nervous system and the lymphatic system
US9012141B2 (en) 2000-03-27 2015-04-21 Advaxis, Inc. Compositions and methods comprising KLK3 of FOLH1 antigen
US6855320B2 (en) 2000-03-29 2005-02-15 The Trustees Of The University Of Pennsylvania Fusion of non-hemolytic, truncated form of listeriolysin O to antigens to enhance immunogenicity
US7700344B2 (en) 2001-03-26 2010-04-20 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US8771702B2 (en) 2001-03-26 2014-07-08 The Trustees Of The University Of Pennsylvania Non-hemolytic LLO fusion proteins and methods of utilizing same
US7794728B2 (en) 2002-05-29 2010-09-14 The Regents Of The University Of California Attenuated Listeria spp. and methods for using the same
AU2004204751A1 (en) 2003-01-09 2004-07-29 The Trustees Of The University Of Pennsylvania Compositions, methods and kits for enhancing the immunogenicity of a bacterial vaccine vector
WO2004110481A2 (en) 2003-02-06 2004-12-23 Cerus Corporation Listeria attenuated for entry into non-phagocytic cells, vaccines comprising the listeria, and methods of use thereof
US7855064B2 (en) 2004-08-13 2010-12-21 The Trustees Of The University Of Pennsylvania Antibiotic resistance free vaccines and methods for constructing and using same
US7858097B2 (en) 2004-08-13 2010-12-28 The Trustees Of The University Of Pennsylvania Antibiotic resistance free Listeria strains and methods for constructing and using same
US8906664B2 (en) 2004-08-13 2014-12-09 The Trustees Of The University Of Pennsylvania Methods for constructing antibiotic resistance free vaccines
WO2007061848A2 (en) * 2005-11-17 2007-05-31 The Trustees Of The University Of Pennsylvania Methods for producing, growing, and preserving listeria vaccine vectors
US7935804B2 (en) 2006-03-01 2011-05-03 Aduro Biotech Engineered Listeria and methods of use thereof
US7665238B2 (en) 2006-04-03 2010-02-23 S.C. Johnson & Son, Inc. Air freshener with holder
US8268326B2 (en) 2006-08-15 2012-09-18 The Trustees Of The University Of Pennsylvania Compositions comprising HMW-MAA and fragments thereof, and methods of use thereof
DK2977456T3 (en) 2006-08-15 2018-01-22 Univ Pennsylvania Compositions comprising HMW-MAA and fragments thereof for the treatment of cancer
EP2147092A4 (en) 2007-04-16 2010-06-09 Univ Pennsylvania ANTIBIOTIC RESISTANCE-FREE LISTERIA TRIBES AND METHOD OF CONSTRUCTING AND USING THEREOF
US9017660B2 (en) 2009-11-11 2015-04-28 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors
US20150366955A9 (en) 2009-11-11 2015-12-24 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of her2/neu over-expressing tumors
JP5757863B2 (ja) 2008-05-19 2015-08-05 アドバクシス インコーポレイテッド 異種抗原のための二重送達システム
US20140234370A1 (en) 2009-11-11 2014-08-21 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of her2/neu over-expressing tumors
US20120135033A1 (en) 2008-05-19 2012-05-31 Anu Wallecha Multiple delivery system for heterologous antigens
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
CN102202688B (zh) 2008-11-07 2017-04-12 印度血清研究所私人有限公司 稳定、干燥的轮状病毒疫苗、其组合物和制备其的方法
JP5539411B2 (ja) 2009-03-04 2014-07-02 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア 血管新生因子を含む組成物およびその使用方法
EP2498808A4 (en) 2009-11-11 2014-01-08 Advaxis COMPOSITIONS AND METHOD FOR PREVENTING FLUID MUTATIONS IN THE TREATMENT OF TUMORS WITH HER2 / NEW OVEREXPRESSION
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
WO2011100754A1 (en) 2010-02-15 2011-08-18 The Trustees Of The University Of Pennsylvania Live listeria-based vaccines for central nervous system therapy
US20110305724A1 (en) 2010-04-19 2011-12-15 Yvonne Paterson Immunotherapeutic, anti-tumorigenic compositions and methods of use thereof
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
BR112014022662A2 (pt) 2012-03-12 2017-10-03 Advaxis Inc Inibição da função de célula supressora seguindo tratamento de vacina de listeria
ES2960803T3 (es) 2012-05-25 2024-03-06 Univ California Métodos y composiciones para la modificación de ADN diana dirigida por RNA y para la modulación de la transcripción dirigida por RNA
EP2885396B1 (en) 2012-08-20 2020-02-19 Chr. Hansen A/S Method for optimizing a process for freeze drying a bacteria-containing concentrate
KR102160322B1 (ko) 2012-12-27 2020-09-25 아두로 바이오테크, 인코포레이티드 항원 서열의 리스테리아 발현을 용이하게 하는 신호 펩타이드 융합 상대 및 이의 제조방법 및 용도
WO2014113358A1 (en) 2013-01-15 2014-07-24 Teva Pharmaceutical Industries Ltd. Lyophilization process
JP6230796B2 (ja) 2013-03-08 2017-11-15 日清食品ホールディングス株式会社 凍結乾燥菌試料およびその製造方法
EP3107566A4 (en) 2014-02-18 2017-10-11 Advaxis, Inc. Biomarker directed multi-target immunotherapy
KR20160122829A (ko) 2014-02-25 2016-10-24 어드박시스, 인크. Her2/neu 과발현 종양의 치료를 위한 조성물 및 방법
CN106413745A (zh) 2014-03-05 2017-02-15 阿德瓦希斯公司 用于提高效应t细胞与调节性t细胞的比率的方法和组合物
MA39849A (fr) 2014-04-24 2017-03-01 Advaxis Inc Souches de listeria utilisées comme vaccin recombinant et procédé de production
JP2017514904A (ja) 2014-05-02 2017-06-08 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア Her2陽性ガンの治療のための免疫療法および放射線療法の併用
MX2017000836A (es) 2014-07-18 2017-11-17 Advaxis Inc Composiciones inmunogenicas basadas en listeria para inducir respuestas antitumorales.
WO2016011320A1 (en) 2014-07-18 2016-01-21 Advaxis, Inc. Bivalent listeria-based delivery system of heterologous antigens
MX2017000838A (es) 2014-07-18 2017-09-01 Advaxis Inc Cepa de listeria recombinante que expresa proteinas de fusion con antigenos heterologos y metodos para el uso de estas.
SG10201913696YA (en) 2014-07-18 2020-03-30 Advaxis Inc Combination of a pd-1 antagonist and a listeria-based vaccine for treating prostate cancer
SG11201702611YA (en) 2014-10-14 2017-04-27 Univ Pennsylvania Combination therapy for use in cancer therapy
MA41218A (fr) 2014-12-19 2017-10-24 Advaxis Inc Combinaison de vaccin à base de listeria comportant des anticorps anti-ox40 ou anti-gitr
WO2016105510A2 (en) 2014-12-26 2016-06-30 Conjugon, Inc. Methods and compositions for growth, storage, and use of bacterial preparations for wound and surface treatments
WO2016126876A2 (en) 2015-02-03 2016-08-11 Advaxis, Inc. Listeria-based adjuvants
US20160220652A1 (en) 2015-02-03 2016-08-04 Advaxis, Inc. Methods of using recombinant listeria vaccine strains in disease immunotherapy
WO2016126878A2 (en) 2015-02-03 2016-08-11 The Trustees Of The University Of Pennsylvania Listeria-based immunomodulation
MA41644A (fr) 2015-03-03 2018-01-09 Advaxis Inc Compositions à base de listeria comprenant un système d'expression de minigènes codant pour des peptides, et leurs procédés d'utilisation
WO2016154412A2 (en) 2015-03-26 2016-09-29 The Trustees Of The University Of Pennsylvania Combination of a pd-1 antagonist and a listeria based vaccine for treating pancreatic cancer
US20180104284A1 (en) 2015-05-13 2018-04-19 Advaxis, Inc. Immunogenic Listeria-Based Compositions Comprising Truncated Acta-Antigen Fusions And Methods Of Use Thereof
MA43362A (fr) 2015-05-26 2018-10-10 Advaxis Inc Immunothérapie à base de vecteurs d'administration personnalisés, et leurs utilisations
KR20180027501A (ko) 2015-06-24 2018-03-14 어드박시스, 인크. 맞춤형 전달 벡터-기반 면역 요법을 위한 제조 장치 및 공정
US20180265879A1 (en) 2015-09-15 2018-09-20 Advaxis, Inc. Manufacturing method of an immunotherapeutic formulation comprising a recombinant listeria strain
US20180305702A1 (en) 2015-09-15 2018-10-25 Advaxis, Inc. Listeria-Based Immunogenic Compositions And Methods Of Use Thereof in Cancer Prevention And Treatment
MA42845A (fr) 2015-09-17 2018-07-25 Advaxis Inc Souches vaccinales de listeria de recombinaison et méthodes d'utilisation desdites souches dans l'immunothérapie anticancéreuse
AU2016340148A1 (en) 2015-10-14 2018-05-31 Advaxis, Inc. Recombinant Listeria strains and methods of using the same in cancer immunotherapy
WO2017085691A1 (en) 2015-11-20 2017-05-26 Advaxis, Inc. Manufacturing device and method of an immunotherapeutic formulation comprising a recombinant listeria strain
US20180360940A1 (en) 2015-12-16 2018-12-20 Advaxis, Inc. Listeria-based immunotherapy and methods of use thereof
KR20180100443A (ko) 2016-01-27 2018-09-10 어드박시스, 인크. 개인 맞춤형 전달 벡터-기반 면역요법 및 그 사용
AU2017293400A1 (en) 2016-07-05 2019-02-07 Advaxis, Inc. Listeria-based immunogenic compositions comprising Wilms tumor protein antigens and methods of use thereof
US20200061167A1 (en) 2016-11-07 2020-02-27 Advaxis, Inc. Combination of listeria-based vaccine with anti-ctla-4 or anti-cd137 antibodies
WO2018102585A1 (en) 2016-11-30 2018-06-07 Advaxis, Inc. Personalized immunotherapy in combination with immunotherapy targeting recurrent cancer mutations
WO2018102584A1 (en) 2016-11-30 2018-06-07 Advaxis, Inc. Immunogenic compositions targeting recurrent cancer mutations and methods of use thereof
TW201833323A (zh) 2017-01-05 2018-09-16 美商艾法西斯公司 重組李斯特菌屬疫苗菌株及在癌症免疫治療中使用該菌株之方法
WO2019006401A2 (en) 2017-06-30 2019-01-03 Advaxis, Inc. LISTERIA-BASED IMMUNOGENIC COMPOSITIONS COMPRISING HETERICCLIENT WILMS TUMOR PROTEIN ANTIGENS AND METHODS OF USE THEREOF
CN111356760A (zh) 2017-09-19 2020-06-30 阿德瓦希斯公司 细菌或李斯特菌菌株的冻干组合物和方法
JP2021502083A (ja) 2017-11-08 2021-01-28 アドバクシス, インコーポレイテッド がん関連タンパク質由来の免疫原性ヘテロクリティックペプチドおよびその使用の方法
WO2019157098A1 (en) 2018-02-06 2019-08-15 Advaxis, Inc. Compositions comprising a recombinant listeria strain and an anti-ccr8 antibody and methods of use
JP2021516972A (ja) 2018-03-09 2021-07-15 アドバクシス, インコーポレイテッド Listeria株の弱毒化および感染性を評価するための組成物および方法
WO2019210034A1 (en) 2018-04-27 2019-10-31 Advaxis, Inc. Compositions and methods for evaluating potency of listeria-based immunotherapeutics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060121053A1 (en) * 2004-10-18 2006-06-08 Pamela Sweeney High cell density process for growth of Listeria
US20100297231A1 (en) * 2007-05-18 2010-11-25 Medimmune, Llc Preservation of bioactive materials by freeze dried foam
CN103687611A (zh) * 2011-03-11 2014-03-26 阿德瓦希斯公司 基于李斯特菌属的佐剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT PETIT ET AL.,: ""ADXS11-001 IMMUNOTHERAPY: 12 MONTH SURVIVAL AND SAFETY DATA FROM A PHASE 2 STUDY IN RECURRENT CERVICAL CANCER"", 《ADVAXIS, INC. INVESTOR CENTER》 *

Also Published As

Publication number Publication date
EP3684912A4 (en) 2021-04-14
AU2018336988B2 (en) 2023-06-22
JP7284156B2 (ja) 2023-05-30
AU2023233129A1 (en) 2023-10-12
US20220062181A1 (en) 2022-03-03
US11179339B2 (en) 2021-11-23
NZ762881A (en) 2024-03-22
JP2020533997A (ja) 2020-11-26
MX2020003100A (es) 2020-08-20
SG11202002157TA (en) 2020-04-29
WO2019060115A1 (en) 2019-03-28
IL273255A (en) 2020-04-30
EP3684912A1 (en) 2020-07-29
KR20200044982A (ko) 2020-04-29
AU2018336988A1 (en) 2020-04-16
US20200261369A1 (en) 2020-08-20
JP2023096115A (ja) 2023-07-06
CA3075849A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP7284156B2 (ja) 細菌またはListeria株の凍結乾燥のための組成物および方法
JP7197481B2 (ja) 反復性がん突然変異を標的とする免疫原性組成物およびその使用の方法
WO2019157098A1 (en) Compositions comprising a recombinant listeria strain and an anti-ccr8 antibody and methods of use
JP5479918B2 (ja) 子宮頸癌の治療のための組成物および方法
WO2018102585A1 (en) Personalized immunotherapy in combination with immunotherapy targeting recurrent cancer mutations
KR20200070405A (ko) 암 관련 단백질로부터의 면역원성 불규칙변화성 펩타이드 및 그것의 사용 방법
KR20170063505A (ko) 항-종양 반응 유발 목적 리스테리아계 면역원성 조성물
TW201833323A (zh) 重組李斯特菌屬疫苗菌株及在癌症免疫治療中使用該菌株之方法
TW201702375A (zh) 包含經截斷ActA-抗原融合體之免疫性基於李斯特氏菌的組成物及其使用方法
US20190248856A1 (en) Listeria-Based Immunogenic Compositions Comprising Wilms Tumor Protein Antigens And Methods Of Use Thereof
KR20140134695A (ko) 리스테리아 백신 치료 후 억제 세포 기능 저해
TW201726171A (zh) 以李斯特菌屬為主的免疫治療及其用法
WO2019006401A2 (en) LISTERIA-BASED IMMUNOGENIC COMPOSITIONS COMPRISING HETERICCLIENT WILMS TUMOR PROTEIN ANTIGENS AND METHODS OF USE THEREOF
WO2018170313A1 (en) Methods and compositions for increasing efficacy of vaccines
US20220362308A1 (en) Oral administration of genetically engineered bacteria
US10226521B2 (en) Genetically modified Yersinia as vaccines against Yersinia species

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination