CN1113486C - 利用并行链接编码的卫星通信系统 - Google Patents

利用并行链接编码的卫星通信系统 Download PDF

Info

Publication number
CN1113486C
CN1113486C CN97114592A CN97114592A CN1113486C CN 1113486 C CN1113486 C CN 1113486C CN 97114592 A CN97114592 A CN 97114592A CN 97114592 A CN97114592 A CN 97114592A CN 1113486 C CN1113486 C CN 1113486C
Authority
CN
China
Prior art keywords
decoder
parallel link
encoder
communication system
minimum bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97114592A
Other languages
English (en)
Other versions
CN1173085A (zh
Inventor
S·M·霍雷迪克
W·A·切克
B·J·格林斯曼
R·F·弗兰明三世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
The company may Likemu Scotia est
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1173085A publication Critical patent/CN1173085A/zh
Application granted granted Critical
Publication of CN1113486C publication Critical patent/CN1113486C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18528Satellite systems for providing two-way communications service to a network of fixed stations, i.e. fixed satellite service or very small aperture terminal [VSAT] system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • H03M13/2996Tail biting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/1858Arrangements for data transmission on the physical system, i.e. for data bit transmission between network components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • H03M13/296Particular turbo code structure
    • H03M13/2966Turbo codes concatenated with another code, e.g. an outer block code

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种VSAT卫星通信网络在其入站或出站链路或两者上使用并行链接编码。对于短数据块,使用非递归的尾比特卷积码。对于较长数据块使用递归的系统的卷积码。这些并行链接编码技术与扩频调制结合使用,以提供一种满足FCC对发送信号的总功率谱密度的规定以及减轻来自相邻卫星干扰的VSAT通信系统。

Description

利用并行链接编码的卫星通信系统
技术领域
本发明总的是涉及卫星通信系统,更具体地涉及在其入站或出站链路上或者两者上利用并行链接编码的极小口径终端卫星通信系统。
背景技术
存在一个正在形成的利用低成本、极小口径终端(VSAT)的通过卫星的多媒体通信的市场。利用比当前在现今工业上通常实际使用的天线小的天线的优点包括减小的反射器的成本,较低的运输成本,减小的安装硬件和劳力,和由于较少突出的外貌使较多的用户可以接受。然而,较小口径抛物面天线的使用会引起不希望的网络容量的降低。这是由于与减小天线的尺寸有关的几个因素引起的:(1)由于相关的天线增益的降低引起接收的和发送的信号功率的降低;(2)为了限制在邻近卫星轨道间隙的干扰能流密度,联邦通信委员会(FCC)有限制利用小于规定尺寸的天线的极小口径终端发送的功率的规定。由于功率的限制,为了减小极小口径终端的成本,使用相同或小些的功率输出的极小口径终端功率放大器进一步使网络容量降低。
不幸的是,在短数据块(这样的数据块是某些类型极小口径终端传输的典型情况)上,打算利用常规编码技术以要求的带宽效率和解码器的复杂性解决这些问题,得到期望的大的编码增益是困难的。
因此,希望提供一种卫星通信系统,该系统利用在频谱上高效率的技术,通过减小所要求的每比特能量对噪声功率谱密度比Eb/Eo,在利用减小的天线口径的极小口径终端的情况下增加网络容量。
发明内容
按照本发明,极小口径终端卫星通信网络在其入站或出站链路上或两者上利用并行链接编码。在一个实施例中对于分组传输、信用卡事务处理、和压缩的话音通信这样的典型情况的短数据块,非递归的系统的尾比特卷积块被用作为在这样一种并行链接编码方案中的分量码。对于文件传输的典型情况的较长的数据块,极小口径终端和网络的中心站终端利用递归的系统的卷积码。
在一个优选实施例中,上述的并行链接编码技术与扩频调制相结合起来使用,得到在总的发送信号的功率谱密度上满足FCC规定和减轻来自相邻卫星的干扰的系统。
本发明实现了一种用于经由卫星进行通信的极小口径终端通信系统,包括:
多个极小口径终端,每个终端包括:
一个由多个并行链接的分量编码器组成的并行链接编码器,该并行链接编码器把并行链接码加到从源接收的数据比特块上,从而产生各个分量码字,该并行链接编码器包括码字成形器,用于对分量码字的比特格式化以提供复合码字;
一个数据组成形器,用于组合各个数据组以便发送,每个数据组包括来自至少一个复合码字的各比特;
一个调制器,用于接收各个数据组,从而提供已调信号;
一个上变频器,用于把已调信号变换到载频;
一个接口,用于将每个相应的极小口径终端连接到天线,以便发送已调信号到卫星和从卫星接收已调信号;
一个下变频器,用于把每个接收信号从载频变换到中频;
一个解调器,用于同步和解调接收的信号;
一个分组数据-码字成形器,用于从解调的信号形成接收的复合码字;和
一个包括多个分量解码器的复合解码器,用于解码接收的复合码字。
附图说明
从下面结合附图的本发明的详细描述中,本发明的各个特点和优点将变得显而易见,其中:
图1是说明使用按照本发明的并行链接编码的极小口径终端通信系统的简化方框图;
图2是说明使用按照本发明的并行链接编码的极小口径终端卫星通信系统的集中器终端的简化方框图;
图3是说明用于按照本发明的极小口径终端通信系统中的可编程的编码器的简化方框图;和
图4是说明用于按照本发明的极小口径终端通信系统中的可编程的解码器的简化方框图。
具体实施方式
在这里所描述的本发明是利用并行链接编码技术的极小口径终端卫星通信系统,所述编码技术包括,例如,并行链接的尾比特卷积编码和并行链接的递归的系统的卷积码(即,称为“涡轮码”(“turbocodes”)),和它们各自的解码器。具体地讲,对于并行链接尾比特卷积码来说,使用了包括循环最大后验概率(MAP)解码的解码器,诸如被描述在于1996年4月19日提交的、发明人为Stephen M.Hladik和John B.Anderson的共同受让的未决美国专利申请08/636742中,将其援引于此以资参考。
并行链接编码被用于极小口径终端卫星通信网络的入站链路传输(极小口径终端到中心站)或出站链路传输(中心站到极小口径终端)或两种链路。此外,并行链接编码可以被用来提供用于直接对等(极小口径终端到极小口径终端)传输的差错校正/检测编码。在一个实施例中,对于分组传输、信用卡事物处理、和压缩的话音通信这样的典型情况的短数据块来说,非递归的系统的尾比特卷积码被用作为在这样一种并行链接编码方案中的分量编码。对于为数据传输的典型情况的较长的数据块,并行链接中的编码包括由极小口径终端和网络的中心站终端利用的递归系统的卷积编码。
按照本发明,这些并行链接编码技术结合扩频调制的使用提供了一种非常有效的解决办法,以便通过降低发送信号所需要的有效辐射功率(ERP)和功率谱密度来符合上述FCC的关于相邻卫星干扰的规定。此外,这种组合减轻来自相邻卫星的干扰。
图1是使用按照本发明的并行链接编码的极小口径终端卫星通信系统的方框图。这个系统基本上包括若干极小口径终端终端10、一个具有通信转发器的卫星、和可能的一个中心站终端14。在该VSαt网络中的通信可以是单向的也可以是双向的和可以以各种不同路径进行:(1)直接VSAT到VSAT(即,网孔连接)和(2)VSAT到中心站终端和/或中心站终端到VSAT(即,星形连接)。
如图1所示,VSAT终端10包括发射机信号处理器20、接收机信号处理器22、和天线24。按照这里描述的本发明,该VSAT的发射机信号处理器包括以下部件:用于接收来自信息源26的数据的输入口25;用于对从该源接收的数据比特块进行并行链接编码的编码器28;用于产生数据组(包括一个或多个来自编码器28的码字)、同步比特码型和控制信令比特的数据组成形器30;调制器32;用于将该已调信号变换到载频的上变频器34;功率放大器36;和经由一个适当的接口(例如,开关或滤波器双工器)到天线的连接。VSAT的接收机信号处理器包括:低噪声放大器40;用于将载频接收信号变换到中频的下变频器42;用于同步和解调的解调器44;分组数据-码字成形器46,适合于由发射机利用的并行链接码的解码器48;和用于将接收的消息(即,数据比特的数据块)转移到信息库50的输出口49。为了简单起见,在图1中只对一个VSAT显示了详细的方框图。
由解调器44执行的同步功能包括:载波同步、帧同步、符号同步、和如果需要,还有载波相位同步。符号同步是对解调器输出估算最佳取样时间(即符号的出现时间)的处理,以便使符号判决差错的概率最小化。帧同步是对接收的数据帧(对于连续发送)或数据组(对于不连续发送)估算第一个符号的出现时间的处理。
对于在由VSAT发送的是扩频信号的情况下,如图1所示的VSAT调制器包括扩频功能,和如图1所示的VSAT解调器包括去扩频功能。扩频技术通过利用包括有本身是伪随机的和与已调数据信号有关的一些时片(在直接序列扩频的情况下)或频率跳跃(在跳频扩频的情况下)的扩频信号,相对于已调数据信号带宽来说,增加了信号的带宽。在直接序列扩频的情况下,数据信号与对应于具有+1或-1值的一些时片的伪随机序列相乘。该时片脉冲的持续期小于已调数据信号的符号间隔,因此,产生的信号的带宽大于原先已调信号的带宽。在跳频扩频的情况下,已调信号的载波频率按照伪随机模式周期性地改变。再有,扩频信号的带宽大于原先已调信号的带宽。
解调器中的去扩频是从接收的信号中去掉扩频的处理。典型地,解调器把接收的信号与扩频波形的复制品相关以便对直接序列扩频信号进行去扩频,而在跳频扩频系统中,使用与由发送端使用的相同的模式使接收机下变频器的振荡器的频率进行跳频,以便对跳频扩频信号进行去扩频。典型地,在去扩频后该接收信号被加到一个滤波器上,以衰减在被恢复的信号中的宽带噪声和干扰分量。
中心站终端的方框图表示在图2中。按照在这里描述的本发明的中心站终端包括:用于接收来自一个或多个信息源的数据的输入口51;用于传送接收的消息(即,数据比特块)到一个或多个消息库54的输出口53;发射机信道处理器存储器56;接收机信道处理器存储器58;用于连接每个有效源到一个发射机处理器和用于连接每个有效接收机信道处理器到适合的信息库和到发射机信道处理器的逻辑转换器60;存储器62;用于控制通过该转换器的数据流的控制器64;用于把每个发射机信道处理器产生的信号组合为一个信号的组合器66;用于把组合信号变换到载频的上变频器68;经适当的接口(例如,开关或滤波器双工器)连接到天线的功率放大器70;天线72;经上述接口耦合到天线的低噪声放大器74;用于把接收信号从载频变换到中频(IF)的下变频器76;和用于提供接收的IF信号或可能是接收的IF信号的滤波的形式给接收机信道处理器的存储器的信号分路器78。
图2所示的发射机信道处理器包括:对从一个源接收到的数据比特块施加并行链接编码的编码器80;用于产生数据组(包括一个或多个来自编码器80的码字)、同步比特码型和控制信令比特的分组数据的成形器82;和调制器84。如同极小口径终端一样,中心站调制器包括在扩频信号是由该中心站发送的情况下的扩频功能。图2的接收机信道处理器包括:解调器86;分组数据到码字变换器88,用于从解调器的输出中选择采样值以形成被输入到用于并行链接码的解码器的接收的码字;和适合于由发射机使用的并行链接码的解码器90。中心站解调器包括以下几个功能:同步、解调、和在中心站接收扩频信号的情况下的去扩频。
中心站存储器的一个功能是:在当一个消息到达转换器60时所有发射机信道处理器全忙的情况下,暂存来自信息源或接收机信道处理器的接收数据。该存储器还存储必要的网络配置参数和操作数据。
在本发明的另外一个实施例中,一个外码被用于与该(内)并行链接码(PCC)相串行链接;一个相关的外部解码器也被与用于内部PCC的解码器相串行链接。
此外,灵活的、可编程的编码器/解码器系统可以被VSAT和中心站设备所使用,以便实现若干种选择:
(1)如上所述的并行链接编码;
(2)如上所述的一个外码与一个内部并行链接码(PCC)的串行链接;
(3)包括一个外部编码器和一个PCC编码器的仅一个分量编码器的串行链接编码;
(4)常规的卷积码或单独的块码(即,不进行串行或并行链接)。
图3显示一种实现这些四种编码选择的灵活的可编程编码器的方框图。如图所示,该灵活的可编程编码器包括:用于并行链接编码的编码器100,用于一个外码的编码器102,和5个开关S1-S5。用于并行链接编码的编码器100包括:N个编码器,N-1个交错器,和一个码字成形器106。如下所示的表I综合了对于各种不同的编码器操作模式的各个开关位置。
                    表I
      开      关        位       置
模式 S1 S2 S3 S4 S5
(1)PCCC 0 0 闭合 0 0
(2)与内部PCC串行链接 1 1 闭合 0 0
(3)标准串行链接 1 1 打开 1 1
(4)单一码 0 0 打开 1 1
图4是实施对上述提供的四种编码器模式的解码的灵活可编程的解码器的方框图。这个可编程复合解码器包括用于并行链接码的解码器110;用于实施一种判决规则的阈值判决装置112;用于外码的解码器114;和6个开关S1-S6。假设,解码器110的输出是被解码的比特值等于0的概率,则一个示例性的判决规则是:如果该输出大于1/2,则判决为被解码的比特是0;如果小于1/2则指定该值为1;如果等于1/2,则任意地分配一个值。
用于并行链接码的解码器110还包括一个复合码字到分量码字变换器116;N个分量解码器;N-1交错器和两个相同的去交错器118。每个去交错器具有一种将已经由串联连接的N-1个交错器所交换的数据单元序列返回到它们的原始次序的重新排序功能。如下所示的表II综合了对于各种不同解码器操作模式的各个开关位置。(在表中,X表示“无须注意”条件,即,该开关可以在任何位置。)
                     表II
     开        关        位        置
模式 S1 S2 S3 S4 S5 S6
(1)PCCC 0 0 闭合 0 0 X
(2)与内部PCC相串联链接 0 0 闭合 0 0 0为硬判决解码;1为软判决解码
(3)标准的串联链接 1 1 打开 1 1 0为硬判决解码;1为软判决解码
(4)单一码 1 1 打开 1 1 X
取决于通信的应用和要求的传输速率,VSAT在不同组合下(例如,模式1、2、3和4)利用不同的编码(例如PCCC、尾比特PCCC、递归的系统的卷积码,非递归的系统的卷积码、块编码)。
当卷积码被利用在上述的任何一种模式时,图3的可编程编码器还可以包括经由一种已知码型的穿孔(puncturing)以增加所产生的码的速率,图4的可编程解码器也可以包括相关的穿孔功能。当被穿孔的卷积码被用作在并行链接编码中的分量码时,图3的码字成形器按照该期望的穿孔码型从各分量码字中删除各码比特。在这种情况下,PCC解码器的复合码字到分量码字变换器对于在输出到分量解码器的该分量码字中的被穿孔的各比特插入中性值。应当注意,在模式3或模式4中,编码器的开关S4和S5和解码器的开关S1和S2都被设置在0位置。因此,图3和图4分别以虚线形式显示当穿孔的卷积码被利用在模式3或模式4时,分别用于实现这些穿孔和去穿孔功能的穿孔单元140和去穿孔单元142。
在本发明的优选实施例中,卷积码被用作在内部并行链接码中的分量码,且块码(即,Reed-Solomon码或BCH码)被用作以串联链接的外码。
在一个扩频信号被VSAT进行发送的优选实施例中,诸如ALOHA之类的随机信道接入协议与码分多址结合使用。中心站接收机使用若干个用于每个扩频码的解调器,以便接收利用同一个扩频序列的各个延时的形式的时间重叠信号。用于一个给定的扩频序列的每个解调器藉利用该扩频序列的不同时移来解调信号。
另外在一个优选实施例中,一个或多个扩频序列在被加以分配的基础上在规定的时间周期被保留给VSAT利用,以便提供具有较高通过量的高质量信道。来自VSAT的保留要求和分配由连接到中心站终端的网络控制器进行处理。
在利用上述扩频信号以及可编程编码器和解码器的一个优选实施例中,系统使一个给定的扩频序列与一个特定的纠错码相关联,允许不同信号同时利用不同的纠错码。因为,每个被检测的信号的扩频序列由一个对应的解码器识别,接收机可以为每个被检测的信号适当地配置可编程解码器。这种网络工作模式对于在不需要附加的控制信令的情况下同时支持若干具有不同纠错码要求的应用是有用的。
对于作为图4中的分量解码器有用的一种环形MAP解码器被描述在共同受让的未决的美国专利申请NO.08/636742中。环形MAP解码器可以把编码数据块的估算和可靠性信息传送到一个数据信宿(sink),例如用于传输差错隐藏的话音合成处理器或对于重复请求判决的用于作为块差错概率测量的分组数据的协议处理器。正如在1996年4月19日提交的、发明人为Stephen M.Hladik和John B.Anderson的共同受让的、未决的美国专利申请NO.08/636732中所描述的那样,此处引用其以供参考,环形MAP解码器对于解码尾比特卷积码是有益的,特别是,当它们被用作在并行链接编码方案中的分量码时。
用于按照美国专利申请NO.08/636,742使用尾比特的纠错格子码的环形MAP解码器产生软判决输出。该环形MAP解码器提供了对于在格子的第一级中的状态概率的估算,该概率代替了在常规的MAP解码器中预先知道起始状态。环形MAP解码器以两种方法中的任一种方法给出了起始状态概率分布。第一种方法涉及本征值问题的解决办法,对于此问题,所产生的本征矢量是预期的起始状态概率分布;在知道了起始状态后,环形MAP解码器按照常规的MAP解码算法完成其余部分的解码。第二种方法是基于一种递推,对于此递推,迭代可收敛到起始状态分布。在足够的迭代后,在状态的环形序列的一个状态是以高概率已知的,并且环形MAP解码器按照常规MAP解码算法完成解码的其余部分,该算法描述在IEEE Transaction on Information Theory,1974年3月号第284-287页,作者为Bahl,Cocke,Jelinek和Raviv的文章“Optimal Decoding of Linear Codes for Minimizing Symbol ErrorRate”(“为使符号错误率最小化的线性码的最佳译码”)中。
常规的MAP解码算法的目的是找到各条件概率:
P{在时间t的状态为m/接收信道输出为y1,…yL};
在这个表示式中术语L表示以编码器符号数为单位的数据块的长度((n,k)码的编码器对K-比特输入符号进行操作,以产生n-比特输出符号。)术语yt是在时间t的信道输出(符号)。
MAP解码算法实际上首先找出概率: λ t ( m ) = P { S t = m ; Y I L } ; - - - ( 1 )
也就是事件“时间t时的编码器状态St是m和信道输出组yI L={y1,…yL}被接收到”的联合概率。这些是期望的由常数相乘的各个概率(接收信道输出组{yI,…yL}的概率P{yI L}。
现在定义矩阵Гt的元素为:
Гt(i,j)=P{在时间t的状态为j;yt/在时间t-1的状态为i}
矩阵Гt被作为以下三个概率的函数进行计算;即信道转变概率R(Yt,X);编码器在时间t从状态m转变到m′的概率Pt(m/m′);以及在先前编码器状态为m′与现在编码器状态为m的条件下编码器输出符号为x的概率qt(X/m′,m)。具体地,Гt的每个元素由如下地对所有可能的编码器的输出X求和进行计算的: γ t ( m ′ , m ) = Σ X p t ( m / m ′ ) q t ( X / m ′ , m ) R ( Y t , X ) - - - ( 2 )
MAP编码器计算这些矩阵的L。它们是根据接收的信道输出符号和对于一个给定代码的格子支路的性质而构成的。
接着,定义行矢量αt的M个联合概率元素为:
αt(j)=P{在时间r的状态为j;y1,…yt}     (3)
定义列矢量βt的M个条件概率元素为:
βt(j)=P{yt+1,…yL/在时间t的状态为j}    (4)
其中j=0,1,…(M-1)及M是编码器的状态数。(注意,这里矩阵和矢量是利用黑体字表示的)。
MAP解码算法的步骤如下:
(I)利用前向递推计算α1,…αL
αt=αt-lГt,t=l,…,L.       (5)
(II)利用向后递推计算β1,…βL-1
βt=Гt+lβt+l,t=L-l,…,l.    (6)
(III)利用下式计算λt的元素:
λt(i)=αt(i)βt(i),所有i,t=I,…,L(7)
(IV)按照需要找出相关的量。例如,令αt j是状态St={St 1,St 2,…St km}的集合,以使得St的第j个单元St j等于0。对于常规的非递归的格子码来说,St j=dt j在时间t的第j个数据。
因此,该解码器的软判决输出是: P { d j t = 0 / Y I L } = 1 P { Y I L } Σ S t ϵ A t j λ t ( m )
其中 P { Y I L } = Σ m λ L ( m )
m是对应于状态St的指数。
利用把 P { d t j = 0 / Y I L } 加到下列判决规则上得到解码器的硬判决或解码后的比特输出: P { d t j = 0 / Y I L } < d ^ t j = 1 > d ^ t j = 0 1 2 ;
也就是说,如果 P { d t j = 0 / Y I L } > 1 2 , d ^ t j = 0 ; P { d t j = 0 / Y I L } < 1 2 , d ^ t j = 1 ;
否则任意分配dt j值为0或1。
作为上述步骤(IV)的相关量的另外的例子,概率矩阵σt包括按照下列定义的各个元素: &sigma; t ( i , j ) = P { S t - 1 = i ; S t = j ; Y I L } = &alpha; t - 1 ( i ) &gamma; t ( i , j ) &beta; t ( j )
当希望确定编码器输出的各个比特的后验概率时,这些概率是有用的。这些概率在递归的卷积码的解码中也是有用的。
在MAP解码算法的标准应用中,前向递推通过矢量α0=(1,0,…,0)进行初始化而后向递推通过βL=(1,0,…,0)T进行初始化。这些初始条件是根据编码器的初始状态S0=0和其结束状态SL=0的假定。
环形MAP解码器的一个实施例藉如下地求解本征问题来确定初始状态的概率分布。令αt,βt,Гt和λt是像前面一样,但初始的α0和βL取为:
把βL设为列矢量(111…1)T
令α0是一个未知(矢量)变量,
然后,
(I)按照公式(2)对于t=1,2,…L,计算Гt
(II)找出矩阵积Г1Г2…ГL的最大本征值。对相应的本征矢量进行归一化,使得其各个分量和为1。这个矢量是对于α0的解。本征值是P{Y1 L}。
(III)利用在公式(5)中所述的前向递推形成连续的αt
(IV)从βL开始,如上所述地初始化,利用在公式(6)中所述的后向递推形成βt
(V)按照公式(7)形成λt以及其它预期的变量,例如,软判决输出P{dt j=0/y1 L}或上面描述的概率矩阵σt
未知变量α0满足矩阵方程 &alpha; 0 = &alpha; 0 &Gamma; 1 &Gamma; 2 . . . &Gamma; L P { Y 1 L } .
根据这个公式表达了各概率之间的关系的这样一个事实,在右边的矩阵Гt的积具有等于P{Y1 L}的最大本征值,相应的本征矢量必定是一个概率矢量。
利用初始的βL=(111…1)T,公式(6)给出βL-1。因此,重复应用这个后向递推,给出所有的βt。一旦α0是已知的和βL被设置,则在环形MAP解码器中的所有计算遵循常规的MAP解码算法进行。
环形MAP解码器的另一个实施例利用递推方法确定状态概率分布。具体地,在一个实施例(动态收敛方法)中,递推继续进行直至检测到解码器收敛为止。在这种递推(或动态收敛)方法中,上面描述的本征矢量方法的步骤(II)和(III)可以如下地被替换:
(IIa)从等于(1/M,…,1/M)的初始的α0开始(其中M是在该格子中的状态数),计算L次的前向递推。归一化其结果,使得每个新的αt的各单元和为1。保留所有Lαt矢量。
(IIb)令α0等于来自以前步骤中的αL和在t=1开始,再次计算第一Lwminαt概率矢量。
也就是说,对于m=0,1…m-1和t=-1,2,…,Lwmin计算 &alpha; t ( m ) = &Sigma; i = 0 M - 1 &alpha; t - 1 ( i ) γt(i,m),其中Lwmin是各格子级的适合的最小的数。如前面那样地进行归一化。仅保留利用在步骤(IIa)和(IIb)中的递推找到的Lα的最新的一组和保留以前在步骤(IIa)所找到的αLwmin
(IIc)对从步骤(IIb)找到的αLwmin与以前从步骤(IIa)找到的一组进行比较。如果新的和老的αLwmin的M个相应的元素在允许公差范围之内,则前进到上述的步骤(IV)。否则,继续到步骤(IId)。
(IId)令t=t+1并计算αt=αt-1Гt。如前面那样地归一化。仅保留计算的各Lα的最新的一组和以前在步骤(IIa)中找到的αt
(IIe)比较新的αt与以前找到的一组。如果M个新的和老的各个αt在允许公差范围内,则前进到步骤(IV)。否则,如果两个最新的矢量不在允许的范围内和如果递推的次数没有超过一个规定的最大值(通常2L),继续在步骤(IId);否则前进到步骤(IV)。
然后,该方法持续进行上面对于固有矢量方法所规定的步骤(IV)和(V),产生软判决输出和环形MAP解码器的解码的输出比特。
在美国专利申请NO.08/636742中所描述的环形MAP解码器的另外一个替换实施例中,递推方法被改进,使得解码器仅需要处理在一秒时间内、即在预定的卷绕深度(wrap depth)内的预定的固定数量的格子级。这对于实现其目的是有利的,因为解码所需要的计算的次数对于每个被编码的消息块是相同的。从而,降低了硬件和软件的复杂性。
对于尾比特卷积编码的MAP解码,估算所需要的卷绕深度的一种方法是从硬件和软件实验来确定它,这需要实现一个带有可变的卷绕深度的环形MAP解码器,并要求进行实验以便测量解码的误码率对用于连续增加的卷绕深度的Eb/Eo的变化关系。当进一步增加卷绕深度而不增加差错概率时,就找到提供对于一个规定Eb/Eo下的解码的误码的最小概率的最小解码器卷绕深度。
如果大于在一个规定的Eb/Eo下的可实现的最小值的解码的误码率是可允许的,则可能减少由环形MAP解码器处理的所需要的格子级的数量。特别是,当得到所需要的误码的平均概率时,上述所描述的卷绕深度的搜索完全可以结束。
对于一种给定码确定其卷绕深度的另外一种方法是利用该码的距离特性。为此目的,定义两个不同的解码器判决深度是必要的。正如在这里使用的,术语“正确路径”是指通过由编码数据比特块造成的格子的状态序列或路径。术语“一个节点的不正确子集”是指一个正确路径节点以外的所有不正确(格子)分支和它们的子系产物的集合。下面规定的两种判决深度取决于卷积编码器。
各判决深度是如下地规定的:
(I)规定对于e-纠错的前向判决深度,LF(e)是在格子中的第一深度,在这种情况下,一个正确路径的初始节点的不正确子集中的所有路径,无论后者是否归并到正确路径,都处于离开正确路径大于一个汉明距离2e。LF(e)的重要性在于,如果在初始节点以前存在e个或更少的差错,且已知编码从那里开始,则解码器必定正确地解码。对于卷积码的前向判决深度的正式造表是由J.B.Anderson和K.Balachandran在IEEE Transactions on Information Theory.vol.lT-35,pp.455-59,March 1989,上的题目为“Decision Depth ofConvolutional Codes”(“卷积码判决深度”)的文章提供的。LF(e)的许多特性公开在这个参考文献上并且还公开在由J.B.Anderson和S.Mohan所著的书:“Source and Channel Coding-An algorithmicApproach”(“源和信道编码-一种算法方法)(Kluwer AcademicPublishers,Norwell,MA,1991.)上。这些特性的主要内容在于,在LF和e之间存在一种简单的线性关系,例如,对于速率1/2码,LF大约是9.08e。
(II)下一步规定:对于e纠错的未归并的判决深度,LF(e),是在一些格子中的第一深度,在该深度上,在格子中从来不接触到正确路径的所有路径处于离正确路径大于一个汉明距离2e。
用于软判决环形MAP解码的LF(e)的重要性在于,在解码器处理LF(e)格子级后对实际发送路径上的一个状态的识别概率是高的。因此,对于环形MAP解码的最小卷绕深度是LF(e)。对深度LF(e)的计算表明,它总是大于LF(e),但是服从同样的近似规律。这意味着,如果一个码的未归并的判决深度是未知的,那么最小卷绕深度是可以被作为前向判决深度LF(e)估算出来。
通过找到对于一个已知编码器的最小未归并的判决深度,我们找到必须由产生软判决输出的实际环形解码器进行处理的格子级的最小数目。找出LF(e)即前向判决深度的算法是由在上面授引的J.B.Anderson和K.Balachandran的“Decision Depth of Convolutional Codes”给出的。
为了找出LF(e):
(I)从左向右扩展码格子,从所有格子节点同时开始,除了零状态以外。
(II)在每个级别上删除任何归并到正确(全0的)路径的路径;不扩展除了正确(0的)状态节点之外的任何路径。
(III)在级别K上,找到在终结在这个级别上的结点的路径中间的最小汉明距离,或权因子。
(IV)如果这个最小距离超过2e,则停止。于是LU(e)=k。
正如美国专利申请NO.08/636742所描述的那样,经过计算机模拟的实验导致两个不希望的结果:(1)βt的卷绕处理改善了解码器的性能;和(2)LU(e)+LF(e)=2LF(e)的卷绕深度的使用明显地改善了性能。因此,根据递推的环形MAP解码器算法的一个优选实施例包括以下步骤:
(I)按照公式(2)计算对于t=1,2,…,L的Гt
(II)从初始α0等于(1/M,…,1/M)开始(其中M是在格子中的状态的数目),计算对于u=1,2,…(L+Lw)时公式(5)的前向递推(L+Lw)次,其中Lw是该解码器的卷绕深度。格子-级别指数t取值为(u-1)模L)+1。当解码器围绕着从信道接收的符号序列卷绕时,αL被当作α0进行处理。归一化该结果,以使得每个新的αt的各个元素的和为1。保持经由这种递推找到的L个最新的α矢量。
(III)从等于(1,…,1)T的初始βL开始,计算对于u=1,2,…,(L+Lw)公式(6)的后向递推(L+Lw)次。格子-级别指数t取值为L-(u模L)。当解码器围绕接收的序列卷绕时,β1被用作为βL+1和当计算新的βL时,Г1被用作为ГL+1。归一化该结果,以使得每个新的βt的各元素之和为1。再次保持经由这种递推找到的L个最新的β矢量。
这种递推方法的下一步是与上述的关于本征矢量方法的步骤(V)相同的,产生软判决和由环形MAP解码器的解码的比特输出。
虽然本发明的优选实施例在这里已经被表示和描述了,但显而易见,这样的实施例仅是以举例的方式提供的。在不脱离本发明的情况下对于本专业的技术人员来说将可能作出多种变化、改变、和替换。因此,希望本发明仅由所附加的权利要求书的精神和范围来进行限定。

Claims (12)

1.一种用于经由卫星进行通信的极小口径终端通信系统,包括:
多个极小口径终端,每个终端包括:
一个由多个并行链接的分量编码器组成的并行链接编码器,该并行链接编码器把并行链接码加到从源接收的数据比特块上,从而产生各个分量码字,该并行链接编码器包括码字成形器,用于对分量码字的比特格式化以提供复合码字;
一个数据组成形器,用于组合各个数据组以便发送,每个数据组包括来自至少一个复合码字的各比特;
一个调制器,用于接收各个数据组,从而提供已调信号;
一个上变频器,用于把已调信号变换到载频;
一个接口,用于将每个相应的极小口径终端连接到天线,以便发送已调信号到卫星和从卫星接收已调信号;
一个下变频器,用于把每个接收信号从载频变换到中频;
一个解调器,用于同步和解调接收的信号;
一个分组数据-码字成形器,用于从解调的信号形成接收的复合码字;和
一个包括多个分量解码器的复合解码器,用于解码接收的复合码字。
2.权利要求1的极小口径终端通信系统,其特征在于,其中组成所述并行链接编码器的所述多个分量编码器把卷积码应用到数据比特块中。
3.权利要求2的极小口径终端通信系统,其特征在于,其中并行链接卷积码包括递归的系统码。
4.权利要求2的极小口径终端通信系统,其特征在于,其中并行链接卷积码包括尾比特非递归的系统码。
5.权利要求4的极小口径终端通信系统,其特征在于,其中分量解码器包括环形最大后验概率解码器。
6.权利要求1的极小口径终端通信系统,其特征在于,其中调制器包括扩频调制器,和解调器包括去扩频解调器。
7.权利要求1的极小口径终端通信系统,其特征在于,其中:
并行链接码包括与一个外码以串行链接方式连接的内部并行链接码;和
解码器包括与内部并行链接码相关的内部解码器,而且还包括与外部串行链接码相关的外部解码器。
8.权利要求1的极小口径终端通信系统,其特征在于,其中编码器和解码器由一个可编程的编码器/解码器组组成,该可编程的编码器/解码器组包括了多个能通过开关选择的可选编码方式。
9.权利要求8的极小口径终端通信系统,其特征在于,所述可选编码方式包括以下4种可选编码/解码方式:
(1)并行链接编码;
(2)与内部并行链接码相串行链接的外码;
(3)包括了一个外部编码器和一个内部单分量编码器的串行链接编码;
(4)仅利用一个分量编码器的单一码。
10.权利要求8的极小口径终端通信系统,其特征在于,还包括至少一个中心站终端;
每个极小口径终端终端的调制器包括:用于把多个扩频序列之一加到要被发送的每个数据分组的扩频调制器,该扩频序列被分为各个组,每组包括至少一个扩频序列,每组扩频序列是与各编码可选择方案之一相联系的;
中心站终端包括至少一个用于每个扩频序列的去扩频解调器和多个解码器,所述中心站终端解调和解码从卫星接收的信号,这些信号是在时间重叠的期间内被发送的并且这些信号中的每一个利用一个编码可选择方案和与其有关的扩频序列,对于每个接收的信号,各解码器根据由去扩频解调器识别的扩频序列来进行配置。
11.权利要求1的极小口径终端通信系统,其特征在于,还包括用于提供星形连接的至少一个中心站终端。
12.权利要求1的极小口径终端通信系统,其特征在于,其中并行链接编码器还包括用于按照预定穿孔模式从各分量码字中删除码比特的穿孔功能,且复合解码器包括用于在各分量码字中插入对于被穿孔比特的值的去穿孔功能。
CN97114592A 1996-07-17 1997-07-17 利用并行链接编码的卫星通信系统 Expired - Fee Related CN1113486C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US684276 1996-07-17
US684,276 1996-07-17
US08/684,276 US5734962A (en) 1996-07-17 1996-07-17 Satellite communications system utilizing parallel concatenated coding

Publications (2)

Publication Number Publication Date
CN1173085A CN1173085A (zh) 1998-02-11
CN1113486C true CN1113486C (zh) 2003-07-02

Family

ID=24747407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97114592A Expired - Fee Related CN1113486C (zh) 1996-07-17 1997-07-17 利用并行链接编码的卫星通信系统

Country Status (21)

Country Link
US (1) US5734962A (zh)
EP (1) EP0820159B1 (zh)
JP (1) JP3833783B2 (zh)
KR (1) KR100496232B1 (zh)
CN (1) CN1113486C (zh)
AR (1) AR008403A1 (zh)
AU (1) AU718266B2 (zh)
BR (1) BR9704012A (zh)
CA (1) CA2208413C (zh)
CZ (1) CZ290425B6 (zh)
DE (1) DE69735979T2 (zh)
ES (1) ES2264153T3 (zh)
HU (1) HUP9701215A3 (zh)
ID (1) ID17541A (zh)
IL (1) IL121232A (zh)
MX (1) MX9705401A (zh)
NO (1) NO320121B1 (zh)
PL (1) PL184615B1 (zh)
RU (1) RU2191471C2 (zh)
UA (1) UA44752C2 (zh)
ZA (1) ZA975952B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471763B2 (en) 2007-06-26 2013-06-25 Nxp B.V. Processing of satellite navigation system signals and related receive-signal verification

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023783A (en) * 1996-05-15 2000-02-08 California Institute Of Technology Hybrid concatenated codes and iterative decoding
US6189123B1 (en) * 1997-03-26 2001-02-13 Telefonaktiebolaget Lm Ericsson Method and apparatus for communicating a block of digital information between a sending and a receiving station
US5983384A (en) * 1997-04-21 1999-11-09 General Electric Company Turbo-coding with staged data transmission and processing
KR100560712B1 (ko) * 1997-06-19 2006-03-16 가부시끼가이샤 도시바 정보데이터 다중화 전송시스템과 그 다중화장치 및 분리장치와,에러정정 부호화장치 및 복호장치
KR19990003242A (ko) 1997-06-25 1999-01-15 윤종용 구조적 펀처드 길쌈부호 부호와 및 복호기
KR100387078B1 (ko) * 1997-07-30 2003-10-22 삼성전자주식회사 대역확산통신시스템의심볼천공및복구장치및방법
US6192503B1 (en) * 1997-08-14 2001-02-20 Ericsson Inc. Communications system and methods employing selective recursive decording
WO1999012265A1 (fr) * 1997-09-02 1999-03-11 Sony Corporation Codeur/decodeur turbo et procede de codage/decodage turbo
US6031874A (en) * 1997-09-26 2000-02-29 Ericsson Inc. Unequal error protection in coded modulation schemes
US6157642A (en) * 1997-10-14 2000-12-05 Teledesic Llc Coding system and method for low-earth orbit satellite data communication
US6000054A (en) * 1997-11-03 1999-12-07 Motorola, Inc. Method and apparatus for encoding and decoding binary information using restricted coded modulation and parallel concatenated convolution codes
EP1042870B1 (en) * 1997-12-24 2002-04-24 Inmarsat Ltd. Coding method and apparatus
US6263466B1 (en) 1998-03-05 2001-07-17 Teledesic Llc System and method of separately coding the header and payload of a data packet for use in satellite data communication
CA2474859C (en) * 1998-04-06 2007-06-19 Nortel Networks Limited Encoding and decoding methods and apparatus
FR2778040B1 (fr) * 1998-04-28 2000-05-26 Alsthom Cge Alcatel Procede et dispositif de codage correcteur d'erreur pour des transmissions de donnees numeriques a debit eleve, et procede et dispositif de decodage correspondant
US6324159B1 (en) * 1998-05-06 2001-11-27 Sirius Communications N.V. Method and apparatus for code division multiple access communication with increased capacity through self-noise reduction
DE69936683T2 (de) * 1998-06-01 2008-04-30 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry, Ottawa Verschachtelung unter Verwendung von Inkrementen basierend auf dem Goldenen Schnitt
AU4981499A (en) * 1998-07-09 2000-02-01 Act Wireless Satellite network terminal
WO2000007323A1 (en) * 1998-07-30 2000-02-10 Vocal Technologies, Ltd. Forward error correcting system with encoders configured in parallel and/or series
US6043788A (en) * 1998-07-31 2000-03-28 Seavey; John M. Low earth orbit earth station antenna
JP2000068862A (ja) 1998-08-19 2000-03-03 Fujitsu Ltd 誤り訂正符号化装置
JP2000068863A (ja) 1998-08-19 2000-03-03 Fujitsu Ltd 符号化装置及びその方法
US6128765A (en) * 1998-08-20 2000-10-03 General Electric Company Maximum A posterior estimator with fast sigma calculator
US6192501B1 (en) 1998-08-20 2001-02-20 General Electric Company High data rate maximum a posteriori decoder for segmented trellis code words
US6223319B1 (en) 1998-08-20 2001-04-24 General Electric Company Turbo code decoder with controlled probability estimate feedback
US6263467B1 (en) 1998-08-20 2001-07-17 General Electric Company Turbo code decoder with modified systematic symbol transition probabilities
KR100377939B1 (ko) * 1998-09-01 2003-06-12 삼성전자주식회사 이동통신시스템에서서브프레임전송을위한프레임구성장치및방법
US6279132B1 (en) * 1998-09-28 2001-08-21 Trw Inc. Concatenated error control method and system for a processing satellite uplink
US6292918B1 (en) * 1998-11-05 2001-09-18 Qualcomm Incorporated Efficient iterative decoding
BR9915633A (pt) 1998-11-24 2001-11-13 Niksun Inc Aparelho e método para coleta e análise de dadosde comunicações
US6247158B1 (en) * 1998-11-30 2001-06-12 Itt Manufacturing Enterprises, Inc. Digital broadcasting system and method
US6175940B1 (en) * 1998-12-03 2001-01-16 Trw Inc. In-flight programmable spacecraft error correction encoder
US6233709B1 (en) 1998-12-07 2001-05-15 Nokia Mobile Phones Ltd. Dynamic iterative decoding for balancing quality of service parameters
US6374382B1 (en) * 1998-12-15 2002-04-16 Hughes Electronics Corporation Short block code for concatenated coding system
US6584102B1 (en) * 1998-12-21 2003-06-24 At&T Corp. Communication network apparatus and method
DE69943198D1 (de) * 1998-12-30 2011-03-31 Canon Kk Kodierungsvorrichtung und Verfahren, Dekodierungsvorrichtung und Verfahren und dazugehörige Systeme
US6484283B2 (en) * 1998-12-30 2002-11-19 International Business Machines Corporation Method and apparatus for encoding and decoding a turbo code in an integrated modem system
KR100321978B1 (ko) 1998-12-31 2002-07-02 윤종용 통신시스템에서반복복호장치및방법
KR100315708B1 (ko) * 1998-12-31 2002-02-28 윤종용 이동통신시스템에서터보인코더의펑처링장치및방법
EP2096866A3 (en) * 1999-01-12 2009-09-30 Sony Corporation Signal processing apparatus and signal processing method
US6947500B1 (en) * 1999-01-29 2005-09-20 Northrop Grumman Corporation Buffering and sequencing of soft decisions of multiple channels into a single shared biorthogonal decoder
FR2789824B1 (fr) * 1999-02-12 2001-05-11 Canon Kk Procede de correction d'erreurs residuelles a la sortie d'un turbo-decodeur
US6304996B1 (en) * 1999-03-08 2001-10-16 General Electric Company High-speed turbo decoder
US20020196843A1 (en) * 1999-03-23 2002-12-26 Itzik Ben-Bassat Satellite communication card
FR2792476B1 (fr) * 1999-04-13 2001-06-08 Canon Kk Procede de type arq pour procede de transmission utilisant des turbo-codes, et dispositif associe
US6594792B1 (en) 1999-04-30 2003-07-15 General Electric Company Modular turbo decoder for expanded code word length
US6715120B1 (en) 1999-04-30 2004-03-30 General Electric Company Turbo decoder with modified input for increased code word length and data rate
WO2000069086A1 (en) * 1999-05-10 2000-11-16 Sirius Communications N.V. Method and apparatus for high-speed software reconfigurable code division multiple access communication
US7372888B1 (en) 1999-05-10 2008-05-13 Agilent Technologies Inc. Method and apparatus for software reconfigurable communication transmission/reception and navigation signal reception
DE19924211A1 (de) * 1999-05-27 2000-12-21 Siemens Ag Verfahren und Vorrichtung zur flexiblen Kanalkodierung
US7327779B1 (en) 1999-07-23 2008-02-05 Agilent Technologies, Inc. Method and apparatus for high-speed software reconfigurable code division multiple access communication
DE19946721A1 (de) 1999-09-29 2001-05-03 Siemens Ag Verfahren und Vorrichtung zur Kanalkodierung in einem Nachrichtenübertragungssystem
US6466569B1 (en) * 1999-09-29 2002-10-15 Trw Inc. Uplink transmission and reception techniques for a processing satelliteation satellite
EP1098451A3 (en) * 1999-11-02 2003-02-19 Sirius Communications N.V. Non-synchronous access scheme using CDMA and turbo coding
US6400290B1 (en) 1999-11-29 2002-06-04 Altera Corporation Normalization implementation for a logmap decoder
EP1254544B1 (en) * 1999-12-03 2015-04-29 Broadcom Corporation Embedded training sequences for carrier acquisition and tracking
WO2001043384A2 (en) * 1999-12-03 2001-06-14 Broadcom Corporation Viterbi slicer for turbo codes
JP3587110B2 (ja) * 1999-12-07 2004-11-10 日本電気株式会社 Vsat局
US20020080885A1 (en) * 1999-12-08 2002-06-27 Digital Cinema Systems Corporation Combined turbo coding and trellis coded modulation
FR2804260B1 (fr) * 2000-01-21 2002-10-18 Mitsubishi Electric Inf Tech Procede de transmission numerique de type a codage correcteur d'erreurs
US6810502B2 (en) 2000-01-28 2004-10-26 Conexant Systems, Inc. Iteractive decoder employing multiple external code error checks to lower the error floor
US6606724B1 (en) * 2000-01-28 2003-08-12 Conexant Systems, Inc. Method and apparatus for decoding of a serially concatenated block and convolutional code
US6516437B1 (en) 2000-03-07 2003-02-04 General Electric Company Turbo decoder control for use with a programmable interleaver, variable block length, and multiple code rates
GB2360858B (en) * 2000-03-20 2004-08-18 Motorola Inc High-speed maximum a posteriori (MAP) architecture with optimized memory size and power consumption
US6606725B1 (en) 2000-04-25 2003-08-12 Mitsubishi Electric Research Laboratories, Inc. MAP decoding for turbo codes by parallel matrix processing
US8275875B2 (en) 2000-05-12 2012-09-25 Niksun, Inc. Security camera for a network
US6542559B1 (en) 2000-05-15 2003-04-01 Qualcomm, Incorporated Decoding method and apparatus
US6738942B1 (en) * 2000-06-02 2004-05-18 Vitesse Semiconductor Corporation Product code based forward error correction system
EP1364479B1 (en) * 2000-09-01 2010-04-28 Broadcom Corporation Satellite receiver and corresponding method
WO2002021702A1 (en) * 2000-09-05 2002-03-14 Broadcom Corporation Quasi error free (qef) communication using turbo codes
US7242726B2 (en) * 2000-09-12 2007-07-10 Broadcom Corporation Parallel concatenated code with soft-in soft-out interactive turbo decoder
US20020058477A1 (en) * 2000-09-28 2002-05-16 Chapelle Michael De La Return link design for PSD limited mobile satellite communication systems
US7054593B2 (en) * 2000-09-28 2006-05-30 The Boeing Company Return link design for PSD limited mobile satellite communication systems
US6604220B1 (en) * 2000-09-28 2003-08-05 Western Digital Technologies, Inc. Disk drive comprising a multiple-input sequence detector selectively biased by bits of a decoded ECC codedword
US6518892B2 (en) 2000-11-06 2003-02-11 Broadcom Corporation Stopping criteria for iterative decoding
US7072971B2 (en) 2000-11-13 2006-07-04 Digital Foundation, Inc. Scheduling of multiple files for serving on a server
WO2002054601A1 (en) 2000-12-29 2002-07-11 Morphics Technology, Inc. Channel codec processor configurable for multiple wireless communications standards
US6990624B2 (en) * 2001-10-12 2006-01-24 Agere Systems Inc. High speed syndrome-based FEC encoder and decoder and system using same
JP2003203435A (ja) * 2002-01-09 2003-07-18 Fujitsu Ltd データ再生装置
JP3735579B2 (ja) * 2002-02-26 2006-01-18 株式会社東芝 ディスク記憶装置及びデータ記録再生方法
US7177658B2 (en) 2002-05-06 2007-02-13 Qualcomm, Incorporated Multi-media broadcast and multicast service (MBMS) in a wireless communications system
JP3898574B2 (ja) * 2002-06-05 2007-03-28 富士通株式会社 ターボ復号方法及びターボ復号装置
US7020109B2 (en) * 2002-08-21 2006-03-28 Qualcomm Incorporated Method and system for communicating content on a broadcast services communication system
US7016327B2 (en) * 2002-08-21 2006-03-21 Qualcomm Incorporated Method and system for communicating content on a broadcast services communication system
US7346833B2 (en) * 2002-11-05 2008-03-18 Analog Devices, Inc. Reduced complexity turbo decoding scheme
MXPA05008651A (es) * 2003-05-01 2005-10-18 Mobile Satellite Ventures Lp Control de potencia radiada agregada para sistemas y metodos de comunicaciones de radiotelefono por satelite de bandas multiples/modos multiples.
US7318187B2 (en) * 2003-08-21 2008-01-08 Qualcomm Incorporated Outer coding methods for broadcast/multicast content and related apparatus
US8694869B2 (en) 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus
US8804761B2 (en) * 2003-08-21 2014-08-12 Qualcomm Incorporated Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus
FR2880219B1 (fr) * 2004-12-23 2007-02-23 Thales Sa Procede et systeme de radiocommunication numerique, notamment pour les stations sol mobiles
US7970345B2 (en) * 2005-06-22 2011-06-28 Atc Technologies, Llc Systems and methods of waveform and/or information splitting for wireless transmission of information to one or more radioterminals over a plurality of transmission paths and/or system elements
US7499490B2 (en) * 2005-06-24 2009-03-03 California Institute Of Technology Encoders for block-circulant LDPC codes
US7343539B2 (en) * 2005-06-24 2008-03-11 The United States Of America As Represented By The United States National Aeronautics And Space Administration ARA type protograph codes
US20070011557A1 (en) * 2005-07-07 2007-01-11 Highdimension Ltd. Inter-sequence permutation turbo code system and operation methods thereof
US7856579B2 (en) 2006-04-28 2010-12-21 Industrial Technology Research Institute Network for permutation or de-permutation utilized by channel coding algorithm
US7797615B2 (en) * 2005-07-07 2010-09-14 Acer Incorporated Utilizing variable-length inputs in an inter-sequence permutation turbo code system
KR100740209B1 (ko) * 2005-10-21 2007-07-18 삼성전자주식회사 디지털 방송 수신 시스템 및 그 신호 처리 방법
US7831894B2 (en) * 2006-10-10 2010-11-09 Broadcom Corporation Address generation for contention-free memory mappings of turbo codes with ARP (almost regular permutation) interleaves
US7827473B2 (en) * 2006-10-10 2010-11-02 Broadcom Corporation Turbo decoder employing ARP (almost regular permutation) interleave and arbitrary number of decoding processors
US8117523B2 (en) * 2007-05-23 2012-02-14 California Institute Of Technology Rate-compatible protograph LDPC code families with linear minimum distance
US8719670B1 (en) * 2008-05-07 2014-05-06 Sk Hynix Memory Solutions Inc. Coding architecture for multi-level NAND flash memory with stuck cells
US8035537B2 (en) 2008-06-13 2011-10-11 Lsi Corporation Methods and apparatus for programmable decoding of a plurality of code types
KR101418466B1 (ko) * 2008-08-15 2014-07-10 엘에스아이 코포레이션 니어 코드워드들의 rom 리스트 디코딩
US8254304B2 (en) 2008-12-14 2012-08-28 Qualcomm Incorporated Channel capacity adaptive repeater
US10022468B2 (en) * 2009-02-02 2018-07-17 Kimberly-Clark Worldwide, Inc. Absorbent articles containing a multifunctional gel
JP5432367B2 (ja) 2009-04-21 2014-03-05 アギア システムズ インコーポレーテッド 書込み検証を使用した符号のエラーフロア軽減
US8924811B1 (en) * 2010-01-12 2014-12-30 Lockheed Martin Corporation Fast, efficient architectures for inner and outer decoders for serial concatenated convolutional codes
CN102195760A (zh) * 2010-03-16 2011-09-21 松下电器产业株式会社 无线通信系统、基站、终端及码本生成方法
US8464142B2 (en) 2010-04-23 2013-06-11 Lsi Corporation Error-correction decoder employing extrinsic message averaging
US8499226B2 (en) * 2010-06-29 2013-07-30 Lsi Corporation Multi-mode layered decoding
US8458555B2 (en) 2010-06-30 2013-06-04 Lsi Corporation Breaking trapping sets using targeted bit adjustment
US8504900B2 (en) 2010-07-02 2013-08-06 Lsi Corporation On-line discovery and filtering of trapping sets
US9116826B2 (en) * 2010-09-10 2015-08-25 Trellis Phase Communications, Lp Encoding and decoding using constrained interleaving
US8737925B2 (en) * 2011-03-10 2014-05-27 Comtech Ef Data Corp. Method for the control of a wireless communications link for mitigating adjacent satellite interference
EP2777196B1 (en) * 2011-11-07 2018-04-18 BlackBerry Limited System and method of encoding and transmitting codewords
US9184958B2 (en) 2011-11-07 2015-11-10 Blackberry Limited System and method of encoding and transmitting codewords
US8768990B2 (en) 2011-11-11 2014-07-01 Lsi Corporation Reconfigurable cyclic shifter arrangement
US9047203B1 (en) * 2011-12-21 2015-06-02 Altera Corporation Systems and methods for encoding and decoding data
RU2012146685A (ru) 2012-11-01 2014-05-10 ЭлЭсАй Корпорейшн База данных наборов-ловушек для декодера на основе разреженного контроля четности
CN105262558B (zh) * 2014-06-26 2019-07-09 深圳市中兴微电子技术有限公司 一种多级编码装置及其实现方法
US10320481B2 (en) * 2016-07-13 2019-06-11 Space Systems/Loral, Llc Flexible high throughput satellite system using optical gateways
EP3542469A4 (en) * 2016-11-17 2020-07-08 Satixfy Israel Ltd. METHOD AND SYSTEM FOR SATELLITE COMMUNICATION
US10944432B2 (en) * 2018-09-18 2021-03-09 Avago Technologies International Sales Pte. Limited Methods and systems for transcoder, FEC and interleaver optimization
CN109450534B (zh) * 2018-09-29 2021-05-25 吉林大学 基于图像传感器的可见光无线局域网
CN110278055B (zh) * 2019-06-03 2021-11-23 京信网络系统股份有限公司 咬尾卷积编码处理方法、装置和通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117224A (zh) * 1993-12-27 1996-02-21 现代电子产业株式会社 在甚小孔径终端中对信号进行取样的方法和装置
US5511079A (en) * 1993-05-26 1996-04-23 Hughes Aircraft Company Apparatus and method for controlling forward error correction encoding in a very small aperture terminal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032886A (en) * 1975-12-01 1977-06-28 Motorola, Inc. Concatenation technique for burst-error correction and synchronization
USRE32905F1 (en) * 1980-10-20 1992-11-10 Satellite communications system and apparatus
JPH01106639A (ja) * 1987-10-20 1989-04-24 Nec Corp 衛星通信地球局用送受装置
JP2702303B2 (ja) * 1991-03-20 1998-01-21 日本電気株式会社 データ通信方式
FR2675971B1 (fr) * 1991-04-23 1993-08-06 France Telecom Procede de codage correcteur d'erreurs a au moins deux codages convolutifs systematiques en parallele, procede de decodage iteratif, module de decodage et decodeur correspondants.
US5416804A (en) * 1991-08-21 1995-05-16 U.S. Philips Corporation Digital signal decoder using concatenated codes
KR100200801B1 (ko) * 1991-08-31 1999-06-15 윤종용 오류정정장치
US5625624A (en) * 1993-10-21 1997-04-29 Hughes Aircraft Company High data rate satellite communication system
KR960014677B1 (ko) * 1993-12-29 1996-10-19 양승택 위성통신용 저속 데이타 전용 지구국(vsat)의 링크설계방법
KR950022253A (ko) * 1993-12-29 1995-07-28 정장호 위성통신 시스템의 초소형 지구국(vsat)및 데이타 전송방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511079A (en) * 1993-05-26 1996-04-23 Hughes Aircraft Company Apparatus and method for controlling forward error correction encoding in a very small aperture terminal
CN1117224A (zh) * 1993-12-27 1996-02-21 现代电子产业株式会社 在甚小孔径终端中对信号进行取样的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471763B2 (en) 2007-06-26 2013-06-25 Nxp B.V. Processing of satellite navigation system signals and related receive-signal verification
USRE46879E1 (en) 2007-06-26 2018-05-29 Telit Automotive Solutions Nv Processing of satellite navigation system signals and related receive-signal verification

Also Published As

Publication number Publication date
NO973289D0 (no) 1997-07-16
CZ219797A3 (cs) 1998-02-18
CZ290425B6 (cs) 2002-07-17
UA44752C2 (uk) 2002-03-15
ZA975952B (en) 1998-01-30
EP0820159A2 (en) 1998-01-21
PL184615B1 (pl) 2002-11-29
KR980013022A (ko) 1998-04-30
HUP9701215A2 (hu) 1998-03-30
PL321011A1 (en) 1998-01-19
IL121232A (en) 2000-07-16
RU2191471C2 (ru) 2002-10-20
DE69735979T2 (de) 2007-01-04
CN1173085A (zh) 1998-02-11
CA2208413C (en) 2006-11-14
EP0820159B1 (en) 2006-05-31
BR9704012A (pt) 1998-11-10
MX9705401A (es) 1998-04-30
DE69735979D1 (de) 2006-07-06
CA2208413A1 (en) 1998-01-17
AU718266B2 (en) 2000-04-13
NO973289L (no) 1998-01-19
HU9701215D0 (en) 1997-08-28
NO320121B1 (no) 2005-10-31
AU2854497A (en) 1998-01-29
IL121232A0 (en) 1998-01-04
US5734962A (en) 1998-03-31
KR100496232B1 (ko) 2005-09-30
JPH10135888A (ja) 1998-05-22
AR008403A1 (es) 2000-01-19
HUP9701215A3 (en) 2002-09-30
EP0820159A3 (en) 2003-07-09
ID17541A (id) 1998-01-08
JP3833783B2 (ja) 2006-10-18
ES2264153T3 (es) 2006-12-16

Similar Documents

Publication Publication Date Title
CN1113486C (zh) 利用并行链接编码的卫星通信系统
CN1124694C (zh) 采用双重最大值度量生成处理的非相干接收机
CN1223135C (zh) 用于对具有发射机或信道引入的比特间耦合的接收信号进行解码的基带处理器、方法和系统
CN1096163C (zh) 码分多址系统中提供译码器位数据的方法及多速率译码器
CN1135765C (zh) 码分多址通信系统中的网孔查找
CN1178397C (zh) 对经卷积编码的码字解码的软判定输出解码器
CN1293706C (zh) 用于控制cdma通信系统中的发送功率的方法和设备
CN1208903C (zh) 用于码分多址移动通信系统的信道编码/解码设备和方法
CN1711712A (zh) 带有似然加权的迭代解码
CN1643859A (zh) 移动通信系统中接收分组数据控制信道的装置和方法
CN1409897A (zh) 级联卷积码译码器
CN1579049A (zh) 检测具有未知信号特征的消息的方法和装置
CN100340069C (zh) 在无线接收机中的信道估计的设备和方法
US8406354B2 (en) Interference cancellation in a multi-user receiver
CN1666447A (zh) 自适应速率匹配方法
CN1271481A (zh) 用于运用时间选通频分双工的数据发送的方法和装置
CN1336046A (zh) 自适应阵列通信系统和接收机
CN1898891A (zh) 在移动通信系统中通过具有不等出错概率的编码器发送和接收编码数据的设备和方法
CN1674482A (zh) 归一化迭代软干扰抵消信号检测方法和装置
CN1187718A (zh) 包括结合正交调幅的穿孔乘积码的数字传输系统与方法
WO2000016512A1 (en) Rate detection in radio communication systems
CN111106838B (zh) 一种通信同步方法、装置及系统
CN1531212A (zh) 解码装置、网格处理器及方法
CN1682449A (zh) 使用数据窗口来解码数据的方法
CN1943118A (zh) 解码方法及设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: THIESS AMELI KERM CO.,LTD.

Free format text: FORMER OWNER: GENERAL ELECTRIC CO.

Effective date: 20031208

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20031208

Address after: new jersey

Patentee after: The company may Likemu Scotia est

Address before: American New York

Patentee before: General Electric Company

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee