CN111218717A - 一种生长Fe掺杂单层WS2二维晶体的方法 - Google Patents

一种生长Fe掺杂单层WS2二维晶体的方法 Download PDF

Info

Publication number
CN111218717A
CN111218717A CN202010096253.9A CN202010096253A CN111218717A CN 111218717 A CN111218717 A CN 111218717A CN 202010096253 A CN202010096253 A CN 202010096253A CN 111218717 A CN111218717 A CN 111218717A
Authority
CN
China
Prior art keywords
temperature
doped
growing
dimensional
monolayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010096253.9A
Other languages
English (en)
Other versions
CN111218717B (zh
Inventor
聂安民
康梦克
向健勇
柳忠元
田永君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202010096253.9A priority Critical patent/CN111218717B/zh
Publication of CN111218717A publication Critical patent/CN111218717A/zh
Application granted granted Critical
Publication of CN111218717B publication Critical patent/CN111218717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种生长Fe掺杂单层WS2二维晶体的方法,属于无机半导体纳米材料制备的技术领域,其包括以下步骤:以Fe2O3、NaCl、WO3、S为原料,在多温区管式炉里面以Si/SiO2为基底,通过S单质对WO3及Fe2O3同时硫化,共同参与成键,使Fe取代部分WS2单层二维晶体中W的位置,通过化学气相沉积的方式制备得到Fe掺杂单层WS2二维晶体。本发明所述的方法步骤简单、操作方便,合成速度快且成本低,制备得到的Fe掺杂单层WS2二维晶体结晶性好,化学及热力学性能稳定。

Description

一种生长Fe掺杂单层WS2二维晶体的方法
技术领域
本发明涉及一种生长Fe掺杂单层WS2二维晶体的方法,属于无机半导体纳米材料制备的技术领域。
背景技术
自2004年二维石墨烯被发现以来,二维材料因诸多优异的性能开始受到了广泛的关注和研究。二维硫属化合物在柔性晶体管、光电子传感器以及信息存储方面有着巨大的应用潜力。为了追求更极致、优越的性能,对二元的二维硫属化合物做过渡金属掺杂是提高其性能、改善其功能性的一种策略。
因过渡金属掺杂二维硫属化合物晶体的生长条件相对于二元硫属化合物更为复杂,到目前为止,已经实现的过渡金属掺杂单层二维硫属化合物晶体制备技术并不多。已发表的研究工作,多处于理论预测阶段,本发明解决了Fe掺杂二维单层硫化钨的技术难题。所制备的样品在光电转换、电催化析氢等领域有着巨大的应用前景。
发明内容
本发明的目的是提供一种生长Fe掺杂单层WS2二维晶体的方法,本发明所述的方法步骤简单、操作方便,合成速度快且成本低,制备得到的Fe掺杂单层WS2二维晶体结晶性好,化学及热力学性能稳定。在超薄电子器件、电催化析氢等领域有着巨大的应用前景。
为了实现上述目的,本发明采用的技术方案是:
一种生长Fe掺杂单层WS2二维晶体的方法,包括以下步骤:以Fe2O3、NaCl、WO3、S为原料,在多温区管式炉里面以Si/SiO2为基底,通过S单质对WO3及Fe2O3同时硫化,共同参与成键,使Fe取代部分WS2单层二维晶体中W的位置,通过化学气相沉积的方式制备得到Fe掺杂单层WS2二维晶体。
本发明技术方案的进一步改进在于:将S单质和WO3、Fe2O3、NaCl的混合物分别用刚玉舟置于多温区管式炉的上游和下游,进行加热硫化反应。
本发明技术方案的进一步改进在于:所述多温区管式炉的上游温度为150-210℃。
本发明技术方案的进一步改进在于:所述多温区管式炉的下游温度为900-980℃。
本发明技术方案的进一步改进在于:所述多温区管式炉中通入氩气,所述的氩气的流量为20-50sccm。
本发明技术方案的进一步改进在于:所述多温区管式炉管内压强为50-200Pa。
本发明技术方案的进一步改进在于:所述硫化反应的升温时间为30-50min,反应时间为25-50min。
本发明技术方案的进一步改进在于:所述方法还包括硫化反应前对所用样品沉积基底Si/SiO2用丙酮进行超声清洗,后用乙醇清洗,最后用N2吹干。
本发明技术方案的进一步改进在于:所述方法还包括在硫化反应之前,进行清洗多温区管式炉及刚玉舟,并将装有反应源的刚玉舟放置于多温区管式炉的上下游。
本发明技术方案的进一步改进在于:所述清洗多温区管式炉及刚玉舟的步骤中,使用氩气进行清洗。
由于采用了上述技术方案,本发明取得的技术效果有:
本发明所述的方法仅需一步便能在两小时左右的时间内合成掺杂样品,且所用的反应原料为简单易得的钨、铁的氧化物及硫单质和氯化钠,成本低廉,制备得到的Fe掺杂单层WS2二维晶体通过诸如拉曼光谱、XPS光谱、扫描透射电镜等多种技术手段的表征证明了其有着良好的结晶性和稳定的化学及热力学性能。因为铁的替代钨掺杂,改变了原有硫化钨的结构,在原有W-S键的基础上,形成了Fe-S键这样的新的结构,进而使其性能上与纯硫化钨相比有较大不同,在二维硫属化合物中掺杂过渡金属元素,在理论上预测可能会产生磁性,进而拓宽了二维硫化钨晶体的实际应用,如在超薄电子器件领域、电催化析氢等领域都有着巨大的应用潜力。
本发明通过将S单质和WO3、Fe2O3、NaCl的混合物共同放入多温区管式炉中进行硫化反应,通过S单质对WO3及Fe2O3同时硫化,共同参与成键,使Fe取代部分WS2单层二维晶体中W的位置,得到Fe掺杂单层WS2二维晶体。
附图说明
图1是本发明制备该Fe掺杂单层WS2二维晶体的实验流程图;
图2为实验室制备的单层WS2的光学照片;
图3为实验室制备的Fe掺杂单层WS2二维晶体的光学照片;
图4为Fe掺杂单层WS2二维晶体的AFM图片;
图5为Fe掺杂单层WS2二维晶体与WS2对比的拉曼分析图;
图6为Fe掺杂单层WS2二维晶体与WS2对比的PL分析图;
图7-图9为Fe掺杂单层WS2的XPS数据图;
图10-图13为Fe掺杂单层WS2的TEM-EDX elemental mapping图;
图14为Fe掺杂单层WS2的STEM图。
具体实施方式
下面结合附图及具体实施例对本发明做进一步详细说明:
本发明公开了一种生长Fe掺杂单层WS2二维晶体的方法,如图1所示,为本发明的的实验流程图,其包括以下步骤:
1、用丙酮、乙醇超声清洗SiO2/Si基片,并用N2吹干;
2、采用氩气对多温区管式炉的石英管和刚玉舟进行清洗;
3、将S单质和WO3、Fe2O3、NaCl的混合物分别用刚玉舟置于多温区管式炉的上游和下游,进行加热硫化反应;
4、步骤3中多温区管式炉上游升温到150-210℃,下游升温至900-980℃;
5、保持多温区管式炉氩气的气流量为20-50sccm,管内压强为50-200Pa;
6、控制步骤3、4中硫化反应的升温时间为30-50min,硫化反应为的时间为25-50min,后自然冷却至室温,得到Fe掺杂的单层WS2二维晶体。
以下为本发明的具体实施例:
实施例1
包括以下步骤:
1、用丙酮、乙醇超声清洗SiO2/Si基片,并用N2吹干;
2、采用氩气对多温区管式炉的石英管和刚玉舟进行清洗;
3、将S单质和WO3、Fe2O3、NaCl的混合物分别用刚玉舟置于多温区管式炉的上游和下游,进行加热硫化反应;
4、步骤3中多温区管式炉上游升温到150℃,下游升温至940℃;
5、保持多温区管式炉氩气的气流量为20sccm,管内压强为50Pa;
6、控制步骤3、4中硫化反应的升温时间为30min,硫化反应为的时间为25min,后自然冷却至室温,得到Fe掺杂的单层WS2二维晶体。
实施例2
包括以下步骤:
1、用丙酮、乙醇超声清洗SiO2/Si基片,并用N2吹干;
2、采用氩气对多温区管式炉的石英管和刚玉舟进行清洗;
3、将S单质和WO3、Fe2O3、NaCl的混合物分别用刚玉舟置于多温区管式炉的上游和下游,进行加热硫化反应;
4、步骤3中多温区管式炉上游升温到210℃,下游升温至980℃;
5、保持多温区管式炉氩气的气流量为50sccm,管内压强为200Pa;
6、控制步骤3、4中硫化反应的升温时间为40min,硫化反应为的时间为50min,后自然冷却至室温,得到Fe掺杂的单层WS2二维晶体。
实施例3
其包括以下步骤:
1、用丙酮、乙醇超声清洗SiO2/Si基片,并用N2吹干;
2、采用氩气对多温区管式炉的石英管和刚玉舟进行清洗;
3、将S单质和WO3、Fe2O3、NaCl的混合物分别用刚玉舟置于多温区管式炉的上游和下游,进行加热硫化反应;
4、步骤3中多温区管式炉上游升温到170℃,下游升温至900℃;
5、保持多温区管式炉氩气的气流量为25sccm,管内压强为72Pa;
6、控制步骤3、4中硫化反应的升温时间为35min,硫化反应为的时间为40min,后自然冷却至室温,得到Fe掺杂的单层WS2二维晶体。
通过本发明的方法步骤得到的Fe掺杂的单层WS2二维晶体在光学显微镜、 荧光显微镜、拉曼光谱仪、X射线光电子能谱仪(XPS)、原子力显微镜(AFM)扫描 透射电镜(STEM)等设备的表征,得到了如图2-图7的附图,确定了合成的样品 为Fe掺杂WS2的单层二维晶体,且其结晶度、热稳定性良好。在光电探测器件、 柔性薄膜、电化学析氢等领域都有着巨大的应用潜力。
如图2所示为实验室制备的单层WS2的光学照片,图3为通过本发明的方法步骤制得的Fe掺杂的单层WS2二维晶体的光学照片,可以看出纯的单层WS2多为三角形,而掺杂Fe元素后,生成的样品多为六边形,这在一定程度上改变了WS2晶体的结晶自范性。
如图4所示,为Fe掺杂的单层WS2二维晶体的AFM图片,通过AFM测得其厚度为0.95mm,这与单层WS2的厚度是一致的,说明通过本发明方法步骤制备得到的Fe掺杂WS2二维晶体为单层的。
如图5、6所示,分别为Fe掺杂的单层WS2二维晶体与WS2对比的拉曼及PL分析图,相比WS2,Fe掺杂的单层WS2二维晶体在247-251cm-1的位置多了一个峰位,且其PL峰消失。说明了Fe的掺杂在WS2中产生了新的结合键并且引起了WS2带隙的改变。
图7-图9为Fe掺杂单层WS2的XPS数据图,通过对该数据的分析,进一步证明了在硫化钨中掺进了Fe元素,以及形成了Fe-S键。
图10-图13为Fe掺杂单层WS2的TEM-EDX elemental mapping图,更直观的说明了掺杂的Fe元素在硫化钨晶体中的分布。
图14为Fe掺杂单层WS2的STEM图,通过该图可以判断出Fe替代了原有的W的位置,从而得到了Fe掺杂的WS2
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理等所做的等效变化,均应涵盖于本发明的保护范围之内。
本发明的说明书中列举了各种组分的可选材料,但是本领域技术人员应该理解:上述组分材料的列举并非限制性的,也非穷举性的,各种组分都可以用其他本发明说明书中未提到的等效材料替代,而仍可以实现本发明的目的。说明书中所提到的具体实施例也是仅仅起到解释说明的目的,而不是为例限制本发明的范围。
另外,本发明每一个组分的用量范围包括说明书中所提到的任意下限和任意上限的任意组合,也包括各具体实施例中该组分的具体含量作为上限或下限组合而构成的任意范围:所有这些范围都涵盖在本发明的范围内,只是为了节省篇幅,这些组合而成的范围未在说明书中一一列举。说明书中所列举的本发明的每一个特征,可以与本发明的其他任意特征组合,这种组合也都在本发明的公开范围内,只是为了节省篇幅,这些组合而成的范围未在说明书中一一列举。

Claims (10)

1.一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于,包括以下步骤:以Fe2O3、NaCl、WO3、S为原料,在多温区管式炉里面以Si/SiO2为基底,通过S单质对WO3及Fe2O3同时硫化,共同参与成键,使Fe取代部分WS2单层二维晶体中W的位置,通过化学气相沉积的方式制备得到Fe掺杂单层WS2二维晶体。
2.根据权利要求1所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:将S单质和WO3、Fe2O3、NaCl的混合物分别用刚玉舟置于多温区管式炉的上游和下游,进行加热硫化反应。
3.根据权利要求2所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述多温区管式炉的上游温度为150-210℃。
4.根据权利要求2所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述多温区管式炉的下游温度为900-980℃。
5.根据权利要求2所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述多温区管式炉中通入氩气,所述的氩气的流量为20-50sccm。
6.根据权利要求2所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述多温区管式炉管内压强为50-200Pa。
7.根据权利要求2所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述硫化反应的升温时间为30-50min,反应时间为25-50min。
8.根据权利要求2所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述方法还包括硫化反应前对所用样品沉积基底Si/SiO2用丙酮进行超声清洗,后用乙醇清洗,最后用N2吹干。
9.根据权利要求2所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述方法还包括在硫化反应之前,进行清洗多温区管式炉及刚玉舟,并将装有反应源的刚玉舟放置于多温区管式炉的上下游。
10.根据权利要求9所述的一种生长Fe掺杂单层WS2二维晶体的方法,其特征在于:所述清洗多温区管式炉及刚玉舟的步骤中,使用氩气进行清洗。
CN202010096253.9A 2020-02-17 2020-02-17 一种生长Fe掺杂单层WS2二维晶体的方法 Active CN111218717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010096253.9A CN111218717B (zh) 2020-02-17 2020-02-17 一种生长Fe掺杂单层WS2二维晶体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010096253.9A CN111218717B (zh) 2020-02-17 2020-02-17 一种生长Fe掺杂单层WS2二维晶体的方法

Publications (2)

Publication Number Publication Date
CN111218717A true CN111218717A (zh) 2020-06-02
CN111218717B CN111218717B (zh) 2021-08-20

Family

ID=70829718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010096253.9A Active CN111218717B (zh) 2020-02-17 2020-02-17 一种生长Fe掺杂单层WS2二维晶体的方法

Country Status (1)

Country Link
CN (1) CN111218717B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540956A (zh) * 2021-12-29 2022-05-27 杭州电子科技大学 一种铌掺杂二维硫化钨晶体材料的制备方法
CN116354396A (zh) * 2023-03-23 2023-06-30 兰州大学 一种富含缺陷簇单层MoS2、制备方法及其应用
CN117446871A (zh) * 2023-10-13 2024-01-26 湖北江城实验室 一种二维氧化铁纳米片及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952682A (zh) * 2014-04-22 2014-07-30 中国科学院上海光学精密机械研究所 化学气相沉积生长单层二硫化钼的方法
CN104746137A (zh) * 2015-03-26 2015-07-01 厦门烯成科技有限公司 一种层状的二硫化钼薄膜的制备方法
CN105543788A (zh) * 2015-12-18 2016-05-04 中国科学院兰州化学物理研究所 一种铁掺杂二硫化钨复合薄膜
CN105948126A (zh) * 2016-04-26 2016-09-21 国家纳米科学中心 钴掺杂硫化钨纳米片、其制备方法及电化学析氢的用途
CN108118395A (zh) * 2017-12-15 2018-06-05 北京科技大学 一种化学气相沉积制备二硒化钨单晶薄膜的方法
CN108993542A (zh) * 2018-08-13 2018-12-14 皖西学院 磁性原子掺杂的单层MoS2及其应用
CN109023297A (zh) * 2018-08-19 2018-12-18 天津大学 一种大尺寸单层硒分区掺杂二硫化钨薄膜材料的制备方法
CN109183156A (zh) * 2018-11-08 2019-01-11 西北工业大学 一种二硫化物单晶及其制备方法和用途
CN110344022A (zh) * 2019-07-19 2019-10-18 河南师范大学 p型戴维南星形MoS2单层二维材料、制备方法及电子器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952682A (zh) * 2014-04-22 2014-07-30 中国科学院上海光学精密机械研究所 化学气相沉积生长单层二硫化钼的方法
CN104746137A (zh) * 2015-03-26 2015-07-01 厦门烯成科技有限公司 一种层状的二硫化钼薄膜的制备方法
CN105543788A (zh) * 2015-12-18 2016-05-04 中国科学院兰州化学物理研究所 一种铁掺杂二硫化钨复合薄膜
CN105948126A (zh) * 2016-04-26 2016-09-21 国家纳米科学中心 钴掺杂硫化钨纳米片、其制备方法及电化学析氢的用途
CN108118395A (zh) * 2017-12-15 2018-06-05 北京科技大学 一种化学气相沉积制备二硒化钨单晶薄膜的方法
CN108993542A (zh) * 2018-08-13 2018-12-14 皖西学院 磁性原子掺杂的单层MoS2及其应用
CN109023297A (zh) * 2018-08-19 2018-12-18 天津大学 一种大尺寸单层硒分区掺杂二硫化钨薄膜材料的制备方法
CN109183156A (zh) * 2018-11-08 2019-01-11 西北工业大学 一种二硫化物单晶及其制备方法和用途
CN110344022A (zh) * 2019-07-19 2019-10-18 河南师范大学 p型戴维南星形MoS2单层二维材料、制备方法及电子器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢凌云: "过渡金属原子掺杂单层WS2的第一性原理研究", 《中国硕士学位论文全文数据库 基础科学辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540956A (zh) * 2021-12-29 2022-05-27 杭州电子科技大学 一种铌掺杂二维硫化钨晶体材料的制备方法
CN116354396A (zh) * 2023-03-23 2023-06-30 兰州大学 一种富含缺陷簇单层MoS2、制备方法及其应用
CN117446871A (zh) * 2023-10-13 2024-01-26 湖北江城实验室 一种二维氧化铁纳米片及其制备方法

Also Published As

Publication number Publication date
CN111218717B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN111218717B (zh) 一种生长Fe掺杂单层WS2二维晶体的方法
CN106558475B (zh) 晶圆级单层二硫化钼膜及其制备方法
CN111285401B (zh) 一种锰掺杂单层二硫化钨二维晶体的制备方法
CN112663144B (zh) 二维In2S3/SnS异质结晶体材料的制备方法
Kim et al. Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers
CN111893456A (zh) 二维过渡金属硫族化合物及其制备方法和器件
CN108486531A (zh) 一种二硒化钯二维晶态薄膜层的制备方法
Liang et al. Carbon-nanoparticle-assisted growth of high quality bilayer WS 2 by atmospheric pressure chemical vapor deposition
Cadot et al. Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates
Siciliano et al. Synthesis and characterization of indium monoselenide (InSe) nanowires
CN102953048B (zh) 一种纳米掺杂结构及其制备方法
Xin et al. Circular graphene platelets with grain size and orientation gradients grown by chemical vapor deposition
Choi et al. Influence of oxygen on the microstructural growth of SiC nanowires
CN113410287A (zh) 二维SnSe-SnSe2 p-n异质结及其制备方法
JP4431745B2 (ja) 窒化アルミニウムナノリボンの製造方法
CN112760613B (zh) 一种碳掺杂的二硫化钼纳米材料的制备方法
Zhou et al. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires
Pandurangan et al. Single-step synthesis of germanium nanowires encapsulated within multi-walled carbon nanotubes
JP4441617B2 (ja) 窒化アルミニウムナノチューブ及びその製造方法
CN112174211B (zh) 一种制备铬掺杂单层二硫化钨二维晶体的方法
Ramírez-Meneses et al. Preparation and photocatalytic activity of TiO 2 films with Ni nanoparticles
Jung et al. A sonochemical approach to the fabrication of laterally aligned ZnO nanorod field emitter arrays on a planar substrate
Jeon et al. Polymorphism of low-dimensional material with ternary composition chalcogenide Ta2Ni3Se8
Kim et al. Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides
Yuvaraj et al. Effect of oxygen partial pressure on the growth of zinc micro and nanostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant