CN111282450B - 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法 - Google Patents

一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法 Download PDF

Info

Publication number
CN111282450B
CN111282450B CN202010113160.2A CN202010113160A CN111282450B CN 111282450 B CN111282450 B CN 111282450B CN 202010113160 A CN202010113160 A CN 202010113160A CN 111282450 B CN111282450 B CN 111282450B
Authority
CN
China
Prior art keywords
porous membrane
polypropylene porous
titanium dioxide
dioxide layer
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010113160.2A
Other languages
English (en)
Other versions
CN111282450A (zh
Inventor
唐娜
宋阳阳
张蕾
史星星
王松博
程鹏高
杜威
张建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202010113160.2A priority Critical patent/CN111282450B/zh
Publication of CN111282450A publication Critical patent/CN111282450A/zh
Priority to PCT/CN2020/115975 priority patent/WO2021169253A1/zh
Priority to JP2021566218A priority patent/JP7174171B2/ja
Application granted granted Critical
Publication of CN111282450B publication Critical patent/CN111282450B/zh
Priority to US17/526,828 priority patent/US11376553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0037Organic membrane manufacture by deposition from the gaseous phase, e.g. CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00933Chemical modification by addition of a layer chemically bonded to the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/52Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/04Hydrophobization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/26Spraying processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • B01D2323/345UV-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0233Asymmetric membranes with clearly distinguishable layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种超疏水聚丙烯多孔膜,其包括聚丙烯多孔膜基底、二氧化钛层和表面改性剂层,二氧化钛层通过原子沉积技术沉积在聚丙烯多孔膜基底表面,表面改性剂涂覆在二氧化钛层上;二氧化钛层与表面改性剂层之间形成疏水键,超疏水聚丙烯多孔膜水接触角大于150°,滚动角小于10°;孔径为0.1μm~0.4μm,孔隙率为50%~80%;拉伸强度30MPa~50MPa,断裂伸长率10%~30%。本发明结合原子层沉积与光催化的方法提高聚丙烯多孔膜疏水性,本发明超疏水聚丙烯多孔膜不仅保持了聚丙烯多孔膜的耐化学性能、刚性、多孔特性,还具备了超疏水性能,且本发明超疏水聚丙烯多孔膜运行80h时间后,仍然保持良好的分离效果,使用寿命大幅增加,降低了膜蒸馏过程的操作成本和运行成本。

Description

一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜 疏水性的方法
技术领域
本发明属于高分子材料科学与膜分离技术领域,涉及一种高分子聚合物分离膜的改性方法,更具体地涉及一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法。
背景技术
疏水微孔膜可以作为膜接触器的传递介质应用于多种新型膜分离过程,包括膜蒸馏、膜萃取、膜吸收、膜汽提和膜吸附等。膜蒸馏(Membrane Distillation,缩写为MD)是溶液中溶剂或溶质的蒸发过程,相比于其他膜分离技术,技术的优势在于可以低温常压下操作,有效利用廉价能源(如太阳能、工业废热、余热)在能源日益紧张的当今社会具有很大的竞争力。MD在浓缩高浓度的盐水溶液具有很大的优势,在反渗透过程中,只能浓缩到一定的浓度,而MD过程将其浓缩到过饱和溶液,另外,膜蒸馏过程在浓缩果汁和中药浓缩也都有不可比拟的优势。然而,MD技术大规模工业化应用的核心和难题是膜材料的选择和能源的利用率。
聚丙烯是一种由丙烯单体聚合而成的热塑性聚合物,常用于制备家用塑料制品。由于其拥有较好的耐酸碱性,高疏水性和热稳定性,且价格低廉,有望成为疏水微孔膜的主流材料。
二氧化钛(TiO2)具备光催化特性,当TiO2被小于387.5nm波长的紫外光(Ultraviolet,UV)照射时,电子由价带跃迁至导带,形成电子-空穴对,同时,羟基自由基具有很高的活性,能够与硅烷类偶联剂反应形成纳米树突结构,大大提高膜表面粗糙度,进而提高膜表面疏水性能。有学者已经将该方法应用于MD用超疏水微孔膜的制备,Meng等将PVDF表面涂覆TiO2纳米粒子,然后在UV灯光照条件下与全氟辛基三氯硅烷(1H,1H,2H,2H-perfluorododecyltrichlorosilane,FTCS)反应,最终制得接触角大于160°超疏水PVDF膜,将其应用与MD过程中发现,脱盐率显著提高,膜孔润湿状况能够有效缓解(S.Meng,Y.Ye,J.Mansouri,et al.Fouling and crystallisation behaviour of superhydrophobicnano-composite PVDF membranes in direct contact membrane distillation[J].Journal of Membrane Science,2014,463:102-112.)。采用该方法对聚丙烯多孔膜进行疏水性改进,经处理后聚丙烯多孔膜存在以下问题:1、聚丙烯多孔膜长期运行后,涂覆在聚丙烯多孔膜表面TiO2纳米粒子薄膜容易脱落,导致聚丙烯多孔膜使用寿命短;2、聚丙烯多孔膜经疏水性改进后,其孔径、孔隙率、拉伸强度、断裂伸长率明显低于处理前的聚丙烯多孔膜,这样导致处理后的聚丙烯多孔膜用于膜蒸馏过程中,使用效果明显下降。
为了解决以上问题,提出本发明。
发明内容
针对现有技术的不足,本发明的目的是提供一种聚丙烯多孔膜超疏水改性方法。本发明制备的改性超疏水聚丙烯多孔膜在不改变聚丙烯优良耐化学品性、较高强度条件下,改性效果显著:产品膜的疏水性能有较大提升,具有更高的接触角、更小的滚动角;原膜的孔隙率、孔径及孔径分布基本不变;产品膜的疏水性增加,应用于膜蒸馏过程,使膜的耐润湿性更好,提高了膜的使用寿命。
本发明第一方面提供一种超疏水聚丙烯多孔膜,依次包括聚丙烯多孔膜基底、二氧化钛层和表面改性剂层,所述二氧化钛层通过原子沉积技术沉积在所述聚丙烯多孔膜基底表面,所述表面改性剂涂覆在所述二氧化钛层上;所述二氧化钛层与所述表面改性剂层之间形成疏水键,所述超疏水聚丙烯多孔膜水接触角大于150°,滚动角小于10°;所述超疏水聚丙烯多孔膜孔径为0.1μm~0.4μm,孔隙率为50%~80%;所述超疏水聚丙烯多孔膜拉伸强度30MPa~50MPa,断裂伸长率10%~30%
其中本发明中超疏水聚丙烯多孔膜中的“超疏水”是指其具有较高的疏水性能,进一步指水接触角大于150°、小于180°,滚动角小于10°、大于0°的聚丙烯多孔膜。
优选地,所述二氧化钛层通过原子沉积技术沉积在所述为聚丙烯多孔膜基底表面,所述聚丙烯多孔膜基底表面沉积10~500个循环周期二氧化钛层;所述表面改性剂层为纳米硅乳液,所述疏水键为Si-O-Ti键。其中,纳米硅乳液的主要成分是三甲基硅醇,经光照处理后,二氧化钛会形成游离的羟基,然后三甲基硅醇上的羟基与钛上游离的羟基发生脱水缩合反应,生成Si-O-Ti键,从而起到提高聚丙烯多孔膜表面疏水性的作用,所述疏水键为Si-O-Ti键。
本发明第二方面提供一种本发明第一方面所述的超疏水聚丙烯多孔膜的制备方法,包括以下步骤:
(1)取聚丙烯多孔膜基底;
(2)采用原子沉积的方法,在所述聚丙烯多孔膜基底表面沉积二氧化钛层,得到表面具有二氧化钛层的聚丙烯多孔膜;
(3)在表面具有二氧化钛层的聚丙烯多孔膜的表面喷涂表面改性剂,光照处理,洗涤,干燥,得到所述的超疏水聚丙烯多孔膜。
优选地,步骤(1)中聚丙烯多孔膜基底的制备方法包括以下步骤:
(11)称取原料聚丙烯和稀释剂,基于质量百分比,称取的聚丙烯的质量为产品聚丙烯多孔膜基底质量的17~35%,称取的稀释剂的质量为产品聚丙烯多孔膜基底质量的65~83%。
(12)将步骤(11)称取的原料加入反应器中搅拌,通入氮气保护,加热至160℃~300℃,先在200r/min速度下搅拌4小时后,再脱泡,得到铸膜液。
(13)将(12)所得铸膜液涂覆于聚酯无纺布表面刮成平板状,然后将其整体浸入0℃~130℃水浴或油浴,得到成型膜。
(14)将步骤(13)得到的成型膜浸入萃取液中超声8小时,萃取完成后置于50℃~100℃真空烘箱中干燥,待萃取剂完全蒸发后即得发明所述的聚丙烯多孔膜基底。
优选地,步骤(11)中原料还包括添加剂,基于质量百分比,称取的添加剂的质量为产品聚丙烯多孔膜基底质量的0~3%;所用聚丙烯的熔融指数在0~20之间。稀释剂为邻苯二甲酸二甲酯、二苯醚、邻苯二甲酸二乙酯、磷酸三丁酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、豆油以及其他植物油中的一种或者几种。添加剂为己二酸、辛二酸、二亚苄基山梨糖醇中的一种。步骤(14)中的萃取剂为甲醇、乙醇、丙醇、正己烷、环己烷、丙酮中的一种或者几种组合。
优选地,步骤(2)中采用原子沉积的方法,在所述聚丙烯多孔膜表面沉积二氧化钛层的步骤为:
(21)将原子层沉积设备的反应室抽真空后,将所述聚丙烯多孔膜置于反应室中,并将反应室温度加热至50-150℃;
(22)向反应室中通入气态含钛前驱体100~1000毫秒,再用流速为10~300sccm的惰性气体一次吹扫10~60秒;
(23)再向反应室内通入气态含氧前驱体10~500毫秒,最后用流速为10~300sccm惰性气体二次吹扫10~60秒,完成一次循环周期二氧化钛层的沉积;
(24)重复步骤(22)-(23),在所述聚丙烯多孔膜表面沉积10~500个循环周期二氧化钛层。
其中完成一次步骤(22)和(23)即为沉积1个循环周期二氧化钛层。
其中,步骤(22)和步骤(23)中向反应室中通入气态含钛前驱体和气态含氧前驱体采用的是原子层沉积器(D100-4882,重庆诺图科技有限公司),该仪器相对于外界环境是完全密封的,通过控制该仪器中程序的运行时间可以控制通入气态含钛前驱体和气态含氧前驱体的量。
优选地,步骤(21)中所述真空为0~15mbar;步骤(22)中所述含钛前驱体为钛醇盐、钛卤化物或钛烷基酞胺,优选地可以使用四异丙醇钛;步骤(23)中所述含氧前驱体为O3、H2O或H2O2;步骤(22)和步骤(23)所述惰性气体为Ar或N2
优选地,步骤(3)中表面改性剂选自0.1~10wt%的纳米硅乳液,其中0.1~10wt%的纳米硅乳液是指纳米硅乳液中单质硅的质量分数;光照处理条件为:使用100~1000焦氙灯照射1~200分钟。
其中,纳米硅乳液的主要成分是三甲基硅醇,经光照处理后,二氧化钛会形成游离的羟基,然后三甲基硅醇上的羟基与钛上游离的羟基发生脱水缩合反应,生成Si-O-Ti键,从而起到提高聚丙烯多孔膜表面疏水性的作用。
本发明第三方面提供一种在不改变聚丙烯多孔膜的孔径、孔隙率、拉伸强度、断裂伸长率的情况下提高聚丙烯多孔膜疏水性的方法:首先利用原子层沉积技术,在聚丙烯多孔膜表面沉积二氧化钛层,然后再二氧化钛层表面喷涂表面改性剂,然后将表面具有二氧化钛层和表面改性剂的聚丙烯多孔膜进行光照处理。
优选地,利用原子层沉积技术,在聚丙烯多孔膜表面沉积10~500个循环周期二氧化钛层,所述表面改性剂为纳米硅乳液,所述光照处理条件为:使用100~1000焦氙灯照射1~200分钟。
其中,聚丙烯多孔膜仅是代表性的高分子聚合物分离膜,在不改变聚丙烯多孔膜的孔径、孔隙率、拉伸强度、断裂伸长率的情况下提高聚丙烯多孔膜疏水性的方法还适用于提高膜的耐润湿性能、寿命等。本发明改性方法可应用于许多由于常温溶解度差而不能用通常的溶液法改性膜的亲水性、疏水性的高分子聚合物。由于聚丙烯多孔膜在常温下不与任何试剂反应,故本发明采用原子层沉积(ALD)与光催化相结合的方法制备改性超疏水聚丙烯多孔膜。
相对于现有技术,本发明具有以下有益效果:
1、本发明通过采用原子层沉积(ALD)与光催化相结合的方法制备超疏水聚丙烯多孔膜,所述超疏水聚丙烯多孔膜水接触角大于150°,滚动角小于10°;所述超疏水聚丙烯多孔膜孔径为0.1μm~0.4μm,孔隙率为50%~80%;所述超疏水聚丙烯多孔膜拉伸强度30MPa~50MPa,断裂伸长率10%~30%。相对于未进行疏水性改进的聚丙烯多孔膜,本发明制备的超疏水聚丙烯多孔膜不仅保持了聚丙烯多孔膜的优秀耐化学性能、刚性(拉伸强度和断裂伸长率)、多孔特性(孔径和孔隙率),还具备了超疏水性能,其中,聚丙烯多孔膜原膜的接触角100°~130°、无滚动角,而超疏水聚丙烯多孔膜水接触角大于150°,滚动角小于10°,聚丙烯多孔膜的疏水性明显提高。
2、本发明采用原子层沉积技术在聚丙烯多孔膜表面沉积10~500个循环周期二氧化钛层,ALD可以较高比表面积、均匀地在聚丙烯多孔膜表面沉积二氧化钛层,相对于直接在聚丙烯多孔膜表面直接涂覆二氧化钛纳米粒子,本发明沉积在聚丙烯多孔膜表面的二氧化钛层更牢固,膜蒸馏过程中聚丙烯多孔膜表面的二氧化钛层不易脱落,本发明制备的超疏水聚丙烯多孔膜运行80h时间后,效果仍然很好,超疏水聚丙烯多孔膜使用寿命长,使用寿命大幅增加,降低了MD过程的操作成本和运行成本。
3、本发明针对性地选用表面能低、成本低廉的纳米硅乳液作为表面改性剂,对光催化PP/TiO2多孔膜表面采取涂覆操作。纳米硅乳液的主要成分是三甲基硅醇,经光照处理后,二氧化钛会形成游离的羟基,然后三甲基硅醇上的羟基与钛上游离的羟基发生脱水缩合反应,生成Si-O-Ti键,从而起到提高聚丙烯多孔膜表面疏水性的作用。采用此种方法制得的微孔膜在保有原膜孔径和孔隙率的基础上提高了微孔膜的疏水性,降低了聚丙烯多孔膜的滚动角,缓解了聚丙烯多孔膜的膜孔湿润湿状况,有效减少了膜污染。
4、本发明的超疏水聚丙烯多孔膜改性方法简单,易于操作,原料聚丙烯、纳米硅乳液廉价易得。
附图说明
图1为实施例1中制备的聚丙烯多孔膜样品1的膜断面SEM图。
图2为实施例4中制备的超疏水聚丙烯多孔膜样品3的膜断面SEM图。
具体实施方式
实施例1
本实施例为聚丙烯多孔膜样品1的制备.
(11)聚丙烯的质量分数16.5%,稀释剂大豆油41.5%,稀释剂磷酸三丁酯为41.5%,添加剂己二酸0.5%;
(12)将步骤(11)称取的混合原料加入反应器中,通入氮气保护,加热至180℃,机械搅拌4小时后低速搅拌3小时脱泡,得到均相铸膜液;
(13)将(12)所得铸膜液涂覆于聚酯无纺布表面刮成平板状,刮膜温度为180℃,然后进入30℃水槽中冷却固化;
(14)将步骤(13)制得的膜分别用正己烷、乙醇超声萃取4小时,每隔2小时换一次萃取剂,萃取完成后放入70℃真空烘箱中干燥,得到聚丙烯多孔膜样品1。
膜断面连通性较好的蜂窝状孔结构,所得产品膜孔隙率65.37%,平均孔径0.2576μm,透气性1.551L·cm-2·cm-1,水接触角126.74°,拉伸强度41.07MPa,断裂伸长率15.72%。应用于3.5%NaCl水溶液的真空膜蒸馏过程,当进料流量为18L·h-1,进料温度为70℃时,膜通量17.81kg·m-2·h-1,截留率99.99%。
实施例2
本实施例采用低温水热法直接在实施例1制备的聚丙烯多孔膜表面涂覆二氧化钛纳米粒子,在表面涂覆有二氧化钛纳米粒子的聚丙烯多孔膜的表面喷涂表面改性剂乙烯基三乙氧基硅烷,然后使用500焦氙灯照射30分钟,然后用无水乙醇冲洗,然后放入80℃真空烘箱干燥,得到超疏水聚丙烯多孔膜样品1。
其中,经光照处理后,二氧化钛会形成游离的羟基,乙烯基三乙氧基硅烷的乙烯基在弱碱和光催化条件下与二氧化钛的游离羟基发生加成反应,生成C-O-Ti键,从而提高聚丙烯多孔膜表面疏水性。
所得产品膜孔隙率58.26%,平均孔径0.1772μm,透气性0.7019L·cm-2·cm-1L·cm-2·cm-1,水接触角140°,拉伸强度35.23MPa,断裂伸长率10.65%。应用于3.5%NaCl水溶液的真空膜蒸馏过程,当进料流量为30L·h-1,进料温度为70℃时,膜通量14.52kg·m-2·h-1,截留率99.99%,运行10h小时后,膜通量23.69kg·m-2·h-1,截留率70%。
实施例3
本实施例采用原子沉积技术在实施例1制备的聚丙烯多孔膜表面沉积二氧化钛层,在表面沉积有二氧化钛纳米粒子的聚丙烯多孔膜的表面喷涂表面改性剂乙烯基三乙氧基硅烷,然后使用500焦氙灯照射30分钟,然后用无水乙醇冲洗,然后放入80℃真空烘箱干燥,得到超疏水聚丙烯多孔膜样品2。
其中,在所述聚丙烯多孔膜表面沉积二氧化钛层的步骤为:
(21)将原子层沉积设备的反应室抽真空后,将所述聚丙烯多孔膜置于反应室中,并将反应室温度加热至100℃;
(22)向反应室中通入气态含钛前驱体400毫秒,再用流速为50sccm的惰性气体一次吹扫30秒;
(23)再向反应室内通入气态含氧前驱体100毫秒,最后用流速为50sccm惰性气体二次吹扫30秒,完成一次循环周期二氧化钛层的沉积;
(24)重复步骤(22)-(23),在所述聚丙烯多孔膜表面沉积200个循环周期二氧化钛层。
其中完成一次步骤(22)和(23)即为沉积1个循环周期二氧化钛层。
步骤(21)中所述真空为0.5mbar;步骤(22)中所述含钛前驱体为四异丙醇钛;步骤(23)中所述含氧前驱体为H2O;步骤(22)和步骤(23)所述惰性气体为N2
超疏水聚丙烯多孔膜样品2膜孔隙率62.86%,平均孔径0.2572μm,透气性1.551L·cm-2·cm-1,水接触角125.6°,拉伸强38.54MPa,断裂伸长13.37%。应用于3.5%NaCl水溶液的真空膜蒸馏过程,当进料流量为30L·h-1,进料温度为70℃时,膜通量15.47kg·m-2·h-1,截留率99.99%,运行15h后,膜通量27.36kg·m-2·h-1,截留率63.76%。
实施例4
本实施例采用原子沉积技术在实施例1制备的聚丙烯多孔膜表面沉积二氧化钛层,在表面沉积有二氧化钛纳米粒子的聚丙烯多孔膜的表面喷涂表面改性剂0.3%纳米硅乳液,然后使用500焦氙灯照射30分钟,然后用无水乙醇冲洗,然后放入80℃真空烘箱干燥,得到超疏水聚丙烯多孔膜样品3。
其中,在所述聚丙烯多孔膜表面沉积二氧化钛层的方法与实施例3中相同。
超疏水聚丙烯多孔膜样品3膜断面SEM图见图2,相对于改性前的聚丙烯多孔膜的膜断面SEM图(图1)可以看出,改性后聚丙烯多孔膜的结构几乎没有变化,改性后的超疏水聚丙烯多孔膜的膜断面双连续状孔结构。
超疏水聚丙烯多孔膜样品3孔隙率65.23%,平均孔径0.2526μm,透气性1.553L·cm-2·cm-1,水接触角165°,倾斜角1°,拉伸强度41.07MPa,断裂伸长率15.72%。应用于3.5%NaCl水溶液的真空膜蒸馏过程,当进料流量为18L·h-1,进料温度为70℃时,膜通量17.81kg·m-2·h-1,截留率99.99%,运行80h后,膜通量17.14kg·m-2·h-1,截留率99.99%。
分别对比实施例1-4中的聚丙烯多孔膜样品1、超疏水聚丙烯多孔膜样品1、超疏水聚丙烯多孔膜样品2、超疏水聚丙烯多孔膜样品3,可以看出,超疏水聚丙烯多孔膜样品1的水接触角略大于未改性的聚丙烯多孔膜样品1,但是其孔隙率、平均孔径、透气性、拉伸强度、断裂伸长率却均差于未改性的聚丙烯多孔膜样品1,而超疏水聚丙烯多孔膜样品2的孔隙率、平均孔径、透气性、拉伸强度、断裂伸长率与未改性的聚丙烯多孔膜样品1差别不大,但是其疏水性改进效果却很差,膜的水接触角几乎没有变化。同时,超疏水聚丙烯多孔膜样品1、超疏水聚丙烯多孔膜样品2两者存在一个共性的问题,超疏水聚丙烯多孔膜的寿命较差,虽然超疏水聚丙烯多孔膜样品2由于采用了原子沉积的技术在聚丙烯多孔膜表面沉积二氧化钛层,使其运行过程中二氧化钛层不易脱落,相对于超疏水聚丙烯多孔膜样品1,可以在一定程度上提高超疏水聚丙烯多孔膜的使用寿命,但是运行15h小时后,超疏水聚丙烯多孔膜样品2通量明显提高,超疏水聚丙烯多孔膜样品2截留性能下降。
相比较而言,实施例4的超疏水聚丙烯多孔膜样品3具有较好的疏水性,体现在水接触角有所提高;而且膜材料的刚性和强度没有出现明显下降,体现在拉伸强度改变不大;改性后基本不改变膜的孔径和孔隙率,增加了聚丙烯膜水接触角,提高了膜的分离性能。在膜的疏水性方面,制备的改性超疏水聚丙烯多孔膜水接触角大于150°,滚动角小于10°,可缓解膜孔润湿状况,有效减少了膜污染,为MD提供了一种疏水性能优良的分离材料。同时,在运行80h后,膜通量17.14kg·m-2·h-1,截留率99.99%,超疏水聚丙烯多孔膜样品3使用寿命长。
实施例5
本实施例为超疏水聚丙烯多孔膜样品4的制备。
首先采用下述步骤(11)-(14)制备聚丙烯多孔膜:
(11)聚丙烯的质量分数17%,稀释剂大豆油41.25%,稀释剂磷酸三丁酯为41.25%,添加剂己二酸0.5%;
(12)将步骤(11)称取的混合原料加入反应器中,通入氮气保护,加热至180℃,机械搅拌4小时后低速搅拌3小时脱泡,得到均相铸膜液;
(13)将(12)所得铸膜液涂覆于聚酯无纺布表面刮成平板状,刮膜温度为180℃,然后进入30℃水槽中冷却固化;
(14)将步骤(13)制得的膜分别用正己烷、乙醇超声萃取4小时,每隔2小时换一次萃取剂,萃取完成后放入70℃真空烘箱中干燥,得到聚丙烯多孔膜。
然后采用原子沉积技术在上述聚丙烯多孔膜表面沉积二氧化钛层,在表面沉积有二氧化钛纳米粒子的聚丙烯多孔膜的表面喷涂表面改性剂纳米硅乳液,然后使用500焦氙灯照射30分钟,然后用无水乙醇冲洗,然后放入80℃真空烘箱干燥,得到超疏水聚丙烯多孔膜样品4。
其中,在所述聚丙烯多孔膜表面沉积二氧化钛层的步骤为:
(21)将原子层沉积设备的反应室抽真空后,将所述聚丙烯多孔膜置于反应室中,并将反应室温度加热至100℃;
(22)向反应室中通入气态含钛前驱体400毫秒,再用流速为50sccm的惰性气体一次吹扫30秒;
(23)再向反应室内通入气态含氧前驱体100毫秒,最后用流速为50sccm惰性气体二次吹扫30秒,完成一次循环周期二氧化钛层的沉积;
(24)重复步骤(22)-(23),在所述聚丙烯多孔膜表面沉积200个循环周期二氧化钛层。
其中完成一次步骤(22)和(23)即为沉积1个循环周期二氧化钛层。
步骤(21)中所述真空为0.5mbar;步骤(22)中所述含钛前驱体为四异丙醇钛;步骤(23)中所述含氧前驱体为H2O;步骤(22)和步骤(23)所述惰性气体为Ar或N2
超疏水聚丙烯多孔膜样品4孔隙率78.36%,平均孔径0.3895μm,透气性2.73L·cm-2·cm-1,水接触角151°,倾斜角8°,拉伸强度30.76MPa,断裂伸长率17.48%。应用于3.5%NaCl水溶液的真空膜蒸馏过程,当进料流量为18L·h-1,进料温度为70℃时,膜通量21.05kg·m-2·h-1,截留率99.99%,运行40h后,膜通量20.39kg·m-2·h-1,截留率99.99%。
实施例6
本实施例为超疏水聚丙烯多孔膜样品5的制备。
首先采用下述步骤(11)-(14)制备聚丙烯多孔膜:
(11)聚丙烯的质量分数32.5%,稀释剂大豆油33.5%,稀释剂磷酸三丁酯为33.5%,添加剂己二酸0.5%;
(12)将步骤(11)称取的混合原料加入反应器中,通入氮气保护,加热至180℃,机械搅拌4小时后低速搅拌3小时脱泡,得到均相铸膜液;
(13)将(12)所得铸膜液涂覆于聚酯无纺布表面刮成平板状,刮膜温度为180℃,然后进入30℃水槽中冷却固化;
(14)将步骤(13)制得的膜分别用正己烷、乙醇超声萃取4小时,每隔2小时换一次萃取剂,萃取完成后放入70℃真空烘箱中干燥,得到聚丙烯多孔膜。
然后采用原子沉积技术在上述聚丙烯多孔膜表面沉积二氧化钛层,在表面沉积有二氧化钛纳米粒子的聚丙烯多孔膜的表面喷涂表面改性剂纳米硅乳液,然后使用500焦氙灯照射30分钟,然后用无水乙醇冲洗,然后放入80℃真空烘箱干燥,得到超疏水聚丙烯多孔膜样品5。
其中,在所述聚丙烯多孔膜表面沉积二氧化钛层的步骤为:
(21)将原子层沉积设备的反应室抽真空后,将所述聚丙烯多孔膜置于反应室中,并将反应室温度加热至100℃;
(22)向反应室中通入气态含钛前驱体400毫秒,再用流速为50sccm的惰性气体一次吹扫30秒;
(23)再向反应室内通入气态含氧前驱体100毫秒,最后用流速为50sccm惰性气体二次吹扫30秒,完成一次循环周期二氧化钛层的沉积;
(24)重复步骤(22)-(23),在所述聚丙烯多孔膜表面沉积200个循环周期二氧化钛层。
其中完成一次步骤(22)和(23)即为沉积1个循环周期二氧化钛层。
步骤(21)中所述真空为4mbar;步骤(22)中所述含钛前驱体为四异丙醇钛;步骤(23)中所述含氧前驱体为H2O;步骤(22)和步骤(23)所述惰性气体为Ar或N2
超疏水聚丙烯多孔膜样品5孔隙率54.53%,平均孔径0.1124μm,透气性0.45L·cm-2·cm-1,水接触角162°,倾斜角5°,拉伸强度47.57MPa,断裂伸长率26.73%。应用于3.5%NaCl水溶液的真空膜蒸馏过程,当进料流量为18L·h-1,进料温度为70℃时,膜通量9.78kg·m-2·h-1,截留率99.99%,运行80h后,膜通量8.74kg·m-2·h-1,截留率99.99%。

Claims (9)

1.一种超疏水聚丙烯多孔膜的制备方法,其特征在于,所述超疏水聚丙烯多孔膜,依次包括聚丙烯多孔膜基底、二氧化钛层和表面改性剂层,所述二氧化钛层通过原子沉积技术沉积在所述聚丙烯多孔膜基底表面,所述表面改性剂涂覆在所述二氧化钛层上;所述二氧化钛层与所述表面改性剂层之间形成疏水键,所述超疏水聚丙烯多孔膜水接触角大于150°,滚动角小于10°;所述超疏水聚丙烯多孔膜孔径为0.1μm~0.4μm,孔隙率为50%~80%;所述超疏水聚丙烯多孔膜拉伸强度30MPa~50MPa,断裂伸长率10%~30%;
制备方法包括以下步骤:
(1)取聚丙烯多孔膜基底;
(2)采用原子沉积的方法,在所述聚丙烯多孔膜基底表面沉积二氧化钛层,得到表面具有二氧化钛层的聚丙烯多孔膜;
(3)在表面具有二氧化钛层的聚丙烯多孔膜的表面喷涂表面改性剂,光照处理,洗涤,干燥,得到所述的超疏水聚丙烯多孔膜;
所述表面改性剂为纳米硅乳液。
2.根据权利要求1所述的制备方法,其特征在于,所述聚丙烯多孔膜基底表面沉积10~500个循环周期二氧化钛层。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中聚丙烯多孔膜基底的制备方法包括以下步骤:
(11)称取原料聚丙烯和稀释剂;
(12)将步骤(11)称取的原料加入反应器中搅拌,通入氮气保护,加热至160℃~300℃,搅拌,得到铸膜液;
(13)将(12)所得铸膜液涂覆于聚酯无纺布表面刮成平板状,然后将其整体浸入0℃~130℃水浴或油浴,得到成型膜;
(14)将步骤(13)得到的成型膜浸入萃取液中超声4-12小时,干燥,得到所述聚丙烯多孔膜基底。
4.根据权利要求3所述的制备方法,其特征在于,步骤(11)中原料还包括添加剂,所述稀释剂为邻苯二甲酸二甲酯、二苯醚、邻苯二甲酸二乙酯、磷酸三丁酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、豆油中的一种或者几种;所述添加剂为己二酸、辛二酸、二亚苄基山梨糖醇中的一种;步骤(14)中的所述萃取剂为甲醇、乙醇、丙醇、正己烷、环己烷、丙酮中的一种或者几种。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中采用原子沉积的方法,在所述聚丙烯多孔膜表面沉积二氧化钛层的步骤为:
(21)将原子层沉积设备的反应室抽真空后,将所述聚丙烯多孔膜置于反应室中,并将反应室温度加热至50~150℃;
(22)向反应室中通入气态含钛前驱体100~1000毫秒,再用流速为10~300sccm的惰性气体一次吹扫10~60秒;
(23)再向反应室内通入气态含氧前驱体10~500毫秒,最后用流速为10~300sccm惰性气体二次吹扫10~60秒,完成一次二氧化钛层的沉积;
(24)重复步骤(22)-(23),在所述聚丙烯多孔膜表面沉积10~500个循环周期二氧化钛层。
6.根据权利要求5所述的制备方法,其特征在于,步骤(21)中所述真空为0~15mbar;步骤(22)中所述含钛前驱体为钛醇盐或钛卤化物;步骤(23)中所述含氧前驱体为O3、H2O或H2O2;步骤(22)和步骤(23)所述惰性气体为Ar或N2
7.根据权利要求1聚丙烯多孔膜所述的制备方法,其特征在于,步骤(3)中表面改性剂选自0.1~10wt%的纳米硅乳液。
8.一种在不改变聚丙烯多孔膜的孔径、孔隙率、拉伸强度、断裂伸长率的情况下提高聚丙烯多孔膜疏水性的方法,其特征在于:首先利用原子层沉积技术,在聚丙烯多孔膜表面沉积二氧化钛层,然后在二氧化钛层表面喷涂表面改性剂,然后将表面具有二氧化钛层和表面改性剂的聚丙烯多孔膜进行光照处理;所述表面改性剂为纳米硅乳液。
9.根据权利要求8所述的方法,其特征在于,利用原子层沉积技术,在聚丙烯多孔膜表面沉积10~500个循环周期二氧化钛层,所述表面改性剂为纳米硅乳液。
CN202010113160.2A 2020-02-24 2020-02-24 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法 Active CN111282450B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010113160.2A CN111282450B (zh) 2020-02-24 2020-02-24 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法
PCT/CN2020/115975 WO2021169253A1 (zh) 2020-02-24 2020-09-17 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法
JP2021566218A JP7174171B2 (ja) 2020-02-24 2020-09-17 超疎水性ポリプロピレン多孔質フィルム、その製造方法、及びポリプロピレン多孔質フィルムの疎水性を向上させる方法
US17/526,828 US11376553B2 (en) 2020-02-24 2021-11-15 Superhydrophobic polypropylene porous film, preparation method therefor, and method for improving hydrophobicity of polypropylene porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010113160.2A CN111282450B (zh) 2020-02-24 2020-02-24 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法

Publications (2)

Publication Number Publication Date
CN111282450A CN111282450A (zh) 2020-06-16
CN111282450B true CN111282450B (zh) 2021-07-13

Family

ID=71022450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010113160.2A Active CN111282450B (zh) 2020-02-24 2020-02-24 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法

Country Status (4)

Country Link
US (1) US11376553B2 (zh)
JP (1) JP7174171B2 (zh)
CN (1) CN111282450B (zh)
WO (1) WO2021169253A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111282450B (zh) * 2020-02-24 2021-07-13 天津科技大学 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法
CN112162439B (zh) * 2020-10-14 2021-10-01 中国科学技术大学 一种增强二氧化钛电极光学调控能力的方法
CN113713632A (zh) * 2021-07-29 2021-11-30 自然资源部天津海水淡化与综合利用研究所 一种超疏水聚丙烯微孔膜及其制备方法
CN113912160B (zh) * 2021-10-20 2022-11-08 南京工业大学 一种新型三相界面反应器及其制备方法与应用
CN116161745B (zh) * 2023-04-25 2023-07-11 湖南环宏环保科技有限公司 一种垃圾压榨液的预处理方法
CN116672901B (zh) * 2023-08-04 2023-10-27 西安金沃泰环保科技有限公司 一种用于含酸废气的纳米过滤材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675681A (zh) * 2011-03-10 2012-09-19 中国石油天然气股份有限公司 一种亲水性聚丙烯微孔膜的制备方法
CN102728238A (zh) * 2012-07-06 2012-10-17 南京工业大学 聚丙烯分离膜表面改性的方法
GB2514539A (en) * 2013-04-09 2014-12-03 Innovia Films Ltd UV protected films
CN104888612A (zh) * 2015-05-25 2015-09-09 哈尔滨工业大学 一种利用原子层沉积对微滤膜进行复合光催化剂改性的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267833A (ja) * 2003-03-05 2004-09-30 Asahi Kasei Fibers Corp ポリケトン多孔体
TW200605229A (en) * 2004-07-28 2006-02-01 Adv Lcd Tech Dev Ct Co Ltd Method of manufacturing semiconductor device
WO2014040171A1 (en) * 2012-09-11 2014-03-20 Universite Laval Microporous and hydrophobic polymeric hollow fiber membranes and methods for preparation thereof
CN103191855A (zh) * 2013-04-18 2013-07-10 天津大学 一种超疏水复合多孔膜及其制备方法
JP2015047530A (ja) * 2013-08-30 2015-03-16 日揮触媒化成株式会社 水処理用撥水性透明被膜付基材およびその製造方法
CN105983350A (zh) * 2015-01-27 2016-10-05 天津科技大学 疏水性聚丙烯-聚对苯二甲酸乙二醇酯共混微孔膜的制备方法
WO2018017262A1 (en) * 2016-07-20 2018-01-25 Super Insulation, LLC Hydrophobic fiberglass thermal insulation materials
CN107815665A (zh) * 2016-09-14 2018-03-20 中国科学院上海硅酸盐研究所 一种二氧化钛薄膜及其制备方法和应用
CN111282450B (zh) * 2020-02-24 2021-07-13 天津科技大学 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675681A (zh) * 2011-03-10 2012-09-19 中国石油天然气股份有限公司 一种亲水性聚丙烯微孔膜的制备方法
CN102728238A (zh) * 2012-07-06 2012-10-17 南京工业大学 聚丙烯分离膜表面改性的方法
GB2514539A (en) * 2013-04-09 2014-12-03 Innovia Films Ltd UV protected films
CN104888612A (zh) * 2015-05-25 2015-09-09 哈尔滨工业大学 一种利用原子层沉积对微滤膜进行复合光催化剂改性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纳米硅乳液改性聚丙烯/二氧化钛超疏水-自清洁共混疏水微孔膜的研究;韩怀远等;《膜科学与技术》;20160630;第36卷(第3期);41-47 *

Also Published As

Publication number Publication date
JP2022534361A (ja) 2022-07-29
US20220072480A1 (en) 2022-03-10
CN111282450A (zh) 2020-06-16
US11376553B2 (en) 2022-07-05
JP7174171B2 (ja) 2022-11-17
WO2021169253A1 (zh) 2021-09-02

Similar Documents

Publication Publication Date Title
CN111282450B (zh) 一种超疏水聚丙烯多孔膜、其制备方法及提高聚丙烯多孔膜疏水性的方法
Chen et al. Fabrication of a superhydrophilic PVDF-g-PAA@ FeOOH ultrafiltration membrane with visible light photo-fenton self-cleaning performance
CN111001318B (zh) 一种多巴胺辅助修饰的杂化复合正渗透膜及其制备方法
Tettey et al. Progress in superhydrophilic surface development
CN109289550B (zh) 一种抗污染聚偏氟乙烯杂化超滤膜的制备方法及应用
CN107998908B (zh) 一种基于微纳基底的超亲水有机膜的制备方法
CN113522045B (zh) 一种二硫化钼纳米点杂化纳滤膜的制备方法及应用
CN112934008A (zh) 一种高通量油水分离cof膜及其制备方法与应用
CN111617645A (zh) 一种基于中空MOFs材料的低阻高选择性混合基质膜的制备方法
CN110917910B (zh) 一种用于有机染料纳滤的刚性mof复合膜制备方法
CN107441946B (zh) 一种酶诱导制备有机无机杂化膜的方法
CN102580551A (zh) 一种膜生物反应器中膜材料改性的方法
CN104190264B (zh) 一种具有螯合功能中空纤维超滤膜的制备方法
CN108786478A (zh) 膜蒸馏用复合膜的制备方法
CN114932061A (zh) 一种超亲水抗粘附涂层及其制备方法
CN108079798B (zh) 一种基于纳米类水滑石的超亲水有机膜制备方法
CN106930107B (zh) 包覆无机钛层的uhmwpe复合材料及其制备方法
CN111514765A (zh) 一种MIL-101(Fe)掺杂的秸秆基醋酸纤维素复合膜的制备方法
CN109912838B (zh) 一种自清洁tpu泡沫复合材料及其制备方法
CN115888441A (zh) 一种复合纳滤膜及其制备方法
CN113941259A (zh) 一种兼具膜结构调控和亲水改性的高通量抗污超滤膜的制备方法
CN110252412B (zh) 一种纳米纤维基光催化材料
CN108218247B (zh) 一种分级结构形貌TiO2薄膜的制备方法
CN115819834B (zh) 集水组件及其制备方法、集水装置
Huang et al. Surface Modification of electrospun poly (vinylidene fluoride) fibrous membrane based on layer-by-layer assembly of TiO2 nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant