CN111292911B - 一种改进型钕铁硼磁体材料及其改进方法 - Google Patents

一种改进型钕铁硼磁体材料及其改进方法 Download PDF

Info

Publication number
CN111292911B
CN111292911B CN202010033859.8A CN202010033859A CN111292911B CN 111292911 B CN111292911 B CN 111292911B CN 202010033859 A CN202010033859 A CN 202010033859A CN 111292911 B CN111292911 B CN 111292911B
Authority
CN
China
Prior art keywords
powder
iron boron
neodymium iron
magnetic
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010033859.8A
Other languages
English (en)
Other versions
CN111292911A (zh
Inventor
姚青荣
饶光辉
王江
黄伟超
韦奇
邓健秋
周怀营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202010033859.8A priority Critical patent/CN111292911B/zh
Publication of CN111292911A publication Critical patent/CN111292911A/zh
Application granted granted Critical
Publication of CN111292911B publication Critical patent/CN111292911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种改进钕铁硼磁体材料性能的改进方法,以Nd2Fe14B相为主的磁体材料,经过取向成型工艺的参数的改进以降低磁体材料的收缩比,最终制备得到所述改进钕铁硼磁体材料。本发明主要改进钕铁硼磁体材料取向成型工艺的技术参数,使烧结后的胚料收缩比降低,以达到减少钕铁硼磁体碎料的浪费,还能有效提高磁体材料的各项性能。

Description

一种改进型钕铁硼磁体材料及其改进方法
技术领域
本发明涉及材料技术领域,尤其涉及一种改进型钕铁硼磁体材料及其改进方法。
背景技术
迄今为止,钕铁硼仍然是磁能积最高的永磁材料。这类材料性能优异、成本低廉,已广泛用于微特电机、磁分离、磁传动、磁共振成像(MRI)以及粒子束技术(自由电子激光器、同步辐射光源)等领域。然而,钕铁硼永磁材料在取向成型烧结后,磁体胚料会出现收缩的现象,导致在切割成品后碎料浪费严重,大约有3%-6%的磁体废料被浪费。磁体胚料烧结后的密度与取向成型工艺的变化有关。磁体胚料烧结后的密度与气流磨料出粉的平均颗粒尺寸有关,气流磨粉末平均颗粒尺寸越小,密度越低。磁体胚料烧结后的密度与成型压力有关。压力越大,磁场取向成型胚料密度越大,但压力过大又会导致(105)晶面的衍射峰升高,磁场取向度有所降低。钕铁硼永磁体经冷等静压后,与烧结磁体相比,其胚料的空隙会变少。烧结后各向异性烧结磁体的密度会增加到7.5-7.6%。
探索确定钕铁硼永磁体在取向成型工艺环节的各参数对烧结后胚料收缩比的影响以及磁性能的影响,有利于减少钕铁硼碎料的浪费和各项性能的提升。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种改进型钕铁硼磁体材料及其改进方法。
一种改进钕铁硼磁体材料性能的改进方法,以Nd2Fe14B相为主的磁体材料,经过取向成型工艺的参数的改进以降低磁体材料的收缩比,最终制备得到所述改进钕铁硼磁体材料。
进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,包含下述步骤:
(1)以纯度≥99.50%的Nd、Fe、B为原料,按Nd2Fe14B分子式的化学计量比配料;
(2)在氩气保护下熔炼,快速冷凝甩成薄片;
(3)Nd2Fe14B甩片和表面清理后的钕铁硼废料在氢破碎工艺下进行粉碎;
(4)Nd2Fe14B粉体和钕铁硼废料粉体按一定比例混合,配出38H型号的磁体粉末;
(5)38H磁体粉末在气流磨工艺下进一步细化粉体颗粒,颗粒大小在5-10μm;
(6)取向成型工艺:
①使用不同等静压压力取向取向成型相同颗粒大小的粉体,经烧结后测出不同压力下的收缩比和磁性能;
②使用不同颗粒大小的粉体在压力P下取向成型,经烧结后测出不同颗粒大小下的收缩比和磁性能,确定最佳的粉体颗粒大小;
③不同压制密度的三方收缩比变化磁性能变化,最终确定压制密度;所述三方指:取向方向A,压力方向P,非压力和取向方向N;
(7)烧结胚料磁体材料,温度在1080℃。
进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,钕铁硼粉体取向成型在磁场强度为3T的平行磁场下、且低氧低温环境下进行;所述低氧为在真空度为10-2Pa环境下,低温为在10℃-30℃。
进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,通过不同压制密度对三个方向的收缩比和磁性能的影响确定最佳的压制密度为3.59g/cm2
进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,通过不同等静压力对收缩比影响和不同等静压力对磁性能的影响确定最佳压力为180N时,剩磁Br和矫顽力Hcj最好。
进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,通过不同粒度对收缩比和磁性能的影响确定粉体粒度5.22μm时,剩磁Br和收缩比是最好的。
根据如上任一方法制备得到的改进钕铁硼磁体材料。
本发明通过步骤(2)快速凝固可以抑制α-Fe相的生长,因为α-Fe相对磁体性能没有贡献,反而会降低磁性能。
本发明步骤(3)氢破碎是沿Nd2Fe14B相的晶界粉碎的,可避免晶粒被破坏,又能细化磁体颗粒,磁体颗粒越细,磁体性能越好。
本发明步骤(4)中,由于钕铁硼废料稀土含量减少,所以性能改进时,需要添加Nd2Fe14B。
本发明步骤(5)中,通过将颗粒尺寸控制在5-10μm之间,来保障磁铁致密度和磁磁畴的钉扎作用。
有益效果:
本发明主要改进钕铁硼磁体材料取向成型工艺的技术参数,使烧结后的胚料收缩比降低,以达到减少钕铁硼磁体碎料的浪费,还能有效提高磁体材料的各项性能。
附图说明
图1(a)为本发明不同压制密度对磁体胚料的厚度影响曲线图;
图1(b)为本发明不同压制密度对磁体胚料的厚度影响曲线图;
图1(c)为本发明不同压制密度对磁体胚料的磁能积影响曲线图;
图1(d)为本发明不同压制密度对磁体胚料的矫顽力影响曲线图;
图2(a)为本发明不同等静压力对磁体胚料的剩磁影响曲线图;
图2(b)为本发明不同等静压力对磁体胚料的矫顽力影响曲线图;
图3(a)为本发明不同粒度对磁体胚料的收缩比影响曲线图;
图3(b)为本发明不同粒度对磁体胚料的剩磁影响曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
制备Nd2Fe14B合金永磁体材料减少收缩比以达到减少浪费碎料磁体,并提高各项磁性能的取向成型工艺方法,包含下述主要步骤:
(1)以纯度≥99.50%的Nd、Fe、B为原料,按Nd2Fe14B分子式的化学计量比配料;
(2)在氩气保护下熔炼,快速冷凝甩成薄片;
(3)Nd2Fe14B甩带片和钕铁硼废料(表面清理后)在氢破碎工艺下进行粉碎;
(4)Nd2Fe14B粉体和钕铁硼废料粉体按一定比例混合,配出38H型号的磁体粉末;
(5)38H磁体粉末在气流磨工艺下细化粉体颗粒,颗粒大小在5-10μm;
(6)取向成型工艺:①使用不同等静压压力取向取向成型相同颗粒大小的粉体,经烧结后测出不同压力下的收缩比和磁性能,确定最优压力P1;②使用不同颗粒大小的粉体在压力P下取向成型,经烧结后测出不同颗粒大小下的收缩比和磁性能,确定最佳的粉体颗粒大小R1成型取向度最好。③不同压制密度的三方(取向方向A,压力方向P,非压力和取向方向N)收缩比变化磁性能变化;
(7)烧结胚料磁体材料,温度在1080℃;
(8)测试磁性能,包括剩磁Br、磁能积BH、矫顽力Hcj
产品收缩比和性能测试结果:
性能测试结果:
图1(a)-图1(d)为钕铁硼永磁材料不同压制密度下的收缩比以及磁性能得变化。压坯密度越大,非向和取向尺寸越大,但变化较小。压坯密度越大,压制尺寸越小,变化较大。随着压坯密度增大(特别大于3.75后),剩磁快速下降。综合可得出压坯密度为3.59g/cm2时收缩比和磁性能最好。
图2(a)-图2(b)为不同等静压力对收缩比影响和不同等静压力对磁性能的影响。由图可以知道压力为180N时,剩磁Br和矫顽力Hcj最好。
图3(a)-图3(b)为不同粒度对收缩比和磁性能的影响。粒度越粗,取向方向收缩比越小(尺寸越大),同等剩磁越低。由图可以看出粉体粒度5.22μm时,剩磁Br和收缩比是最好的。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (2)

1.一种改进钕铁硼磁体材料性能的改进方法,其特征在于:以Nd2Fe14B相为主的磁体材料,经过取向成型工艺的参数的改进以降低磁体材料的收缩比,最终制备得到所述改进钕铁硼磁体材料;
包含下述步骤:
(1)以纯度≥99.50%的Nd、Fe、B为原料,按Nd2Fe14B分子式的化学计量比配料;
(2)在氩气保护下熔炼,快速冷凝甩成薄片;
(3)Nd2Fe14B甩片和表面清理后的钕铁硼废料在氢破碎工艺下进行粉碎;
(4)Nd2Fe14B粉体和钕铁硼废料粉体按一定比例混合,配出38H型号的磁体粉末;
(5)38H磁体粉末在气流磨工艺下进一步细化粉体颗粒,颗粒大小在5-10μm;
(6)取向成型工艺:
①使用不同等静压压力取向取向成型相同颗粒大小的粉体,经烧结后测出不同压力下的收缩比和磁性能;
②使用不同颗粒大小的粉体在压力P下取向成型,经烧结后测出不同颗粒大小下的收缩比和磁性能,确定最佳的粉体颗粒大小;
③不同压制密度的三方收缩比变化磁性能变化,最终确定压制密度;所述三方指:取向方向A,压力方向P,非压力和取向方向N;
(7)烧结胚料磁体材料,温度在1080℃;
钕铁硼粉体取向成型在磁场强度为3T的平行磁场下、且低氧低温环境下进行;所述低氧为在真空度为10-2Pa环境下,低温为在10℃-30℃;
通过不同压制密度对三个方向的收缩比和磁性能的影响确定最佳的压制密度为3.59g/cm2
通过不同等静压力对收缩比影响和不同等静压力对磁性能的影响确定最佳压力为180N时,剩磁Br和矫顽力Hcj最好;
通过不同粒度对收缩比和磁性能的影响确定粉体粒度5.22μm时,剩磁Br和收缩比是最好的。
2.根据权利要求1方法制备得到的改进钕铁硼磁体材料。
CN202010033859.8A 2020-01-13 2020-01-13 一种改进型钕铁硼磁体材料及其改进方法 Active CN111292911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010033859.8A CN111292911B (zh) 2020-01-13 2020-01-13 一种改进型钕铁硼磁体材料及其改进方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010033859.8A CN111292911B (zh) 2020-01-13 2020-01-13 一种改进型钕铁硼磁体材料及其改进方法

Publications (2)

Publication Number Publication Date
CN111292911A CN111292911A (zh) 2020-06-16
CN111292911B true CN111292911B (zh) 2021-09-14

Family

ID=71026304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010033859.8A Active CN111292911B (zh) 2020-01-13 2020-01-13 一种改进型钕铁硼磁体材料及其改进方法

Country Status (1)

Country Link
CN (1) CN111292911B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367820A (ja) * 2001-06-12 2002-12-20 Japan Science & Technology Corp 磁石廃材を再利用した希土類ボンド磁石
CN104575904A (zh) * 2014-11-26 2015-04-29 宁波宏垒磁业有限公司 一种由钕铁硼回收废料烧结而成的钕铁硼磁体及其制备方法
CN105575651A (zh) * 2016-03-01 2016-05-11 京磁材料科技股份有限公司 一种钕铁硼磁体的压制成型工艺
CN106601404A (zh) * 2016-12-28 2017-04-26 湖南稀土金属材料研究院 烧结钕铁硼废坯料再成型的方法
CN106910615A (zh) * 2017-02-28 2017-06-30 京磁材料科技股份有限公司 耐腐蚀钕铁硼磁体的制备方法
CN107442550A (zh) * 2017-07-04 2017-12-08 京磁材料科技股份有限公司 电镀后的钕铁硼废料的回收再利用方法
CN107470640A (zh) * 2017-09-26 2017-12-15 北京京磁电工科技有限公司 钕铁硼磁体的废料再利用制备工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050605B2 (en) * 2011-11-17 2015-06-09 Lamar University, A Component Of The Texas State University System, An Agency Of The State Of Texas Graphene nanocomposites

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367820A (ja) * 2001-06-12 2002-12-20 Japan Science & Technology Corp 磁石廃材を再利用した希土類ボンド磁石
CN104575904A (zh) * 2014-11-26 2015-04-29 宁波宏垒磁业有限公司 一种由钕铁硼回收废料烧结而成的钕铁硼磁体及其制备方法
CN105575651A (zh) * 2016-03-01 2016-05-11 京磁材料科技股份有限公司 一种钕铁硼磁体的压制成型工艺
CN106601404A (zh) * 2016-12-28 2017-04-26 湖南稀土金属材料研究院 烧结钕铁硼废坯料再成型的方法
CN106910615A (zh) * 2017-02-28 2017-06-30 京磁材料科技股份有限公司 耐腐蚀钕铁硼磁体的制备方法
CN107442550A (zh) * 2017-07-04 2017-12-08 京磁材料科技股份有限公司 电镀后的钕铁硼废料的回收再利用方法
CN107470640A (zh) * 2017-09-26 2017-12-15 北京京磁电工科技有限公司 钕铁硼磁体的废料再利用制备工艺

Also Published As

Publication number Publication date
CN111292911A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
US9082538B2 (en) Sintered Nd—Fe—B permanent magnet with high coercivity for high temperature applications
CN112466643B (zh) 一种烧结钕铁硼材料的制备方法
WO2008065903A1 (en) R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
CN100394518C (zh) 一种制备高矫顽力烧结稀土-铁-硼永磁材料的方法
WO2014142137A1 (ja) RFeB系焼結磁石の製造方法及びそれにより製造されるRFeB系焼結磁石
JP7211691B2 (ja) Nd-Fe-B系焼結磁性体の製造方法
CN105321643A (zh) MnBi基磁性物质、其制备方法、MnBi基烧结磁体及其制备方法
CN104575920B (zh) 稀土永磁体及其制备方法
KR20150033423A (ko) 열간가압성형 공정을 이용한 이방성 열간가압성형 자석의 제조방법 및 이 방법으로 제조된 열간가압성형 자석
JP2017523586A (ja) 熱的安定性が向上したマンガンビスマス系焼結磁石及びそれらの製造方法
JP2018505540A (ja) 非磁性合金を含む熱間加圧変形磁石及びその製造方法
KR102215818B1 (ko) 비자성 합금을 포함하는 열간가압변형 자석 및 이의 제조방법
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
Fu et al. Effect of rare-earth content on coercivity and temperature stability of sintered Nd-Fe-B magnets prepared by dual-alloy method
JPH06346101A (ja) 磁気異方性球形粉末及びその製造方法
CN110942877A (zh) 一种钕铁硼磁体及其制备方法
KR102045400B1 (ko) 희토류 영구자석의 제조방법
JP7255514B2 (ja) 希土類磁石粉末の製造方法
CN111292911B (zh) 一种改进型钕铁硼磁体材料及其改进方法
Shen et al. Effect of Soft Phase on Magnetic Properties of Bulk Sm-Co/$\alpha $-Fe Nanocomposite Magnets
KR102605565B1 (ko) 이방성 희토류 벌크자석의 제조방법 및 이로부터 제조된 이방성 희토류 벌크자석
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
KR102513836B1 (ko) 다상 구조 자석의 제조방법 및 그로부터 제조된 다상 구조 자석
WO2018101409A1 (ja) 希土類焼結磁石
US11232890B2 (en) RFeB sintered magnet and method for producing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200616

Assignee: Guangxi Baoci New Materials Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2022450000471

Denomination of invention: An improved NdFeB magnet material and its improved method

Granted publication date: 20210914

License type: Common License

Record date: 20221229