CN105543788A - 一种铁掺杂二硫化钨复合薄膜 - Google Patents

一种铁掺杂二硫化钨复合薄膜 Download PDF

Info

Publication number
CN105543788A
CN105543788A CN201510949156.9A CN201510949156A CN105543788A CN 105543788 A CN105543788 A CN 105543788A CN 201510949156 A CN201510949156 A CN 201510949156A CN 105543788 A CN105543788 A CN 105543788A
Authority
CN
China
Prior art keywords
power supply
frequency power
target
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510949156.9A
Other languages
English (en)
Inventor
郝俊英
孔良桂
徐书生
刘维民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201510949156.9A priority Critical patent/CN105543788A/zh
Publication of CN105543788A publication Critical patent/CN105543788A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种铁掺杂二硫化钨复合薄膜,该复合薄膜通过以下方法制备得到:1)采用超声清洗法清洗基片;2)用氩等离子体溅射清洗基片;3)开启中频电源,在中频电流为2.00?A,氩气流量为80~90?sccm,工作压强为2.50~3.00?Pa,偏压为-200~-250?V,靶材与基片距离为8.00cm~8.50?cm的条件下溅射孪生Ti靶,沉积厚度为20~250?nm的纯Ti过渡层;4)关闭上述中频电源,继续通氩气于真空室中,在工作压强为1.50~2.50?Pa的条件下,保持脉冲直流偏压为-200~-250?V,开启射频电源,在电场作用下产生紫红色辉光,生成含有Ar的等离子体,继而溅射由Fe和WS2组成的复合靶材,溅射时间为25~90?min。本发明所述薄膜具有十分优异的摩擦学性能,结构致密,与基底材料的结合牢固,具有良好的应用前景。

Description

一种铁掺杂二硫化钨复合薄膜
技术领域
本发明涉及一种铁掺杂二硫化钨复合薄膜。
背景技术
二硫化钨薄膜由于具有优异的减摩耐磨特性,较高的光吸收系数、较强的热稳定性和化学惰性,使其在机械、电子、光电转换、工业催化、生物医学等领域具有广阔的研究前景和应用价值。
目前,制备二硫化钨薄膜材料的主要方法有物理气相沉积、化学气相沉积法、脉冲激光沉积和硫化法等。在这些方法中,物理气相沉积制备的薄膜膜-基结合强度较高,因而在航空航天领域具有广泛的应用前景。其中射频溅射技术不但解决了半导体靶材不易导电引起靶表面的电荷积累问题,而且有效提高了靶材的离化率,保证薄膜有高的沉积速率。另一方面,随着航空航天等高新技术的迅猛发展,对固体润滑薄膜的使用工况及自身性能提出了更高要求。提高固体润滑薄膜的耐磨寿命是将其推向更广应用的前提与基础。然而,纯二硫化钨薄膜由于其疏松的柱状结构和低的膜-基结合强度,使其不能完全满足实际应用需求。目前,采用元素掺杂、多层复合、退火等方法可优化薄膜的结构,提高薄膜的致密度,改善薄膜的摩擦学性能。但是在众多掺杂元素中,铁掺杂对二硫化钨薄膜性能的影响鲜有报道。
发明内容
本发明的目的在于提供一种铁掺杂二硫化钨复合薄膜,该薄膜在高真空环境中具有超长的耐磨寿命、较低的摩擦系数和优异的抗磨损性能,且该薄膜均匀致密,膜-基结合强度高。
一种铁掺杂二硫化钨复合薄膜,其特征在于该复合薄膜通过以下方法制备得到:
1)采用超声清洗法分别在无水乙醇和丙酮溶液中清洗基片,吹干后置于沉积室中,进行抽真空;
2)当腔室内真空度低于5×10-4Pa时,通氩气于真空室中,在占空比65%~75%、脉冲直流偏压-700~-1000V的条件下用氩等离子体溅射清洗基片10~15min;
3)开启中频电源,在中频电流为2.00A,氩气流量为80~90sccm,工作压强为2.50~3.00Pa,偏压为-200~-250V,靶材与基片距离为8.00cm~8.50cm的条件下溅射孪生Ti靶,沉积厚度为20~250nm的纯Ti过渡层;
4)关闭上述中频电源,继续通氩气于真空室中,在工作压强为1.50~2.50Pa的条件下,保持脉冲直流偏压为-200~-250V,开启射频电源,在电场作用下产生紫红色辉光,生成含有Ar的等离子体,继而溅射由Fe和WS2组成的复合靶材,溅射时间为25~90min。
所述基片为单晶硅片或经机械抛光的不锈钢片。
所述射频电源的功率密度为0.0306W/mm2~0.0357W/mm2
所述复合靶材中Fe靶与WS2靶的面积比为1/8~1/12。
与现有技术相比,本发明具有以下优点:
(1)本发明所述薄膜在高真空环境下(真空度低于5×10-4Pa)的耐磨寿命可达2.15×106转,摩擦系数约为0.02,且磨损率低至4.51×10-19m3/(N·m)。
(2)本发明所述薄膜断面呈现出纳米颗粒相增强的柱状晶结构,薄膜的致密度较高。
(3)本发明所述薄膜结晶强度较低,薄膜的纳米硬度和弹性模量分别为0.79GPa和29.40GPa,而膜-基结合强度较高,约为33.69N。
本发明具有上述优点的原因在于:Fe的掺入有效抑制了WS2薄膜柱状晶的快速生长,消除成膜离子快速扩散形成的孔洞,薄膜的致密性显著提高,且均匀镶嵌在柱状晶上的纳米颗粒相使薄膜的力学性能增强,因此复合薄膜表现出优异的摩擦学性能。
附图说明
图1为本发明实施例1所述铁掺杂二硫化钨薄膜的X射线衍射图谱。
图2为本发明实施例1所述铁掺杂二硫化钨薄膜表面的扫描电镜图。
图3为本发明实施例1所述铁掺杂二硫化钨薄膜截面的扫描电镜图。
图4为本发明实施例1所述铁掺杂二硫化钨薄膜在大气中的摩擦系数曲线图。
具体实施方式
为了更好地理解本发明,通过实施例进行说明。
实施例1
一种铁掺杂二硫化钨复合薄膜,该复合薄膜通过以下方法制备得到:
(1)超声清洗基片:首先用无水乙醇和丙酮溶液超声清洗N100型单晶硅片10min,吹干后置于真空室中,进行抽真空;
(2)溅射清洗基片:当真空度低于5×10-4Pa时,通氩气于真空室中,在占空比为70%,脉冲直流偏压-900V的条件下,用氩(Ar)等离子体进行溅射清洗基片15min,以去除表面的氧化层和其它杂质;
(3)过渡层沉积:开启中频电源,在中频电流为2.00A,氩气流量为90sccm,工作压强为2.50Pa,负偏压为-250V,靶材与基片距离为8.00cm的条件下溅射孪生Ti靶,沉积厚度为200nm的纯Ti过渡层;
(4)铁掺杂二硫化钨薄膜沉积:关闭中频电源,保持脉冲直流偏压为-250V,继续通氩气于真空室中,在工作压强为2.50Pa的条件下开启射频电源(功率密度为0.0357W/mm2),在电场作用下产生紫红色辉光,生成含有Ar的等离子体,溅射由铁和二硫化钨组成的面积比为A/A二硫化钨=1/8的复合靶材。溅射时间为90min,沉积得到WS2-Fe复合薄膜。
实施例2
利用X射线衍射(XRD)的掠射角技术对复合薄膜结构表征发现,复合薄膜显示出较弱的(101)、(103)衍射峰,没有发现Fe的衍射峰(见图1),说明Fe元素以非晶的形式存在于WS2基质中。用场发射扫描电子显微镜(FESEM)对薄膜形貌观察发现,薄膜表面呈树枝状晶体结构(见图2),断面呈现出纳米颗粒相增强的柱状晶结构(见图3)。划痕测试实验表明,薄膜的膜-基结合力高达33.69N,薄膜与基片结合良好。
实施例3
采用真空摩擦试验仪对制备的复合薄膜进行高真空摩擦性能测试,真空度为5.0×10-4Pa。以直径为3.00~6.00mm的不锈钢球(材质为GCr15)为对偶,采用旋转接触运动方式,旋转半径为4.00mm。滑动线速率为0.42m/s,载荷为5.00N,其摩擦曲线见图4。可见其耐磨寿命可达2.15×106转,摩擦系数约为0.02,磨损率达4.51×10-19m3/(N·m)。

Claims (4)

1.一种铁掺杂二硫化钨复合薄膜,其特征在于该复合薄膜通过以下方法制备得到:
1)采用超声清洗法分别在无水乙醇和丙酮溶液中清洗基片,吹干后置于沉积室中,进行抽真空;
2)当腔室内真空度低于5×10-4Pa时,通氩气于真空室中,在占空比65%~75%、脉冲直流偏压-700~-1000V的条件下用氩等离子体溅射清洗基片10~15min;
3)开启中频电源,在中频电流为2.00A,氩气流量为80~90sccm,工作压强为2.50~3.00Pa,偏压为-200~-250V,靶材与基片距离为8.00cm~8.50cm的条件下溅射孪生Ti靶,沉积厚度为20~250nm的纯Ti过渡层;
4)关闭上述中频电源,继续通氩气于真空室中,在工作压强为1.50~2.50Pa的条件下,保持脉冲直流偏压为-200~-250V,开启射频电源,在电场作用下产生紫红色辉光,生成含有Ar的等离子体,继而溅射由Fe和WS2组成的复合靶材,溅射时间为25~90min。
2.如权利要求1所述的复合薄膜,其特征在于所述基片为单晶硅片或经机械抛光的不锈钢片。
3.如权利要求1所述的复合薄膜,其特征在于所述射频电源的功率密度为0.0306W/mm2~0.0357W/mm2
4.如权利要求1所述的复合薄膜,其特征在于所述复合靶材中Fe靶与WS2靶的面积比为1/8~1/12。
CN201510949156.9A 2015-12-18 2015-12-18 一种铁掺杂二硫化钨复合薄膜 Pending CN105543788A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510949156.9A CN105543788A (zh) 2015-12-18 2015-12-18 一种铁掺杂二硫化钨复合薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510949156.9A CN105543788A (zh) 2015-12-18 2015-12-18 一种铁掺杂二硫化钨复合薄膜

Publications (1)

Publication Number Publication Date
CN105543788A true CN105543788A (zh) 2016-05-04

Family

ID=55823338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510949156.9A Pending CN105543788A (zh) 2015-12-18 2015-12-18 一种铁掺杂二硫化钨复合薄膜

Country Status (1)

Country Link
CN (1) CN105543788A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111218717A (zh) * 2020-02-17 2020-06-02 燕山大学 一种生长Fe掺杂单层WS2二维晶体的方法
CN111979518A (zh) * 2020-08-20 2020-11-24 中国科学院兰州化学物理研究所 一种负载金属基纳米颗粒的复合润滑薄膜及其制备方法
CN114196954A (zh) * 2021-12-07 2022-03-18 中国第一汽车股份有限公司 一种复合渗硫层及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052257A (ja) * 2009-09-01 2011-03-17 Yaskawa Electric Corp 転動部材、転動部材を用いた真空用機器および転動部材の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052257A (ja) * 2009-09-01 2011-03-17 Yaskawa Electric Corp 転動部材、転動部材を用いた真空用機器および転動部材の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孔良桂等: "射频非平衡磁控溅射WS2薄膜的结构及其摩擦学性能研究", 《摩擦学学报》 *
赖德明等: "溅射沉积WS2/Ag纳米复合薄膜在不同环境中的摩擦磨损性能研究", 《摩擦学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111218717A (zh) * 2020-02-17 2020-06-02 燕山大学 一种生长Fe掺杂单层WS2二维晶体的方法
CN111979518A (zh) * 2020-08-20 2020-11-24 中国科学院兰州化学物理研究所 一种负载金属基纳米颗粒的复合润滑薄膜及其制备方法
CN114196954A (zh) * 2021-12-07 2022-03-18 中国第一汽车股份有限公司 一种复合渗硫层及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wu et al. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering
Wang et al. XPS analysis of SiC films prepared by radio frequency plasma sputtering
Warcholinski et al. Structural and mechanical properties of Zr-Si-N coatings deposited by arc evaporation at different substrate bias voltages
Wang et al. Synthesis and characterization of titanium-containing graphite-like carbon films with low internal stress and superior tribological properties
CN102918183B (zh) 用于金属加工的pvd涂层
CN104141109B (zh) 钛金属表面原位合成TiC‑DLC复合涂层的方法
Ferreira et al. Influence of silicon on the microstructure and the chemical properties of nanostructured ZrN-Si coatings deposited by means of pulsed-DC reactive magnetron sputtering
CN105543788A (zh) 一种铁掺杂二硫化钨复合薄膜
CN104694893A (zh) 碳基减摩耐磨涂层及其制备方法
Li et al. Effects of Hf addition on the structure, mechanical and tribological properties of CrN film
CN111945119B (zh) 碳基薄膜、碳基薄膜的制备方法、刀具及应用
Srisang et al. Characterization of SiC in DLC/a-Si films prepared by pulsed filtered cathodic arc using Raman spectroscopy and XPS
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
Cao et al. Effect of bias voltage on microstructure, mechanical and tribological properties of TiAlN coatings
CN101921983B (zh) 一种w-s-c复合膜的制备方法
Dai et al. Properties of W/DLC/W–S–C composite films fabricated by magnetron sputtering
Zhao et al. Microstructure and properties of Mo doped DLC nanocomposite films deposited by a hybrid sputtering system
Wu et al. Effect of C doping on structure and properties of TiAlCrN coatings by filter cathode vacuum arc deposition
US20130029174A1 (en) Coated article and method for making the same
CN107354442B (zh) 一种基体表面硬且韧的减磨防护涂层及其制备方法
Zou et al. Characterization and properties of TiN-containing amorphous Ti–Si–N nanocomposite coatings prepared by arc assisted middle frequency magnetron sputtering
Padmavathy et al. Structural and electrochemical impedance spectroscopic studies on reactive magnetron sputtered titanium oxynitride (TiON) thin films
CN102094172B (zh) 一种TiWN/MoS2复合薄膜的制备方法
CN103317793B (zh) 一种类金刚石基纳米复合涂层刀具及其制备方法
Huang et al. Effects of C content on the microstructure, mechanical and tribological properties of TiAlSiCN coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160504