CN111213054A - 用于添加剂分析的高速处理气相色谱系统及使用其的分析方法 - Google Patents

用于添加剂分析的高速处理气相色谱系统及使用其的分析方法 Download PDF

Info

Publication number
CN111213054A
CN111213054A CN201880065254.8A CN201880065254A CN111213054A CN 111213054 A CN111213054 A CN 111213054A CN 201880065254 A CN201880065254 A CN 201880065254A CN 111213054 A CN111213054 A CN 111213054A
Authority
CN
China
Prior art keywords
analysis
sample
additive
gas chromatography
qualitative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880065254.8A
Other languages
English (en)
Inventor
张麟
陈美敬
南文子
金炳贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
LG Corp
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of CN111213054A publication Critical patent/CN111213054A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/78Detectors specially adapted therefor using more than one detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/624Differential mobility spectrometry [DMS]; Field asymmetric-waveform ion mobility spectrometry [FAIMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/10Preparation using a splitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N30/68Flame ionisation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/885Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及一种用于聚合物材料中的高分子量添加剂的分析的高通量气相色谱系统、及使用该高通量气相色谱系统的分析方法,更具体地,涉及一种高速处理气相色谱系统及使用该高速处理气相色谱系统的分析方法,该高速处理气相色谱系统能够对聚合物中的高分子量添加剂同时进行定性分析和定量分析,并且能够通过提高加热速率和最高柱温来缩短分析时间。

Description

用于添加剂分析的高速处理气相色谱系统及使用其的分析 方法
技术领域
本申请要求于2108年2月23日提交的韩国专利申请No.10-2018-0021608的优先权的权益,其公开内容通过引用并入本文中。
本发明涉及一种用于聚合物材料中的高分子量添加剂分析的高通量气相色谱系统(high throughput gas chromatographic system)及使用该高通量气相色谱系统的分析方法。更具体地,本发明涉及一种高通量气相色谱系统以及使用该高通量气相色谱系统的分析方法,该高通量气相色谱系统能够同时进行聚合物材料中的高分子量添加剂的定性分析和定量分析,并且能够通过提高加热速率和最高柱温来缩短分析时间。
背景技术
通常,为了增强聚合物的性能,经常使用分子量为500Da以上的高分子量添加剂。在这种情况下,气相色谱(GC)的运行时间(RT)通常需要一个小时以上。另一方面,根据现有技术,通过GC/MS(GC-质谱法)进行定性分析,并通过使用GC/FID(具有火焰电离检测器(Flame lonization Detector)的GC)进行定量分析。然而,由于分别需要用于定性分析和进行定量分析的装置,所以存在需要花费很长时间来进行这种分析的缺点。
发明内容
为了克服上述现有技术的缺点,本发明的目的是提供一种高通量气相色谱系统及使用该高通量气相色谱系统的分析方法,该高通量气相色谱系统能够同时进行聚合物材料中的高分子量添加剂的定性分析和定量分析并且能够缩短分析时间。
为了解决上述问题,本发明提供一种用于添加剂分析的高通量气相色谱(GC)系统,包括:
入口(inlet),样品经由所述入口注入;
柱(column),从入口注入的样品被引入到所述柱中;
分流器(splitter),所述分流器用于将引入到柱中的样品分配到火焰电离检测器(FID:Flame Ionization Detector)和质谱仪(MS:Mass Spectrometer);
第一限流器,所述第一限流器是样品在分流器与火焰电离检测器之间移动经由的路径;
第二限流器,所述第二限流器是样品在分流器与质谱仪之间移动经由的路径;
质谱仪,所述质谱仪用于样品的定性分析;以及
火焰电离检测器,所述火焰电离检测器用于样品的定量分析,
其中,高通量气相色谱系统能够同时进行聚合物样品的定性分析和定量分析。
为了解决上述问题,本发明还提供一种对聚合物样品中的添加剂进行定性分析和定量分析的方法,其包括以下步骤:
(i)相对于1g样品,使用5mL至40mL的第一溶剂溶解含有添加剂的聚合物样品;
(ii)相对于1g样品,使用10mL至100mL的第二溶剂使(i)的溶液的样品沉淀,并过滤沉淀物而分离成样品和含有添加剂的溶液;以及
(iii)通过使用如上所述的高通量气相色谱(GC)系统同时进行含有添加剂的溶液的定性分析和定量分析。
有益效果
根据本发明的用于高分子量添加剂分析的高通量气相色谱系统及使用该高通量气相色谱系统的分析方法,与常规的定性/定量分析相比,可以同时进行定性分析和定量分析,并且通过增加最高柱温可以大幅缩短分析时间。
附图说明
图1示出了根据本发明一个实施例的高通量气相色谱系统的示意图。
图2示出了根据图1的高通量气相色谱系统中分流器300与其他部件之间的连接。
图3是示出使用根据图1的高通量气相色谱系统同时进行高分子量增塑剂的定性分析和定量分析时的结果的图。
图4a和图4b是示出根据现有技术对高分子量增塑剂分别进行定性分析和定量分析时的结果的图。
图5是示出使用根据图1的高通量气相色谱系统同时进行高分子量抗氧化剂的定性分析和定量分析时的结果的图。
图6a和图6b是示出根据现有技术分别地进行高分子量抗氧化剂的定性分析和定量分析的结果的图。
具体实施方式
在下文中,将详细描述根据本发明一个实施例的高通量气相色谱系统及分析方法。附图被包括以提供对本发明的进一步理解,附图示出了本发明的实施例并且不旨在限制本发明的技术范围。
另外,无论附图标记如何,相同的或相应的部件将由相同的附图标记表示,并且将省略对附图标记的重复描述。为了便于说明,示出的每个部件的大小和形状可能被放大或缩小。
图1示出了根据本发明一个实施例的高通量气相色谱系统10的示意图。
高通量气相色谱系统10包括入口100、柱200、分流器(splitter)300、第一限流器(first restrictor)400、第二限流器(second restrictor)500、火焰电离检测器(FID)600、质谱仪(MS)700以及恒压补充气体供应器800。
在一个实施例中,在根据本发明一个实施例的高通量气相色谱系统10中能够分析的样品可以是高分子量添加剂、或者将两种以上高分子量添加剂混合得到的样品,例如,分子量为500Da以上的抗氧化剂和/或增塑剂。这种添加剂样品经由入口100被注入。
经由入口100注入的样品被转移到柱200。柱200是允许在高温(例如,450℃以下或420℃以下,更具体地350℃至400℃)下进行分析的柱。在一个实施例中,柱200是能够在350℃至450℃下进行分析的高温分析柱。作为即使在高温下也能够分析的柱,例如,可以使用不锈钢(SUS)、由外部涂覆有聚酰亚胺的熔融石英材料制成的柱等。
作为柱200,例如,可以使用具有0.10μm至0.53μm的内径的毛细管柱。然而,根据本发明的高通量气相色谱系统10中的柱200的类型、尺寸、材料等不限于上述,并且可以根据实施本发明的各种环境进行各种变化和修改。
如上所述,样品经由柱200通过分流器300。火焰电离检测器600和质谱仪700可以分别经由第一限流器400和第二限流器500连接到分流器300。另外,恒压补充气体供应器800也连接到分流器300。图2示意性地示出了分流器300与各部件之间的连接。从柱200引入的样品可以在分流器300中被分配,使得能够在火焰电离检测器600和质谱仪700中同时进行定性分析/定量分析。
另一方面,由于火焰电离检测器600中的定量分析是在常压下进行的,而质谱仪700中的定性分析是在真空中进行的,因此在火焰电离检测器600与质谱仪700之间产生压力差。在根据本发明的高通量气相色谱系统10的分流器300中,可以在样品的分配期间在使火焰电离检测器600与质谱仪700之间的压力差最小化的同时分配样品。
更具体地,当将样品从分流器300分配到第一限流器400和第二限流器500中时,可以调节将要分配到第一限流器400和第二限流器500的样品量的比率。例如,供应到与火焰离子检测器600连接的第一限流器400的样品量与供应到与质谱仪700连接的第二限流器500的样品量之比可以为例如10:90至90:10。该样品量的比率的范围通过考虑限流器的适当的长度调整来确定。
为此,可以通过调整第一限流器400和第二限流器500的长度和/或内径来调整要分配到第一限流器400和第二限流器500的每个样品的量。第一限流器400和第二限流器500可以各自具有管状形状。在一个实施例中,例如,当供应到与火焰电离检测器600连接的第一限流器400的样品量与供应到与质谱仪700连接的第二限流器500的样品量之比为50:50并且恒压补充气体供应器800和柱200具有相同的供应流量时,如果第一限流器400和第二限流器500具有相同的内径,则第一限流器400的长度与第二限流器500的长度之比可以为26.9:73.1。或者,在其他实施例中,例如,当供应到与火焰电离检测器600连接的第一限流器400的样品量与供应到与质谱仪700连接的第二限流器500的样品量之比为20:80并且恒压补充气体供应器800和柱200具有80:20的供应流量比时,如果第一限流器400和第二限流器500具有相同的内径,则第一限流器400的长度与第二限流器500的长度之比可以为59.6:40.4。在一个实施例中,第一限流器的长度与第二限流器的长度之比可以为3.5:96.5至76.8:23.2。通过调整限流器的长度,调节MS与FID之间的分配比。
为了使样品在分流器300中分别经由第一限流器400和第二限流器500被分配到火焰电离检测器600和质谱仪700时的压力差最小化,恒压补充气体供应器800连接到分流器300以将少量补充气体供应到与质谱仪700连接的第二限流器500。恒压补充气体供应器800是与气相色谱仪制造商相同的公司提供的装置,例如,可以使用安捷伦的Aux EPC(AgilentAux EPC)(G3440A选件301)。作为补充气体,例如,可以使用氦气(He)等。例如,供应到第二限流器500的补充气体的量可以是每分钟1mL至10mL。然而,在根据本发明的高通量气相色谱系统10中从恒压补充气体供应器800经由分流器300供应到第二限流器500的补充气体的类型、量等不限于上述,并且可以根据实施本发明的各种环境进行各种变化和修改。
例如,通过将第一限流器400的长度设定为1.026m,内径设定为0.15μm,并且将第二限流器500的长度设定为21.475m,内径设定为0.25μm,当恒压补充气体供应器800和柱200具有相同的流量时,供应到第一限流器的样品量与供应到第二限流器的样品量之比可以为50:50。
对于高温分析,优选地,分流器300、第一限流器400和第二限流器500也是由能够耐受高温(例如,450℃以下或420℃以下,更具体地350℃至400℃)的材料制成。例如,分流器300的材料可以是不锈钢(SUS)等。另外,第一限流器400和第二限流器500中的每一者的材料例如可以是不锈钢(SUS)等。例如,分流器300可以是与气相色谱仪制造商相同的公司提供的装置,例如,安捷伦的Aux EPC(Agilent Aux EPC)(G3440A选件301)的现有的7890A或6890N GCs(G3180B)的带有补充气体附件的双向分流器。第一限流器400和第二限流器500可以分别是来自Frontier实验室(Frontier Laboratories)的Ultra
Figure BDA0002440641100000051
灭活管。
然而,根据本发明的高通量气相色谱系统10中的分流器300、第一限流器400和第二限流器500的尺寸、材料等不限于上述,并且可以根据实施本发明的各种环境来进行各种变化和修改。
另外,本发明提供一种使用用于添加剂分析的系统对聚合物样品中的添加剂进行定性分析和定量分析的方法。根据本发明的分析方法,可以同时进行添加剂的定性分析和定量分析并且可以缩短分析时间。
具体地,本发明的分析方法包括以下步骤:
(i)相对于1g样品,使用5mL至40mL的第一溶剂溶解含有添加剂的聚合物样品;
(ii)相对于1g样品,使用10mL至100mL的第二溶剂使(i)的溶液的样品沉淀,并过滤沉淀物而分离成样品和含有添加剂的溶液;以及
(iii)通过使用根据本发明的高通量气相色谱(GC)系统同时进行包含添加剂的溶液的定性分析和定量分析。
根据本发明的一个实施例,在350℃至450℃下使用用于高温分析的柱进行在步骤(iii)的高通量气相色谱(GC)系统中的含有添加剂的溶液的分析。
根据本发明的一个实施例,聚合物样品可以是聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氨酯(PU)等。
根据本发明的一个实施例,添加剂作为高分子量添加剂,例如分子量为500Da以上的添加剂,可以是增塑剂、抗氧化剂、UV稳定剂、增亮剂、光引发剂、储存稳定剂、润滑剂等。具体而言,添加剂是诸如邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二异癸酯(DIDP)、邻苯二甲酸二异壬酯(DINP)、偏苯三酸三乙基己酯(TOTM)、偏苯三酸三异壬酯(TINTM)、偏苯三酸三异癸酯(TIDTM)的增塑剂,或诸如来自Ciba的
Figure BDA0002440641100000061
系列的酚类抗氧化剂。
根据本发明的一个实施例,第一溶剂例如可以是四氢呋喃(THF)、乙酸乙酯(EA)、苯、三氯乙烯(TCE)、丙酮、二氯化乙烯、甲乙酮、氯仿等,并且第二溶剂例如可以是甲醇、乙醇、丙二醇、二甲基亚砜等,但不限于此。
在下文中,将详细描述本发明的实施例,以使本领域技术人员能够容易地实施本发明。然而,本发明可以以许多不同的形式实施,并且不应被解释为限于这里阐述的实施例。
实施例1:作为添加剂的高分子量增塑剂的定性分析和定量分析
在该实施例中,使用根据本发明的高通量气相色谱系统同时进行作为聚合物样品的聚氯乙烯(PVC)中的作为高分子量增塑剂的偏苯三酸三异壬酯(TINTM:分子量588.87)的定性分析和定量分析。
具体地,将0.5g的含有TINTM的聚氯乙烯(PVC)溶解在5mL的四氢呋喃(THF)中,向该溶液中加入20mL的甲醇,并取上清液以获得含有TINTM的溶液。在以下条件下使用根据本发明的高通量气相色谱系统分析含有TINTM的溶液。
柱(column):UA-5(HT/MS)(0.25mm ID×30mL,0.25m d.f.毛细管)
注射器(injector):分流/不分流
注射器温度:320℃
气体流量:柱(He):2mL/min
烤箱温度:初始温度和时间:100℃,3min
进程速率:15℃/min
最终温度和时间:400℃,10min
接口(interface)温度:320℃
FID温度:320℃
所获得的定性分析和定量分析的结果示于图3中。从图3可以发现,分析所花费的时间为25分钟。
比较例1
在该比较例中,在以下条件下,以与实施例1相同的方式,通过GC/MS进行了PVC样品中的TINTM的定性分析,并且使用GC/FID进行了上述增塑剂的定量分析。
GC/MS分析条件
柱:Rxi-5ms(0.25mm ID×30mL,0.25m d.f.毛细管)
注射器:分流/不分流
注射器温度:300℃
气体流量:柱(He):1mL/min
烤箱温度:初始温度和时间:100℃,3min
进程速率:15℃/min
最终温度和时间:300℃,40min
接口温度:300℃
GC/FID分析条件
柱:HP-5(0.32mm ID×30mL,0.25m d.f.毛细管)
注射器:分流/不分流
注射器温度:300℃
气体流量:柱(He):1mL/min
烤箱温度:初始温度和时间:100℃,3min
进程速率:15℃/min
最终温度和时间:300℃,40min
FID温度:300℃
所获得的定性分析和定量分析的结果分别示于图4a和图4b中。从这些图可以发现,分析所花费的时间为90分钟。
实施例2:作为添加剂的高分子量抗氧化剂的定性分析和定量分析
在该实施例中,通过使用根据本发明的高通量气相色谱系统,同时进行作为聚合物样品的耐热聚丙烯(PP)中的作为高分子量增塑剂的Irganox PS802(分子量为683.2)的定性分析和定量分析。
具体地,在140℃下,将0.5g的含有Irganox PS802(结构式:
Figure BDA0002440641100000081
)的聚丙烯(PP)溶解在含有5mg丁基羟基甲苯(BHT)和5mg磷酸三苯酯(TPP)的10mL的二甲苯中,并且将10mL乙醇添加到该溶液中以获得PP和含有Irganox PS802的溶液。
在以下条件下使用根据本发明的高通量气相色谱系统分析了含有Irganox PS802的溶液:
柱:UA-5(HT/MS)(0.25mm ID×30mL,0.25m d.f.毛细管)
注射器:分流/不分流
注射器温度:320℃
气体流量:柱(He):2mL/min
烤箱温度:初始温度和时间:100℃,3min
进程速率:15℃/min
最终温度和时间:400℃,10min
接口温度:320℃
FID温度:320℃
所获得的定性分析和定量分析的结果示于图5中。从图5可以发现,分析所花费的时间为25分钟。
比较例2
在该比较例中,在以下条件下,以与实施例2相同的方式,通过GC/MS进行了PP样品中的Irganox PS802的定性分析,并通过使用GC/FID进行了Irganox PS802的定量分析。
GC/MS分析条件
柱:ZB-5MS(0.25mm ID×30mL,0.25m d.f.毛细管)
注射器:分流/不分流
注射器温度:300℃
气体流量:柱(He):1mL/min
烤箱温度:初始温度和时间:100℃,3min
进程速率:15℃/min
最终温度和时间:300℃,55min
接口温度:300℃
GC/FID分析条件
柱:HP-5(0.32mm ID×30mL,0.25m d.f.毛细管)
注射器:分流/不分流
注射器温度:300℃
气体流量:柱(He):1mL/min
烤箱温度:初始温度和时间:100℃,3min
进程速率:15℃/min
最终温度和时间:300℃,55min
FID温度:300℃
所获得的定性分析和定量分析的结果分别示于图6a和图6b中。从这些图可以发现,分析所花费的时间为110分钟。
从上述实施例和比较例可以看出,确认到,与对聚合物样品中的增塑剂或抗氧化剂分别通过GC/MS进行定性分析和通过GC/FID进行定量分析的情况相比,通过使用根据本发明的高通量气相色谱系统同时进行聚合物样品中的增塑剂或抗氧化剂的定性分析和定量分析,分析所需的时间可以缩短。因此,本发明通过提供不同于现有技术的技术特征,可以提供由现有技术不可预测的效果。
本领域技术人员将理解的是,可以在不脱离本发明的精神或实质特征的情况下在形式和细节上进行各种改变。因此,应当理解的是,上述的实施例在所有方面都是示例性的,而不是限制性的。另外,本发明的范围由所附权利要求限定而不是由以上详细描述限定。而且,从权利要求书的含义和范围及其等同物得出的所有的改变或修改都应解释为被包括在本发明的范围内。
[附图标记的说明]
10:高通量色谱系统
100:入口 200:柱
300:分流器 400:第一限流器
500:第二个限流器 600:火焰电离检测器
700:质谱仪
800:恒压补充气体供应器

Claims (11)

1.一种用于聚合物中的添加剂分析的高通量气相色谱(GC)系统,包括:
入口,样品经由所述入口注入;
柱,从所述入口注入的所述样品被引入到所述柱中;
分流器,所述分流器用于将引入到所述柱中的所述样品分配到火焰电离检测器(FID)和质谱仪(MS);
第一限流器,所述第一限流器是所述样品在所述分流器与所述火焰电离检测器之间移动经由的路径;
第二限流器,所述第二限流器是所述样品在所述分流器与所述质谱仪之间移动经由的路径;
质量分析器,所述质量分析器用于所述样品的定性分析;以及
所述火焰电离检测器,所述火焰电离检测器用于所述样品的定量分析,
其中,所述高通量气相色谱系统能够同时进行聚合物样品的定性分析和定量分析。
2.根据权利要求1所述的用于添加剂分析的高通量气相色谱系统,其中,所述柱是能够在350℃至450℃下进行分析的高温分析柱。
3.根据权利要求1所述的用于添加剂分析的高通量气相色谱系统,还包括恒压补充气体供应器,所述恒压补充气体供应器连接到所述分流器并且用于将补充气体经由所述第二限流器供应到所述质谱仪。
4.根据权利要求1所述的用于添加剂分析的高通量气相色谱系统,其中,供应到所述第一限流器的所述样品的量与供应到所述第二限流器的所述样品的量之比为10:90至90:10。
5.根据权利要求1所述的用于添加剂分析的高通量气相色谱系统,其中,所述第一限流器的长度与所述第二限流器的长度之比为3.5:96.5至76.8:23.2。
6.一种用于聚合物中的添加剂的定性分析和定量分析的高温分析方法,包括以下步骤:
(i)相对于1g样品,使用5mL至40mL的第一溶剂溶解含有添加剂的聚合物样品;
(ii)相对于1g样品,使用10mL至100mL的第二溶剂使(i)的溶液的所述样品沉淀,并过滤沉淀物而分离成所述样品和含有所述添加剂的溶液;以及
(iii)通过使用根据权利要求1所述的高通量气相色谱(GC)系统同时进行包含所述添加剂的所述溶液的定性分析和定量分析。
7.根据权利要求6所述的用于聚合物中的添加剂的定性分析和定量分析的高温分析方法,其中,通过在350℃至450℃下使用用于高温分析的柱进行在步骤(iii)的所述高通量气相色谱(GC)系统中的含有所述添加剂的所述溶液的分析。
8.根据权利要求6所述的用于聚合物中的添加剂的定性分析和定量分析的高温分析方法,其中,所述聚合物样品选自由聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)和聚氨酯(PU)组成的组。
9.根据权利要求6所述的用于聚合物中的添加剂的定性分析和定量分析的高温分析方法,其中,所述添加剂选自由分子量为500Da以上的增塑剂、抗氧化剂、UV稳定剂、增亮剂、光引发剂、储存稳定剂和润滑剂组成的组。
10.根据权利要求9所述的用于聚合物中的添加剂的定性分析和定量分析的高温分析方法,其中,所述添加剂选自由邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二异癸酯(DIDP)、邻苯二甲酸二异壬酯(DINP)、偏苯三酸三乙基己酯(TOTM)、偏苯三酸三异壬酯(TINTM)、偏苯三酸三异癸酯(TIDTM)和
Figure FDA0002440641090000021
组成的组。
11.根据权利要求6所述的用于聚合物中的添加剂的定性分析和定量分析的高温分析方法,其中,所述第一溶剂选自由四氢呋喃(THF)、乙酸乙酯(EA)、苯、三氯乙烯(TCE)、丙酮、二氯化乙烯、甲乙酮和氯仿组成的组,所述第二溶剂选自由甲醇、乙醇、丙二醇和二甲基亚砜组成的组。
CN201880065254.8A 2018-02-23 2018-10-29 用于添加剂分析的高速处理气相色谱系统及使用其的分析方法 Pending CN111213054A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2018-0021608 2018-02-23
KR1020180021608A KR102241870B1 (ko) 2018-02-23 2018-02-23 첨가제 분석을 위한 고속처리 가스 크로마토그래피 시스템 및 이를 이용한 분석방법
PCT/KR2018/012904 WO2019164087A1 (ko) 2018-02-23 2018-10-29 첨가제 분석을 위한 고속처리 가스 크로마토그래피 시스템 및 이를 이용한 분석방법

Publications (1)

Publication Number Publication Date
CN111213054A true CN111213054A (zh) 2020-05-29

Family

ID=67688474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880065254.8A Pending CN111213054A (zh) 2018-02-23 2018-10-29 用于添加剂分析的高速处理气相色谱系统及使用其的分析方法

Country Status (6)

Country Link
US (1) US11835498B2 (zh)
EP (1) EP3757564B1 (zh)
JP (1) JP7006778B2 (zh)
KR (1) KR102241870B1 (zh)
CN (1) CN111213054A (zh)
WO (1) WO2019164087A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512578B1 (ko) * 2018-10-11 2023-03-22 주식회사 엘지화학 크기 배제 크로마토그래피-열분해-가스 크로마토그래피/질량분석기를 이용한 고분자량 첨가제의 정성 및 정량 분석방법
CN111983088A (zh) * 2020-08-25 2020-11-24 陆良福牌彩印有限公司 使用挥发性有机物分析柱检测纸质印刷品中光引发剂含量的方法
DE112022000900T5 (de) * 2021-02-01 2023-12-07 Leco Corporation Strömungsteiler für Gaschromatographiesysteme
CN113203825A (zh) * 2021-05-24 2021-08-03 贵州茅台酒股份有限公司 一种同时测定白酒中多种易挥发性物质的方法
CN114002338B (zh) * 2021-08-26 2024-02-20 南宁海关技术中心 一种食品接触材料中添加剂迁移量的测定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205313A (ja) * 2002-12-25 2004-07-22 Dainippon Printing Co Ltd ガスクロマトグラフィー装置
CN102662020A (zh) * 2012-03-14 2012-09-12 浙江出入境检验检疫局检验检疫技术中心 纺织品中磷酸酯类阻燃增塑剂的气相色谱-质谱检测方法
US8378293B1 (en) * 2011-09-09 2013-02-19 Agilent Technologies, Inc. In-situ conditioning in mass spectrometer systems
CN203053930U (zh) * 2012-12-13 2013-07-10 北京橡胶工业研究设计院 裂解气相色谱和质谱双检测装置
CN103852535A (zh) * 2014-03-26 2014-06-11 昆山洛丹伦生物科技有限公司 一种电子元器件塑料部件中邻苯二甲酸酯的检测方法
CN105203691A (zh) * 2015-10-15 2015-12-30 上海天洋热熔粘接材料股份有限公司 共聚酯热熔胶网膜中特种含磷阻燃剂的分析测定方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576917A (en) * 1980-09-17 1986-03-18 Phillips Petroleum Company Method for analysis of additives in polyolefins
US4479380A (en) * 1982-02-26 1984-10-30 Brigham Young University Open-tubular supercritical fluid chromatography
US5141534A (en) * 1990-09-28 1992-08-25 The Regents Of The University Of Michigan Sample collection and inlet systems for gas chromatography apparatus
US5191211A (en) * 1992-03-23 1993-03-02 Bridgestone/Firestone, Inc. Thermal desorption method for separating volatile additives from vulcanizable rubber
US5346622A (en) * 1993-03-04 1994-09-13 Hewlett-Packard Company Hydrocarbon class separation and quantitation by split column effluent analysis
US6815668B2 (en) 1999-07-21 2004-11-09 The Charles Stark Draper Laboratory, Inc. Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry
JP2001221786A (ja) 2000-02-07 2001-08-17 Shin Etsu Chem Co Ltd 塩化メチレン残存量の測定方法
JP2004037416A (ja) 2002-07-08 2004-02-05 Hitachi Cable Ltd キャピラリカラム及びその製造方法並びにこれを用いて形成したガスクロマトグラフィ装置
JP2005249691A (ja) 2004-03-05 2005-09-15 Toyota Central Res & Dev Lab Inc ガスクロマトグラフ装置及び排ガス分析方法
US8413484B2 (en) 2005-10-18 2013-04-09 Separation Systems, Inc. Method and system for chemical and physical characterization of complex samples
DE102008032097A1 (de) * 2008-07-08 2010-01-14 Hte Ag The High Throughput Experimentation Company Teststand mit Gruppen von Restriktoren
CN101852766A (zh) 2009-04-01 2010-10-06 中国科学院大连化学物理研究所 一种检测塑料中邻苯二甲酸酯类增塑剂的方法
CN101936973B (zh) * 2009-06-30 2012-11-14 中国石油化工股份有限公司 气相色谱-质谱联用对烃类油品进行快速分类的方法
JP5437831B2 (ja) 2010-01-22 2014-03-12 旭化成ホームズ株式会社 ポリエーテル含有高分子の劣化度評価方法
JP5797959B2 (ja) 2011-07-19 2015-10-21 旭化成ホームズ株式会社 外装用シーリング材の耐用時間算定法
JP6015122B2 (ja) 2012-05-17 2016-10-26 株式会社島津製作所 プレート型カラム及び温調装置並びにガスクロマトグラフ装置
US9702856B2 (en) * 2012-10-03 2017-07-11 Waters Technologies Corporation System and method for rapid analysis of polymer additives
JP6217113B2 (ja) 2013-04-02 2017-10-25 株式会社島津製作所 カラムユニット及びそのカラムユニットを備えたガスクロマトグラフ装置
EP2990789A4 (en) 2013-04-26 2016-05-04 Sumitomo Electric Industries METHOD FOR SEARCHING FOR ORGANIC SUBSTANCES IN A SOLUTION TO BE INVESTIGATED
TWI591338B (zh) 2013-05-02 2017-07-11 羅門哈斯公司 偵測燃料標記物之分析方法
KR20170040878A (ko) 2015-10-06 2017-04-14 대한민국 (식품의약품안전처장) 식품 중 프로필렌글리콜 및 에틸렌글리콜의 동시 분석법
CN106596745A (zh) 2015-10-16 2017-04-26 中国石油化工股份有限公司 脱烯烃产品的分析方法
CN105954449B (zh) 2016-04-27 2017-07-07 中国烟草总公司郑州烟草研究院 一种烟叶挥发性成分的快速检测方法
KR20180021608A (ko) 2016-08-22 2018-03-05 (주)대경피앤씨 폐기물 다목적 선별장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205313A (ja) * 2002-12-25 2004-07-22 Dainippon Printing Co Ltd ガスクロマトグラフィー装置
US8378293B1 (en) * 2011-09-09 2013-02-19 Agilent Technologies, Inc. In-situ conditioning in mass spectrometer systems
CN102662020A (zh) * 2012-03-14 2012-09-12 浙江出入境检验检疫局检验检疫技术中心 纺织品中磷酸酯类阻燃增塑剂的气相色谱-质谱检测方法
CN203053930U (zh) * 2012-12-13 2013-07-10 北京橡胶工业研究设计院 裂解气相色谱和质谱双检测装置
CN103852535A (zh) * 2014-03-26 2014-06-11 昆山洛丹伦生物科技有限公司 一种电子元器件塑料部件中邻苯二甲酸酯的检测方法
CN105203691A (zh) * 2015-10-15 2015-12-30 上海天洋热熔粘接材料股份有限公司 共聚酯热熔胶网膜中特种含磷阻燃剂的分析测定方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
朱建设: "气相色谱质谱联用仪一机多用的改进", 《分析仪器》 *
李丹 等: "溶解-沉淀-GC/MS法测定聚氯乙烯塑料中的邻苯二甲酸酯类增塑剂", 《塑料科技》 *
李思源 等: "气相色谱-质谱法测定玩具塑料中邻苯二甲酸酯类增塑剂", 《理化检验(化学分册)》 *
李蓉 等: "气相色谱‐三重四极杆串联质谱法同时测定焙烤食品中28种邻苯二甲酸酯", 《色谱》 *
谌凯: "全二维气相色谱多检测器联用分析燃料油组成", 《化学世界》 *
贺行良 等: "FID/TCD并联气相色谱法测定天然气水合物的气体组成", 《分析测试学报》 *

Also Published As

Publication number Publication date
KR20190101533A (ko) 2019-09-02
WO2019164087A1 (ko) 2019-08-29
US11835498B2 (en) 2023-12-05
US20200340958A1 (en) 2020-10-29
EP3757564A4 (en) 2021-04-07
JP7006778B2 (ja) 2022-01-24
JP2020536232A (ja) 2020-12-10
EP3757564A1 (en) 2020-12-30
EP3757564B1 (en) 2023-07-05
KR102241870B1 (ko) 2021-04-16

Similar Documents

Publication Publication Date Title
CN111213054A (zh) 用于添加剂分析的高速处理气相色谱系统及使用其的分析方法
US9482642B2 (en) Fast method for measuring collision cross section of ions utilizing ion mobility spectrometry
Toda et al. Simultaneous determination of phosphate esters and phthalate esters in clean room air and indoor air by gas chromatography–mass spectrometry
JP6191772B2 (ja) クロマトグラフ質量分析装置及びプログラム
JP2012208081A (ja) 樹脂中添加剤の定量方法
Reiter et al. Rapid identification and semi-quantitative determination of polymer additives by desorption electrospray ionization/time-of-flight mass spectrometry
US20150115152A1 (en) Ion mobility spectrometer system
Klampfl et al. Advances in the determination of hindered amine light stabilizers–A review
JP2015166724A (ja) 液体クロマトグラフ制御装置及び液体クロマトグラフ制御方法
US12007372B2 (en) Gas chromatograph device and analysis support method for gas chromatograph device
Stagliano et al. Bioassay‐directed fractionation for discovery of bioactive neutral lipids guided by relative mass defect filtering and multiplexed collision‐induced dissociation
US20240053308A1 (en) Peak Alignment Method for Gas Chromatography Flow Splitter
CN108205036B (zh) 纺织品中二溴新戊二醇的检测方法
El Hamd et al. Simultaneous determination of propofol and remifentanil in rat plasma by liquid chromatography–tandem mass spectrometry: application to preclinical pharmacokinetic drug–drug interaction analysis
US11169125B2 (en) Mass spectrometer ion source with integrated column
Bräkling et al. Gas chromatography coupled to time‐of‐flight mass spectrometry using parallel electron and chemical ionization with permeation tube facilitated reagent ion control for material emission analysis
KR20210103766A (ko) 첨가제 함유 고분자 시료의 분석을 위한 방법 및 시스템
JP7056767B2 (ja) クロマトグラフを用いた物質同定方法
US11482405B2 (en) Mass spectrometry device and mass spectrometry method
Ling et al. Simultaneous determination of eight additives in polyethylene food contact materials by ultrahigh-performance liquid chromatography
JP2010160053A (ja) ガスクロマトグラフ及びガスクロマトグラフ分析方法
Zheng et al. Simultaneous determination and screening of five pigments in marine phytoplanktons by high performance liquid chromatography-triple quadrupole mass spectrometry
JP2014119403A (ja) ガスクロマトグラフ装置
KR20140100362A (ko) 고성능 액체 크로마토그래피를 이용한 스테로이드류의 고속 동시 검출 방법
Hu et al. Rapid determination of 87 prohibited ingredients in cosmetics by ultra performance liquid chromatography-tandem mass spectrometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination