CN111205993A - 生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用 - Google Patents

生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用 Download PDF

Info

Publication number
CN111205993A
CN111205993A CN202010075904.6A CN202010075904A CN111205993A CN 111205993 A CN111205993 A CN 111205993A CN 202010075904 A CN202010075904 A CN 202010075904A CN 111205993 A CN111205993 A CN 111205993A
Authority
CN
China
Prior art keywords
seq
artificial sequence
recombinant
encoding gene
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010075904.6A
Other languages
English (en)
Other versions
CN111205993B (zh
Inventor
卢文玉
张传波
陆春哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010075904.6A priority Critical patent/CN111205993B/zh
Publication of CN111205993A publication Critical patent/CN111205993A/zh
Application granted granted Critical
Publication of CN111205993B publication Critical patent/CN111205993B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02004NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0101(2E,6E)-Farnesyl diphosphate synthase (2.5.1.10), i.e. geranyltranstransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用,构建方法为:通过同源重组的方法,向重组菌Sc310LCZ02中导入香树脂醇C‑28位氧化酶编码基因CYP716A12和拟南芥细胞色素‑NADPH‑还原酶1编码基因AtCPR1,得到重组菌株Sc310LCZ03;或向重组菌Sc310LCZ02中导入香树脂醇C‑28位氧化酶编码基因CYP716AL1和拟南芥细胞色素‑NADPH‑还原酶1编码基因AtCPR1,得到重组菌株Sc310LCZ04;重组菌株可以生产不同比例的熊果酸和齐墩果酸混合物。本发明为人工合成熊果酸和齐墩果酸奠定了基础。

Description

生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用
技术领域
本发明涉及生物技术领域,尤其涉及生产熊果酸和齐墩果酸的重组酵母菌及构建方法和应用。
背景技术
熊果酸和齐墩果酸都是在多种药用植物中能检测到的具有多种生物活性的五环三萜化合物,具有镇静、降低血糖、抗炎、抗菌、抗溃疡、抗氧化、抗糖尿病、抗癌等多种生物学效应。此外,虽然熊果酸和齐墩果酸各自都具备较好的抗癌活性,有研究表明,熊果酸和齐墩果酸协同用药能够相互增强彼此抗恶性细胞增殖的能力。在患皮肤癌的小鼠进行体内实验,熊果酸和齐墩果酸的协同活性也得到了验证。利用微生物细胞工厂同时合成熊果酸和齐墩果酸是实现其工业生产的有效途径,构建能够高效生产熊果酸和齐墩果酸的重组酵母菌并优化及生产过程具有重要应用价值。
酵母内源代谢途径可为三萜化合物的合成提供前体2,3-氧化鲨烯,随后的环氧化、氧化分别由多功能香树脂醇合酶、细胞色素P450酶完成。多功能香树脂醇合酶基因在不同的植物中都有发现。Fukushima等在蒺藜状苜蓿中发现一种多功能酶(CYP716A12),既可以氧化α-香树脂醇生成熊果酸又能氧化β-香树脂醇生成齐墩果酸。Huang等在长春花中发现了另外一种C-28位氧化酶(CYP716AL1),也既可以氧化α-香树脂醇生成熊果酸又能氧化β-香树脂醇生成齐墩果酸,在酿酒酵母WAT11菌株中共表达CrAS基因和CYP716AL1基因后,可以合成0.1mg/L熊果酸和0.045mg/L齐墩果酸。Huang等报道CrAS(GenBanK数据库,序号JN991165)是同时催化α-香树脂醇和β-香树脂醇合成的基因。目前已报道的微生物同时合成熊果酸和齐墩果酸的研究中,熊果酸和齐墩果酸的产量均非常低。
发明内容
本发明的目的是克服现有技术的不足,提供一种高产α-香树脂醇和β-香树脂醇重组菌。
本发明的第二个目的是提供一种构建高产α-香树脂醇和β-香树脂醇重组菌的方法。
本发明的第三个目的是提供一种高产α-香树脂醇和β-香树脂醇重组菌制备α-香树脂醇和β-香树脂醇的用途。
本发明的第四个目的是提供一种生产熊果酸和齐墩果酸的重组酵母菌。
本发明的第五个目的是提供一种生产熊果酸和齐墩果酸的重组酵母菌的构建方法。
本发明的第六个目的是提供一种生产熊果酸和齐墩果酸的重组酵母菌发酵制备熊果酸和齐墩果酸的应用。
本发明的技术方案概述如下:
一种构建高产α-香树脂醇和β-香树脂醇重组菌的方法,包括如下步骤:
(1)通过同源重组的方法,向酿酒酵母菌(W303-1a)中导入多功能香树脂醇合酶编码基因CrAS和鲨烯环氧酶编码基因ERG1,得到高产α-香树脂醇和β-香树脂醇的重组菌Sc310LCZ01;
(2)通过同源重组的方法,向重组菌Sc310LCZ01中导入截短的3-羟基-3甲基戊二酰CoA还原酶编码基因tHMG1和法尼基焦磷酸合成酶编码基因ERG20,得到高产α-香树脂醇和β-香树脂醇的重组菌Sc310LCZ02;
所述多功能香树脂醇合酶编码基因CrAS的核苷酸序列如SEQ ID NO.1所示;
所述鲨烯环氧酶编码基因ERG1的核苷酸序列如SEQ ID NO.2所示;
所述截短的3-羟基-3甲基戊二酰CoA还原酶编码基因tHMG1的核苷酸序列如SEQID NO.3所示;
所述法尼基焦磷酸合成酶编码基因ERG20的核苷酸序列如SEQ ID NO.4所示。
上述方法构建的高产α-香树脂醇和β-香树脂醇重组菌Sc310LCZ02。
上述高产α-香树脂醇和β-香树脂醇重组菌Sc310LCZ02制备α-香树脂醇和β-香树脂醇的用途。
一种生产熊果酸和齐墩果酸重组酵母菌的构建方法,包括如下步骤:通过同源重组的方法,向重组菌Sc310LCZ02中导入香树脂醇C-28位氧化酶编码基因CYP716A12和拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1,得到重组菌株Sc310LCZ03;
或向重组菌Sc310LCZ02中导入香树脂醇C-28位氧化酶编码基因CYP716AL1和拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1,得到重组菌株Sc310LCZ04;
所述香树脂醇C-28位氧化酶编码基因CYP716A12的核苷酸序列如SEQ ID NO.5所示;
所述拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1的核苷酸序列如SEQ IDNO.6所示;
所述香树脂醇C-28位氧化酶编码基因CYP716AL1的核苷酸序列如SEQ ID NO.7所示。
上述方法构建的生产熊果酸和齐墩果酸的重组酵母菌。
上述生产熊果酸和齐墩果酸的重组酵母菌制备熊果酸和齐墩果酸的应用。
本发明的实验证明,通过同源重组的方法,向酿酒酵母中导入多功能香树脂醇合酶编码基因CrAS和鲨烯环氧酶编码基因ERG1,得到初始重组菌Sc310LCZ01,发现其可生产少量的α-香树脂醇和β-香树脂醇。为了提高初始重组菌Sc310LCZ01鲨烯的合成能力,导入tHMG1和ERG20得到中间重组菌Sc310LCZ02,其α-香树脂醇和β-香树脂醇的产量明显提高。在重组菌Sc310LCZ02的基础上,导入香树脂醇C-28位氧化酶编码基因CYP716A12或CYP716AL1和拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1,得到重组菌株Sc310LCZ03、Sc310LCZ04,可以生产不同比例的熊果酸和齐墩果酸混合物。本发明为人工合成熊果酸和齐墩果酸奠定了基础。
附图说明
图1为菌株Sc310LCZ03和Sc310LCZ04发酵结果。
具体实施方式
下面通过具体实施例对本发明作进一步的说明。
下面实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
酿酒酵母(Saccharomyces cerevisiaeW303-1a,美国ATCC208352)
各实施例中所涉及的酵母是以酿酒酵母(Saccharomyces cerevisiaeW303-1a,美国ATCC208352)为例是为了使本领域的技术人员能够更好的理解本发明。
购买时间,2016.6购于ATCC。网址:https://www.atcc.org/
实施例1、合成α-香树脂醇和β-香树脂醇酿酒酵母重组菌的构建
一、模块构建
根据长春花中多功能香树脂醇合酶CrAS(Catharanthus roseus,GenBank:JN991165)的基因序列,针对酿酒酵母的密码子优化,然后通过化学合成的方法(南京金斯瑞生物科技有限公司合成)得到多功能香树脂醇合酶编码基因CrAS(SEQ ID NO.1)。
鲨烯环氧酶编码基因ERG1(SEQ ID NO.2),启动子PGAL1(SEQ ID NO.8),PTEF1(SEQID NO.9)和终止子TCYC1(SEQ ID NO.10),TADH1(SEQ ID NO.11)均来自酿酒酵母W303-1a基因组;筛选标记基因HIS3来自质粒pxp320(购自Addgene,Inc.www.addgene.org)。
以酿酒酵母W303-1a(美国,ATCC:208352)基因组为模板,以PGAL1-CrAS-F(SEQ IDNO.12)和PGAL1-CrAS-R(SEQ ID NO.13)以及CrAS-TCYC1-F(SEQ ID NO.14)和CrAS-TCYC1-R(SEQ ID NO.15)为引物,分别扩增PGAL1启动子和TCYC1终止子。
以多功能香树脂醇合酶编码基因CrAS(SEQ ID NO.1)为模板,以CrAS-F(SEQ IDNO.16)和CrAS-R(SEQ ID NO.17)为引物扩增CrAS基因。将PGAL1启动子、CrAS基因和TCYC1终止子用融合PCR的方法融合成CrAS的表达模块PGAL1-CrAS-TCYC1
以酿酒酵母W303-1a基因组为模板,以PTEF1-erg1-F(SEQ ID NO.18)和PTEF1-erg1-R(SEQ ID NO.19)以及erg1-TADH1-F(SEQ ID NO.20)和erg1-TADH1-R(SEQ ID NO.21)为引物,分别扩增PTEF1启动子和TADH1终止子。
以W303-1a基因组为模板,以erg1-F(SEQ ID NO.22)和erg1-R(SEQ ID NO.23)为引物扩增ERG1基因片段。将PTEF1启动子、ERG1基因片段和TADH1终止子用融合PCR的方法融合成ERG1的表达模块PTEF1-ERG1-TADH1,所用序列见序列表。
另外,以pxp320为模板,以his-F(SEQ ID NO.24)和his-R(SEQ ID NO.25)为引物扩增HIS3标记基因,以酿酒酵母W303-1a基因组为模板,以rDNA1-F(SEQ ID NO.26)和rDNA1-R(SEQ ID NO.27)为引物扩增rDNA部分片段,并采用融合PCR的方法构建HIS3-rDNA1转化元件。模块的自组装转化还需要以酿酒酵母基因组为模板,分别以rDNA2-F(SEQ IDNO.28)、rDNA2-R(SEQ ID NO.29)为引物扩增rDNA2片段。模块构建完成后PCR扩增各模块,并用胶回收的方法纯化各转化模块。
本发明所用PCR酶为北京全式金生物技术有限公司的pfu聚合酶,50μL的PCR扩增体系如下:DNA模板,1μL;前引(10μM)和后引(10μM)各1μL;dNTP(2.5mM),5μL;10×Buffer,10μL;Pfu聚合酶,1μL;最后用双蒸水补至50μL。在PCR仪上设置扩增程序。扩增条件为98℃预变性2分钟(1个循环);98℃变性10秒、退火10秒、72℃延伸1分钟(32个循环);72℃延伸8分钟(1个循环)。
本发明所用融合PCR体系如下:DNA片段总量800ng,摩尔比1:1;dNTP(2.5mM),5μL;10×Buffer,10μL;Pfu聚合酶,1μL;最后用双蒸水补齐50μL。在PCR仪上设置扩增程序。扩增条件为95℃预变性2分钟(1个循环);95℃变性10秒、退火55℃30秒、72℃延伸1分钟(11个循环),72℃延伸5分钟(1个循环)。
二、酵母转化
出发酿酒酵母W303-1a在YPD培养基中培养12小时后取200μL加入2mL新鲜的YPD培养基中,培养5小时。3000转常温下离心5min收集菌体,弃去上清后用灭菌的ddH2O冲洗菌体,在3000转常温下离心5min收集菌体,弃去上清。然后将1mL100mM的醋酸锂加入菌体中,室温下放置5min后在3000转常温下离心5min收集菌体,制备酵母感受态细胞。转化混合体系包括240μL PEG(50%W/V),36μL 1.0M醋酸锂,10μL ss-DNA,转化片段PGAL1-CrAS-TCYC1,PTEF1-erg1-TADH1,his3-rDNA1和rDNA2片段各200ng,最后用ddH2O补齐至360μL。按上述顺序将各项依次加入刚制备的酿酒酵母感受态细胞中,离心漩涡1min,在42℃水浴30min,4000转常温下离心2min,移去上清后加入1mLYPD培养基,30℃150rpm培养2h。4000转常温下离心5min,弃去上清,无菌水洗涤2次,并用100μL无菌水重悬细胞,涂缺失组氨酸的平板进行筛选。筛选培养条件为30℃,培养48h以上。得到转化CrAS和过表达ERG1的酿酒酵母菌Sc310LCZ01。
实施例2、酿酒酵菌株Sc310LCZ02的构建
酿酒酵母内源的tHMG1(SEQ ID NO.3),ERG20(SEQ ID NO.4),以及启动子PPGK1(SEQ ID NO.30),PTDH3(SEQ ID NO.31)和终止子TCYC1(SEQ ID NO.10)均来自酿酒酵母W303-1a基因组。PRS304质粒购自BioVector(http://www.biovector.net)和PRS405质粒购自生物风(www.biofeng.com)。
一、质粒ptHMG1的构建
以酿酒酵母W303-1a基因组为模板,分别以引物PTDH3-F-ApaI(SEQ ID NO.32),PTDH3-R-tHMG1(SEQ ID NO.33)和tHMG1-TCYC1-F(SEQ ID NO.34),TCYC1-R-PstI(SEQ IDNO.35)为引物,扩增PTDH3(SEQ ID NO.31)启动子和TCYC1(SEQ ID NO.10)终止子,以PTDH3-tHMG1-F(SEQ ID NO.36)和PTDH3-R-tHMG1(SEQ ID NO.37)为引物扩增tHMG1基因(SEQ IDNO.3)。由实施例1中的融合PCR条件融合PTDH3启动子、tHMG1基因和TCYC1终止子,得到tHMG1基因表达模块PTDH3-tHMG1-TCYC1。用限制性内切酶ApaI和PstI双酶切PTDH3-tHMG1-TCYC1和PRS304质粒,通过琼脂糖凝胶回收试剂盒(天根生化科技有限公司)回收纯化酶切DNA片段和质粒片段。10μL的连接体系包括50ng载体DNA,与载体DNA摩尔比为3:1的插入片段DNA,10×T4 DNA Ligase buffer 2μL,T4 DNA连接酶1μL,用ddH2O补至总体积为10μL,配制好的体系于22℃反应30min,然后转化至大肠杆菌TRANS T1感受态细胞中。得到质粒ptHMG1。
二、质粒pERG20的构建
以酿酒酵母W303-1a基因组为模板,分别以引物PPGK1-F-PstI(SEQ ID NO.38),PPGK1-R-ERG20(SEQ ID NO.39)和ERG20-TCYC1-F(SEQ ID NO.40),TCYC1-R-BamHI(SEQ IDNO.41)和为引物,扩增PPGK1(SEQ ID NO.42)启动子和TCYC1(SEQ ID NO.10)终止子,以PPGK1-ERG20-F(SEQ ID NO.42)和ERG20-R-TCYC1(SEQ ID NO.43)为引物扩增ERG20基因(SEQ IDNO.4)。由实施例1中的融合PCR条件融合PPGK1启动子、ERG20基因和TCYC1终止子,得到ERG20基因表达模块PPGK1-ERG20-TCYC1。用限制性内切酶PstI和BamHI双酶切PPGK1-ERG20-TCYC1和PRS405质粒,通过琼脂糖凝胶回收试剂盒(天根生化科技有限公司)回收纯化酶切DNA片段和质粒片段。10μL的连接体系同ptHMG1构建过程所用。将连接好的质粒转化至大肠杆菌TRANS T1感受态细胞中。得到质粒pERG20。所用序列见序列表。
转化方法同实施例1,将线性化的ptHMG1质粒和pERG20质粒导入酿酒酵母重组菌Sc310LCZ01中,得到酿酒酵母重组菌Sc310LCZ02。
实施例3、合成熊果酸和齐墩果酸酿酒酵母重组菌的构建
根据长春花中香树脂醇C-28位氧化酶CYP716AL1(Catharanthus roseus,GenBank:JN565975)、蒺藜状苜蓿中香树脂醇C-28位氧化酶CYP716A12(Medicagotruncatula,GenBank:ABC59076.1)和和拟南芥中细胞色素-NADPH-还原酶1基因AtCPR1(Arabidopsis thaliana,GenBank:BT008426.1)的基因序列,进行针对酿酒酵母的密码子优化,然后通过化学合成的方法(南京金斯瑞生物科技有限公司合成)得到编码长春花中香树脂醇C-28位氧化酶编码基因CYP716AL1(SEQ ID NO.7)、蒺藜状苜蓿中香树脂醇C-28位氧化酶编码基因CYP716A12(SEQ ID NO.5)和拟南芥中拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1(SEQ ID NO.6)。启动子PTDH3(SEQ ID NO.31),PPGK1(SEQ ID NO.30)和终止子TCYC1(SEQ ID NO.10),TADH3(SEQ ID NO.44)均来自酿酒酵母w303-1a基因组;筛选标记基因ura3来自质粒pxp218(Addgene,Inc.WWW.addgene.org)。
以酿酒酵母W303-1a基因组为模板,以PTDH3-CYP716AL1-F(SEQ ID NO.45)和PTDH3-CYP716AL1-R(SEQ ID NO.46)以及CYP716AL1-TADH3-F(SEQ ID NO.47)和CYP716AL1-TADH3-R(SEQ ID NO.48)为引物,分别扩增PTDH3启动子和TADH3终止子。以CYP716AL1(SEQ ID NO.7)为模板,以CYP716AL1-F(SEQ ID NO.49)和CYP716AL1-R(SEQ ID NO.50)为引物扩增CYP716AL1基因片段。将PTDH3启动子、CYP716AL1基因片段和TADH3终止子用融合PCR的方法融合成CYP716AL1的表达模块PTDH3-CYP716AL1-TADH3,PCR和融合PCR的方法同实施例1.
以酿酒酵母W303-1a基因组为模板,以PTDH3-CYP716A12-F(SEQ ID NO.51)和PTDH3-CYP716A12-R(SEQ ID NO.52)以及CYP716A12-TADH3-F(SEQ ID NO.53)和CYP716A12-TADH3-R(SEQ ID NO.54)为引物,分别扩增PTDH3启动子和TADH3终止子。以CYP716A12(SEQ ID NO.5)为模板,以CYP716A12-F(SEQ ID NO.55)和CYP716A12-R(SEQ ID NO.56)为引物扩增CYP716A12基因片段。将PTDH3启动子、CYP716A12基因片段和TADH3终止子用融合PCR的方法融合成CYP716A12的表达模块PTDH3-CYP716A12-TADH3,PCR和融合PCR的方法同实施例1.
以酿酒酵母W303-1a基因组为模板,以PPGK1-AtCPR1-F(SEQ ID NO.57)和PPGK1-AtCPR1-R(SEQ ID NO.58)以及AtCPR1-TCYC1-F(SEQ ID NO.59)和AtCPR1-TCYC1-R(SEQ IDNO.60)为引物,分别扩增PPGK1启动子和TCYC1终止子。以AtCPR1(SEQ ID NO.6)为模板,以AtCPR1-F(SEQ ID NO.61)和AtCPR1-R(SEQ ID NO.62)为引物扩增AtCPR1基因片段。将PPGK1启动子、AtCPR1基因片段和TCYC1终止子用融合PCR的方法融合成AtCPR1的表达模块PPGK1-AtCPR1-TCYC1,PCR和融合PCR的方法同实施例1.
另外,以pxp218为模板,以ura-F(SEQ ID NO.63)和ura-R(SEQ ID NO.64)为引物扩增URA3标记基因,以酿酒酵母W303-1a基因组为模板,以δ1-F2(SEQ ID NO.65)和δ1-R2(SEQ ID NO.66)为引物扩增δ位点部分片段,并采用融合PCR的方法构建ura3-δ1转化元件;以W303基因组为模板,以δ2-F(SEQ ID NO.67)和δ2-R(SEQ ID NO.68)为引物,扩增转化元件δ2。
采用实施例1的转化方法,PPGK1-AtCPR1-TCYC1,PTDH3-CYP716A12-TADH3,URA3-δ1和δ2转化片段以酵母自组装的方式整合到酿酒酵母基因组上δ位点上,得到转化子后进行菌落PCR验证,得到高产熊果酸和齐墩果酸重组菌Sc310LCZ03。
采用实施例1的转化方法,PPGK1-AtCPR1-TCYC1,PTDH3-CYP716AL1-TADH3,ura3-δ1和δ2转化片段以酵母自组装的方式整合到酿酒酵母基因组上δ位点上,得到转化子后进行菌落PCR验证,得到高产熊果酸和齐墩果酸重组菌Sc310LCZ04。
实施例4、工程菌株发酵和发酵产物检测和分析
将实施例1-3中得到的重组菌Sc310LCZ01、Sc310LCZ02、Sc310LCZ03、Sc310LCZ04分别在YPD培养基中进行培养(30℃,220rmp),在发酵48h时加入2%D-半乳糖。发酵5天后,取2ml发酵液12000r/min常温条件下离心5min收集菌体,加入正己烷,在冰水浴中进行超声波破碎10min,然后12000r/min常温条件下离心5min,取上清过0.22μm有机膜后进行GC-MS定性和定量检测。取10ml发酵液12000r/min常温条件下离心5min收集上清,加入乙酸乙酯,在冰水浴中进行超声波破碎60min,然后12000r/min常温条件下离心5min,取上清过0.22μm有机膜后进行LC-MS定性和定量检测。
α-香树脂醇和β-香树脂醇GC-MS检测条件:所用的气质联用仪是日本岛津公司生产的GCMS-TQ8030。气相色谱柱是美国安捷伦公司的HP-5MS(30m×0.250mm×0.25μm)型柱,氦气作为载气。进样条件如下:
进样量:1μl;分流比:30;进样口温度:250℃;柱温:80℃保持2min,20℃min-1升至260℃,5℃min-1升至290℃并保留8min。离子源温度:300℃;溶剂截留时间:10min。
Sc310LCZ01可以合成4.02mg/Lα-香树脂醇和1.25mg/Lβ-香树脂醇;Sc310LCZ02可以合成117.98mg/Lα-香树脂醇和30.25mg/Lβ-香树脂醇。
熊果酸和齐墩果酸定性用LC-MS进行,检测条件:进样量5μL,安捷伦ZORBAX SB-Aq;流动相为60%甲醇和40%乙腈,流速:0.2mL/min。质谱条件:雾化气和干燥气都为N2;碰撞电压:-70V;喷雾电压:3.8kV;离子源:ESI;离子源温度:120℃;脱溶温度:300℃;柱后流出物导入离子源速率:5μL/min;质谱扫描质量数范围:200-1000Da。
熊果酸和齐墩果酸定量用HPLC进行,液相色谱条件:进样量20μL,安捷伦ZORBAXSB-Aq;流动相为甲醇:乙腈=6:4,流速:0.8mL/min。熊果酸和齐墩果酸购自Sigma-Aldrich。
结果如附图1所示:Sc310LCZ03的熊果酸和齐墩果酸产量分别为37.9mg/L和45.56mg/L;Sc310LCZ04的熊果酸和齐墩果酸产量分别为30.37mg/L和31.64mg/L。
序列表
<110> 天津大学
<120> 生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用
<160> 68
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2289
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgtggaagc tgaaaattgc gaagggtaaa ggcccgtacc tgtatagcac caacaacttt 60
gtgggtcgtc agatctggga atacgacccg aacgcgggta ccccgcagga gcgtgaagcg 120
ttcgaaaagg cgcgtgagca atttcgtaac aaccgtaaga aaggtgttca caacccgtgc 180
gcggacctgt ttatgcgtat gcagctgatc aaagaaaacg gcattgatct gatgagcatc 240
ccgccggtgc gtgttgagga aaaagaggaa ctgaccttcg agaagaccac cattgcggtg 300
aagaaagcgc tgcgtctgaa ccgtgcgatc caagcgaccg acggtcactg gccggcggaa 360
aacgcgggtc cgatgttctt taccccgccg ctgctgatcg cgctgtacat tagcggtgcg 420
atcaacacca ttctgaccag cgaacacaag aaagagctgg ttcgttacat ctataaccac 480
cagaacgaag atggtggctg gggtttctac attgagggcc acagcaccat gatcggtagc 540
gcgctgagct atgtggcgct gcgtctgctg ggcgagggtc cggacgatgg tgacggtgcg 600
gttggtcgtg gtcgtcaatg gattctggat cacggtggcg cgaccggtat cccgagctgg 660
ggcaagacct acctgagcgt gctgggtgtt tacgactggg atggttgcaa cccgctgccg 720
ccggagttct ggctgtttcc gagcttcttt ccgtaccacc cggcgaaaat gtggtgctac 780
tgccgtacca cctatatgcc gatgagctac ctgtatggta agaaatacca cggcccgctg 840
acccacctgg tgatgcagct gcgtcaagag attcacgtta agccgtatga ccagatcgat 900
tggaacaaag cgcgtcacga ctgctgcaag gacgatctgt actatccgca cagctttatc 960
caagacctgc tgtgggatac cctgaactac ttcagcgaac cggtgatgcg tcgttggccg 1020
tgcaacaaga ttcgtgagaa agcgatgcgt aagtgcatca aatacatgcg ttatggtgcg 1080
gaggaaagcc gttatatcac cattggctgc gtggagaaaa gcctgcagat gatgtgctgg 1140
tgcgcgcacg acccgaactg cgatgaattt aagtaccacc tggcgcgtgt tccggactat 1200
ctgtggctgg cggaggatgg tatgaaaatg cagagcttcg gcagccaact gtgggactgc 1260
accctggcga cccaggcgat cattgcgacc ggtatggtgg aggaatacgg cgataccatt 1320
aagaaagcgc acttctatat caaggaaagc caagttaagg aaaacccgaa agaggatttc 1380
aaggcgatgt accgtcactt taccaaaggt agctggacct tcagcgacca ggatcaaggc 1440
tgggtggtta gcgactgcac cgcggaggcg ctgaaatgcc tgctggtgtg cagccagatg 1500
ccgcaagatc tggcgggtga aaaggcggac gttgagcgtc tgtacgatgc ggtgaacgtt 1560
ctgctgtatc tgcagagccc ggaaagcggt ggctttgcga tttgggagcc gccggtgccg 1620
cagccgtacc tgcaagttct gaacccgagc gaactgttcg cggacattgt ggttgagcag 1680
gaacacgtgg agaacaccgc gagcatcgtg caagcgctgg ttctgtttaa acgtctgcac 1740
ccgggtcacc gtgagaaaga aatcgaagtg agcgttagca aggcggttcg tttcctggaa 1800
ggtcgtcagt ggccggatgg cagctggtac ggttattggg gcatttgctt cctgtatggt 1860
accatgtttg tgctgggtgg cctgaccgcg gcgggcaaga cctacaaaaa cagcgaggcg 1920
atccgtaagg cggttaaatt ctatctgagc acccaaaacg aggaaggtgg ctggggtgaa 1980
tgcctggaga gctgcccgag catgaagtac attccgctgg aaggtaaccg taccaacctg 2040
gttcagacca gctgggcgat gctgggcctg atgtatggtg gccaagcgga gcgtgacccg 2100
accccgctgc acaaggcggc gaaactgctg attaacgcgc agatggacga tggtgatttt 2160
ccgcagcaag agatcaccgg cgtgtacatg aaaaactgca tgctgcacta cgcggaatat 2220
cgtaacatct tcccgctgtg ggcgctggcg gagtatcgta aacgtgtttg gccgaccaag 2280
gcgctgtaa 2289
<210> 2
<211> 1491
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 2
atgtctgctg ttaacgttgc acctgaattg attaatgccg acaacacaat tacctacgat 60
gcgattgtca tcggtgctgg tgttatcggt ccatgtgttg ctactggtct agcaagaaag 120
ggtaagaaag ttcttatcgt agaacgtgac tgggctatgc ctgatagaat tgttggtgaa 180
ttgatgcaac caggtggtgt tagagcattg agaagtctgg gtatgattca atctatcaac 240
aacatcgaag catatcctgt taccggttat accgtctttt tcaacggcga acaagttgat 300
attccatacc cttacaaggc cgatatccct aaagttgaaa aattgaagga cttggtcaaa 360
gatggtaatg acaaggtctt ggaagacagc actattcaca tcaaggatta cgaagatgat 420
gaaagagaaa ggggtgttgc ttttgttcat ggtagattct tgaacaactt gagaaacatt 480
actgctcaag agccaaatgt tactagagtg caaggtaact gtattgagat attgaaggat 540
gaaaagaatg aggttgttgg tgccaaggtt gacattgatg gccgtggcaa ggtggaattc 600
aaagcccact tgacatttat ctgtgacggt atcttttcac gtttcagaaa ggaattgcac 660
ccagaccatg ttccaactgt cggttcttcg tttgtcggta tgtctttgtt caatgctaag 720
aatcctgctc ctatgcacgg tcacgttatt cttggtagtg atcatatgcc aatcttggtt 780
taccaaatca gtccagaaga aacaagaatc ctttgtgctt acaactctcc aaaggtccca 840
gctgatatca agagttggat gattaaggat gtccaacctt tcattccaaa gagtctacgt 900
ccttcatttg atgaagccgt cagccaaggt aaatttagag ctatgccaaa ctcctacttg 960
ccagctagac aaaacgacgt cactggtatg tgtgttatcg gtgacgctct aaatatgaga 1020
catccattga ctggtggtgg tatgactgtc ggtttgcatg atgttgtctt gttgattaag 1080
aaaataggtg acctagactt cagcgaccgt gaaaaggttt tggatgaatt actagactac 1140
catttcgaaa gaaagagtta cgattccgtt attaacgttt tgtcagtggc tttgtattct 1200
ttgttcgctg ctgacagcga taacttgaag gcattacaaa aaggttgttt caaatatttc 1260
caaagaggtg gcgattgtgt caacaaaccc gttgaatttc tgtctggtgt cttgccaaag 1320
cctttgcaat tgaccagggt tttcttcgct gtcgcttttt acaccattta cttgaacatg 1380
gaagaacgtg gtttcttggg attaccaatg gctttattgg aaggtattat gattttgatc 1440
acagctatta gagtattcac cccatttttg tttggtgagt tgattggtta a 1491
<210> 3
<211> 1509
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 3
atggttttaa ccaataaaac agtcatttct ggatcgaaag tcaaaagttt atcatctgcg 60
caatcgagct catcaggacc ttcatcatct agtgaggaag atgattcccg cgatattgaa 120
agcttggata agaaaatacg tcctttagaa gaattagaag cattattaag tagtggaaat 180
acaaaacaat tgaagaacaa agaggtcgct gccttggtta ttcacggtaa gttacctttg 240
tacgctttgg agaaaaaatt aggtgatact acgagagcgg ttgcggtacg taggaaggct 300
ctttcaattt tggcagaagc tcctgtatta gcatctgatc gtttaccata taaaaattat 360
gactacgacc gcgtatttgg cgcttgttgt gaaaatgtta taggttacat gcctttgccc 420
gttggtgtta taggcccctt ggttatcgat ggtacatctt atcatatacc aatggcaact 480
acagagggtt gtttggtagc ttctgccatg cgtggctgta aggcaatcaa tgctggcggt 540
ggtgcaacaa ctgttttaac taaggatggt atgacaagag gcccagtagt ccgtttccca 600
actttgaaaa gatctggtgc ctgtaagata tggttagact cagaagaggg acaaaacgca 660
attaaaaaag cttttaactc tacatcaaga tttgcacgtc tgcaacatat tcaaacttgt 720
ctagcaggag atttactctt catgagattt agaacaacta ctggtgacgc aatgggtatg 780
aatatgattt ctaaaggtgt cgaatactca ttaaagcaaa tggtagaaga gtatggctgg 840
gaagatatgg aggttgtctc cgtttctggt aactactgta ccgacaaaaa accagctgcc 900
atcaactgga tcgaaggtcg tggtaagagt gtcgtcgcag aagctactat tcctggtgat 960
gttgtcagaa aagtgttaaa aagtgatgtt tccgcattgg ttgagttgaa cattgctaag 1020
aatttggttg gatctgcaat ggctgggtct gttggtggat ttaacgcaca tgcagctaat 1080
ttagtgacag ctgttttctt ggcattagga caagatcctg cacaaaatgt tgaaagttcc 1140
aactgtataa cattgatgaa agaagtggac ggtgatttga gaatttccgt atccatgcca 1200
tccatcgaag taggtaccat cggtggtggt actgttctag aaccacaagg tgccatgttg 1260
gacttattag gtgtaagagg cccgcatgct accgctcctg gtaccaacgc acgtcaatta 1320
gcaagaatag ttgcctgtgc cgtcttggca ggtgaattat ccttatgtgc tgccctagca 1380
gccggccatt tggttcaaag tcatatgacc cacaacagga aacctgctga accaacaaaa 1440
cctaacaatt tggacgccac tgatataaat cgtttgaaag atgggtccgt cacctgcatt 1500
aaatcctaa 1509
<210> 4
<211> 1059
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 4
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttacttctt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatcaa tgacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaatag 1059
<210> 5
<211> 1440
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atggagccga acttctacct gagcctgctg ctgctgttcg tgacctttat cagcctgagc 60
ctgttcttta tcttctacaa gcagaaaagc ccgctgaacc tgccgccggg caaaatgggt 120
tatccgatca ttggcgagag cctggagttc ctgagcaccg gctggaaagg tcacccggag 180
aagttcatct ttgaccgtat gcgtaaatat agcagcgagc tgtttaagac cagcattgtt 240
ggcgaaagca ccgtggtttg ctgcggtgcg gcgagcaaca aattcctgtt tagcaacgaa 300
aacaagctgg tgaccgcgtg gtggccggac agcgttaaca aaatcttccc gaccaccagc 360
ctggatagca acctgaaaga ggagagcatt aagatgcgta aactgctgcc gcagttcttt 420
aagccggagg cgctgcaacg ttacgtgggc gttatggacg tgatcgcgca gcgtcacttt 480
gttacccact gggataacaa aaacgaaatt accgtgtacc cgctggcgaa gcgttatacc 540
ttcctgctgg cgtgccgtct gtttatgagc gtggaggacg aaaaccacgt tgcgaaattc 600
agcgatccgt ttcaactgat cgcggcgggc atcattagcc tgccgattga cctgccgggt 660
accccgttca acaaggcgat caaagcgagc aactttatcc gtaaggagct gattaagatc 720
attaaacagc gtcgtgtgga tctggcggaa ggtaccgcga gcccgaccca agacatcctg 780
agccacatgc tgctgaccag cgatgagaac ggcaaaagca tgaacgaact gaacatcgcg 840
gacaagattc tgggtctgct gatcggtggc cacgataccg cgagcgtggc gtgcaccttc 900
ctggttaaat acctgggcga gctgccgcac atctacgaca aggtttatca ggagcaaatg 960
gaaattgcga agagcaaacc ggcgggtgaa ctgctgaact gggacgatct gaagaaaatg 1020
aaatatagct ggaacgtggc gtgcgaggtt atgcgtctga gcccgccgct gcaaggtggc 1080
ttccgtgaag cgatcaccga cttcatgttt aacggcttta gcattccgaa gggttggaaa 1140
ctgtactgga gcgcgaacag cacccacaaa aacgcggagt gcttcccgat gccggaaaag 1200
ttcgatccga cccgttttga aggcaacggt ccggcgccgt acaccttcgt tccgtttggt 1260
ggcggtccgc gtatgtgccc gggtaaagag tatgcgcgtc tggaaatcct ggtgttcatg 1320
cacaacctgg ttaagcgttt taaatgggag aaagtgattc cggacgaaaa gatcattgtt 1380
gatccgttcc cgatcccggc gaaagatctg ccgattcgtc tgtatccgca caaggcgtaa 1440
<210> 6
<211> 2079
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
atgacttctg cattatacgc atcagactta tttaagcagt tgaaatctat aatgggaaca 60
gactcattgt cagacgacgt cgttttagtt attgctacta cttcattggc tttggttgct 120
ggatttgttg ttttattgtg gaaaaagaca acagctgata ggtctggtga attaaagcca 180
ttaatgatac ctaaatcttt aatggctaag gacgaggacg acgacttgga tttaggatca 240
ggaaagacta gagtctctat atttttcgga actcagacag gaacagctga gggattcgca 300
aaggctttat cagaagagat taaagcaagg tacgagaagg ctgctgtcaa agttatagat 360
ttggatgact acgcagctga tgacgaccag tacgaggaaa agttgaaaaa ggaaactttg 420
gcatttttct gtgttgcaac atacggtgac ggtgagccaa ctgacaacgc tgctaggttc 480
tacaaatggt tcacagagga aaatgagaga gacattaaat tgcagcagtt ggcttacggt 540
gtcttcgcat tgggaaacag gcaatatgaa catttcaata agattggaat tgtcttggac 600
gaagaattat gcaaaaaagg agctaagagg ttgatagagg tcggtttggg tgacgatgac 660
cagtcaatag aggacgactt caatgcatgg aaagagtcat tgtggtcaga gttagataag 720
ttattaaaag acgaagacga caagtcagtc gcaacacctt acacagcagt catacctgag 780
tatagggtcg tcactcacga cccaagattc actactcaaa agtcaatgga gtcaaatgtc 840
gcaaacggaa atactactat tgacattcat cacccatgca gggttgacgt cgctgtccag 900
aaagagttac acactcacga gtctgacagg tcatgcattc acttggagtt cgatatttca 960
agaactggta ttacttacga aacaggtgac cacgttggtg tctacgctga gaaccacgtc 1020
gagattgtcg aggaagctgg aaagttgttg ggacattctt tagatttggt cttctcaatt 1080
catgctgaca aagaggacgg ttcaccattg gagtctgctg ttccaccacc attccctgga 1140
ccatgcactt taggtactgg tttggcaagg tacgcagact tattgaaccc acctaggaag 1200
tcagctttag ttgcattggc tgcatatgca acagaaccat ctgaggcaga gaaattaaag 1260
cacttgactt ctcctgacgg taaggacgag tactcacagt ggatagtcgc atctcagagg 1320
tcattgttgg aggtcatggc agcatttcca tcagcaaagc cacctttagg tgttttcttc 1380
gcagctatag cacctagatt gcagcctagg tattattcaa tatcttcttc acctaggttg 1440
gctccatcta gggtccacgt cacatcagct ttggtttacg gacctactcc tacaggaagg 1500
atacataaag gagtctgctc tacttggatg aagaacgctg tcccagcaga gaagtctcat 1560
gagtgctcag gagctcctat ttttattagg gcatcaaatt tcaaattgcc ttcaaaccca 1620
tctactccaa tagtcatggt cggaccagga acaggtttgg ctcctttcag gggatttttg 1680
caggagagga tggctttgaa ggaggatggt gaggaattgg gatcatcttt gttgttcttt 1740
ggttgtagga ataggcaaat ggacttcatt tatgaggacg aattgaacaa ctttgttgat 1800
caaggagtca tatcagagtt aattatggct ttctcaaggg agggtgcaca aaaggaatac 1860
gtccaacaca agatgatgga aaaggctgca caggtctggg acttgattaa ggaggaggga 1920
tacttatatg tctgcggtga cgcaaagggt atggcaagag acgtccacag gactttgcac 1980
acaattgtcc aggaacagga gggtgtttct tcatctgaag cagaggctat tgttaaaaag 2040
ttgcaaactg aaggtaggta cttgagggac gtctggtaa 2079
<210> 7
<211> 1443
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
atggaaattt tttacgtcac cttgttgtcc ttgttcgttt tgttggtttc cttgtctttc 60
cacttcttgt tctacaagaa caagtccact ttgccaggtc cattgccacc aggtagaact 120
ggttggccaa tggttggtga atctttgcaa tttttgtccg ctggttggaa aggtcatcca 180
gaaaaattta tcttcgacag aatggccaag tactcttcta atgttttcag atcccacttg 240
ttgggtgaac cagctgctgt tttttgtggt gctattggta ataagttctt gttctccaac 300
gaaaacaagt tggtccaagc atggtggcca gattctgtta ataaagtttt cccatcctcc 360
aaccaaacct cttctaaaga agaagctatc aagatgagaa agatgttgcc aaacttcttg 420
aagccagaag ctctacaaag atacatcggt ttgatggatc aaatcgctca aaagcatttc 480
tcctctggtt gggaaaatag agaacaagtt gaagtcttcc cattggctaa aaactacact 540
ttctggttgg cttctagatt gttcgtttct gttgaagacc caatcgaagt tgctaaattg 600
ttggaaccat tcaacgtctt ggcttctggt ttgatttctg ttccaatcga cttgccaggt 660
actccattta atagagctat caaggcttcc aaccaagtta gaaaaatgtt gatctccatc 720
atcaagcaaa gaaagatcga cttggctgaa ggtaaagcta gtccaactca agatatcttg 780
tcccatatgt tgttgacctc tgatgaaaac ggtaagttca tgcatgaatt ggacatcgct 840
gataagatct tgggtttgtt gatcggtggt catgatactg cttcttctgc ttgtactttc 900
atcgttaagt tcttgggtga attgccagaa atctacgaag gtgtttacaa ggaacaaatg 960
gaaatcgcta actccaaggc tccaggtgaa tttttgaatt gggaagatat ccaaaagatg 1020
aagtactcct ggaacgttgc ttgtgaagtt ttgagattgg ctccaccatt gcaaggtgct 1080
tttagagaag ctctaaacga tttcatgttc cacggttttt ccatcccaaa aggttggaaa 1140
atctactggt ctgttaactc tacccacaga aatccagaat gtttcccaga tccattgaag 1200
tttgacccat ctagattcga tggttctggt ccagctccat atacttttgt tccatttggt 1260
ggtggtccaa gaatgtgtcc aggtaaagaa tatgctagat tggaaatctt ggtcttcatg 1320
cataacttgg tcaagagatt caagtgggaa aagatcatcc caaacgaaaa gatcgtcgtt 1380
gatccaatgc caattccaga aaaaggtttg ccagttagat tgtacccaca tattaacgct 1440
taa 1443
<210> 8
<211> 668
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 8
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat ggacgcaaag aagtttaata 60
atcatattac atggcattac caccatatac atatccatat ctaatcttac ttatatgttg 120
tggaaatgta aagagcccca ttatcttagc ctaaaaaaac cttctctttg gaactttcag 180
taatacgctt aactgctcat tgctatattg aagtacggat tagaagccgc cgagcgggcg 240
acagccctcc gacggaagac tctcctccgt gcgtcctcgt cttcaccggt cgcgttcctg 300
aaacgcagat gtgcctcgcg ccgcactgct ccgaacaata aagattctac aatactagct 360
tttatggtta tgaagaggaa aaattggcag taacctggcc ccacaaacct tcaaattaac 420
gaatcaaatt aacaaccata ggatgataat gcgattagtt ttttagcctt atttctgggg 480
taattaatca gcgaagcgat gatttttgat ctattaacag atatataaat ggaaaagctg 540
cataaccact ttaactaata ctttcaacat tttcagtttg tattacttct tattcaaatg 600
tcataaaagt atcaacaaaa aattgttaat atacctctat actttaacgt caaggagaaa 660
aaactata 668
<210> 9
<211> 430
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 9
agtgatcccc cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat 60
tttctcggac tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat 120
ttcccctctt tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa 180
aaaagagacc gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg 240
tttctttttc ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga 300
tatttaagtt aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta 360
ttacaacttt ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt 420
taattacaaa 430
<210> 10
<211> 307
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 10
ccgctgatcc tagagggccg catcatgtaa ttagttatgt cacgcttaca ttcacgccct 60
ccccccacat ccgcactaac cgaaaaggaa ggagttagac aacctgaagt ctaggtccct 120
atttattttt ttatagttat gttagtatta agaacgttat ttatatttca aatttttctt 180
ttttttctgt acagacgcgt gtacgcatgt aacattatac tgaaaacctt gcttgagaag 240
gttttgggac gctcgaaggc ttaattttgc aagctgcggc cctgcattaa tgaatcggcc 300
aacgcgc 307
<210> 11
<211> 437
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 11
gcgaatttct tatgatttat gatttttatt attaaataag ttataaaaaa aataagtgta 60
tacaaatttt aaagtgactc ttaggtttta aaacgaaaat tcttattctt gagtaactct 120
ttcctgtagg tcaggttgct ttctcaggta tagcatgagg tcgctcttat tgaccacacc 180
tctaccggca tgccgagcaa atgcctgcaa atcgctcccc atttcaccca attgtagata 240
tgctaactcc agcaatgagt tgatgaatct cggtgtgtat tttatgtcct cagaggacaa 300
cacctgttgt aatcgttctt ccacacggat ccacagccta gccttcagtt gggctctatc 360
ttcatcgtca ttcattgcat ctactagccc cttacctgag cttcaagacg ttatatcgct 420
tttatgtatc atgatct 437
<210> 12
<211> 68
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gtgaaacacc ggggtatctg tttggtggaa cctgattaga ggaaattata ttgaattttc 60
aaaaattc 68
<210> 13
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
cgcaattttc agcttccaca ttatagtttt ttctccttga cg 42
<210> 14
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
ccgaccaagg cgctgtaagc cgcatcatgt aattagttat g 41
<210> 15
<211> 72
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gagaaaatct ggaagagtaa aaaaggagta gaaacatttt gaagctatgc gcgttggccg 60
attcattaat gc 72
<210> 16
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
cgtcaaggag aaaaaactat aatgtggaag ctgaaaattg cg 42
<210> 17
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
aactaattac atgatgcggc ttacagcgcc ttggtcggcc a 41
<210> 18
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
aattttgcaa gctgcggccc tgcattaatg aatcggccaa cgcgcatagc ttcaaaatgt 60
ttctactcc 69
<210> 19
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
caggtgcaac gttaacagca gacattttgt aattaaaact tagattagat 50
<210> 20
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
tttgtttggt gagttgattg gttaagcgaa tttcttatga tttatgattt 50
<210> 21
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
tgcaagcttg gcactggccg tcgttttaca acgtcgtgac tgggaaaaag atcatgatac 60
ataaaagcg 69
<210> 22
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
atctaatcta agttttaatt acaaaatgtc tgctgttaac gttgcacctg 50
<210> 23
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
aaatcataaa tcataagaaa ttcgcttaac caatcaactc accaaacaaa 50
<210> 24
<211> 68
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
cttacctgag cttcaagacg ttatatcgct tttatgtatc atgatctttt tcccagtcac 60
gacgttgt 68
<210> 25
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
taactactat aaaacaacct ttagacttac gtttgctact ctcatgaatt cgagctcggt 60
acccgggat 69
<210> 26
<211> 60
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
tataatgtat gctatacgaa gttatcccgg gtaccgagct cgaattcatg agagtagcaa 60
<210> 27
<211> 33
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
gcggaaaata cggaaacgcg cgggaacata caa 33
<210> 28
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
ccggggcacc tgtcactttg gaaaaaaaat atacgctaag a 41
<210> 29
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
tgttataata tctgtgcgtc ttgagttgaa gtcaggaatc taaaatattt cctctaatca 60
ggttccacc 69
<210> 30
<211> 778
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 30
tattttagat tcctgacttc aactcaagac gcacagatat tataacatct gcataatagg 60
catttgcaag aattactcgt gagtaaggaa agagtgagga actatcgcat acctgcattt 120
aaagatgccg atttgggcgc gaatccttta ttttggcttc accctcatac tattatcagg 180
gccagaaaaa ggaagtgttt ccctccttct tgaattgatg ttaccctcat aaagcacgtg 240
gcctcttatc gagaaagaaa ttaccgtcgc tcgtgatttg tttgcaaaaa gaacaaaact 300
gaaaaaaccc agacacgctc gacttcctgt cttcctattg attgcagctt ccaatttcgt 360
cacacaacaa ggtcctagcg acggctcaca ggttttgtaa caagcaatcg aaggttctgg 420
aatggcggga aagggtttag taccacatgc tatgatgccc actgtgatct ccagagcaaa 480
gttcgttcga tcgtactgtt actctctctc tttcaaacag aattgtccga atcgtgtgac 540
aacaacagcc tgttctcaca cactcttttc ttctaaccaa gggggtggtt tagtttagta 600
gaacctcgtg aaacttacat ttacatatat ataaacttgc ataaattggt caatgcaaga 660
aatacatatt tggtcttttc taattcgtag tttttcaagt tcttagatgc tttctttttc 720
tcttttttac agatcatcaa ggaagtaatt atctactttt tacaacaaat ataaaaca 778
<210> 31
<211> 800
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 31
atactagcgt tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca 60
aaaagattcc ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt 120
cagttcgagt ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt 180
agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt 240
acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga 300
acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag 360
aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt 420
ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac 480
ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc 540
atgtatctat ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa 600
agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt 660
atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat 720
tctactttta tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata 780
aacacacata aacaaacaaa 800
<210> 32
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
cggggcccat actagcgttg aatgttagc 29
<210> 33
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 33
tgttttattg gttaaaacca ttttgtttgt ttatgtgtgt tt 42
<210> 34
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 34
gtcacctgca ttaaatccta aacaggcccc ttttcctttg tc 42
<210> 35
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 35
gctgcagaag cagacgctac taaggaaa 28
<210> 36
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 36
aaacacacat aaacaaacaa aatggtttta accaataaaa ca 42
<210> 37
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 37
tgttttattg gttaaaacca ttttgtttgt ttatgtgtgt tt 42
<210> 38
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 38
taactgcagt attttagatt cctgacttca actc 34
<210> 39
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 39
aatttctttt tctgaagcca ttgttttata tttgttgtaa aaag 44
<210> 40
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 40
gtttacaaga gaagcaaata gacaggcccc ttttcctttg tc 42
<210> 41
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 41
atggatccgg ccgcaaatta aagccttc 28
<210> 42
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 42
ctttttacaa caaatataaa acaatggctt cagaaaaaga aatt 44
<210> 43
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 43
gacaaaggaa aaggggcctg tctatttgct tctcttgtaa ac 42
<210> 44
<211> 450
<212> DNA
<213> 酿酒酵母(Saccharomyces cerevisiae)
<400> 44
tagcgtgtta cgcacccaaa ctttttatga aagtctttgt ttataatgat gaggtttata 60
aatatatagt ggagcaaaga ttaatcacta aatcaagaag cagtaccagt attttttcta 120
tatcaagtag tgataatgga aatagcccaa atttggcttc cgtcgacaca tagaacgttt 180
gagagacatt atcaccatca agcatcgagc cgcccaaacc taaccgtata agttttttca 240
cgtttttgat ttttccttgc acacttcgat attactctca cgataaaagg gccgaagaga 300
atatttttct tgaacatcca gaattttaat tcggagaaat ttcacaagcc gccgatttaa 360
gggtcctgtg ttcttaataa tcagcctctc tcaaagcagg taagaggcag tctttctttt 420
aacaatagga gacattcgaa ctaaaacatc 450
<210> 45
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 45
gggacgctcg aaggctttaa tttgcaagct gcggccctgc attaatgcag ttcgagttta 60
tcattatca 69
<210> 46
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 46
ggtgacgtaa aaaatttcca ttttgtttgt ttatgtgtgt ttattcg 47
<210> 47
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 47
tacccacata ttaacgctta agcacccaaa ctttttatga aa 42
<210> 48
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 48
caagcttggc actggccgtc gttttacaac gtcgtgactg ggaaaacgat gttttagttc 60
gaatgtctc 69
<210> 49
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 49
taaacacaca taaacaaaca aaatggaaat tttttacgtc acc 43
<210> 50
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 50
aaaaagtttg ggtgcttaag cgttaatatg tgggta 36
<210> 51
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 51
gggacgctcg aaggctttaa tttgcaagct gcggccctgc attaatgcag ttcgagttta 60
tcattatca 69
<210> 52
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 52
aggtagaagt tcggctccat tttgtttgtt tatgtgtgtt tattcg 46
<210> 53
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 53
gtatccgcac aaggcgtaag cacccaaact ttttatgaaa 40
<210> 54
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 54
caagcttggc actggccgtc gttttacaac gtcgtgactg ggaaaacgat gttttagttc 60
gaatgtctc 69
<210> 55
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 55
taaacacaca taaacaaaca aaatggagcc gaacttctac ctg 43
<210> 56
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 56
aaaaagtttg ggtgcttacg ccttgtgcgg atacag 36
<210> 57
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 57
tatgtcagac caccaccaat gttaacctca cctaatgact ttccaatatt ttagattcct 60
gacttcaac 69
<210> 58
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 58
ctgatgcgta taatgcagaa gtcattgttt ttatatttgt tgtaaaaagt 50
<210> 59
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 59
tacttgaggg acgtctggta agccgcatca tgtaattagt tatg 44
<210> 60
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 60
gtattctttg aaatggcagt attgataatg ataaactcga actattcatt aatgcagggc 60
cgcagcttg 69
<210> 61
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 61
actttttaca acaaatataa aaacaatgac ttctgcatta tacgcatcag 50
<210> 62
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 62
cataactaat tacatgatgc ggcttaccag acgtccctca agtaccta 48
<210> 63
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 63
gaggcagtct ttcttttaac aataggagac attcgaacta aaacatcgtt ttcccagtca 60
cgacgttgt 69
<210> 64
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 64
atgatagttg atttctattc caacaacgaa ttcgagctcg gtacccggga 50
<210> 65
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 65
cccgggtacc gagctcgaat tcgttgttgg aatagaaatc aactatcat 49
<210> 66
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 66
cacaggcgct accatgagaa ttgggtgaat gttgagataa ttgttg 46
<210> 67
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 67
gcttcggtta cttctaagga agtccacaca aatcaagatc cgttagacg 49
<210> 68
<211> 69
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 68
gttataatat ctgtgcgtct tgagttgaag tcaggaatct aaaatattgg aaagtcatta 60
ggtgaggtt 69

Claims (6)

1.一种构建高产α-香树脂醇和β-香树脂醇重组菌的方法,包括如下步骤:
(1)通过同源重组的方法,向酿酒酵母菌中导入多功能香树脂醇合酶编码基因CrAS和鲨烯环氧酶编码基因ERG1,得到高产α-香树脂醇和β-香树脂醇的重组菌Sc310LCZ01;
(2)通过同源重组的方法,向重组菌Sc310LCZ01中导入截短的3-羟基-3甲基戊二酰CoA还原酶编码基因tHMG1和法尼基焦磷酸合成酶编码基因ERG20,得到高产α-香树脂醇和β-香树脂醇的重组菌Sc310LCZ02;
所述多功能香树脂醇合酶编码基因CrAS的核苷酸序列如SEQ ID NO.1所示;
所述鲨烯环氧酶编码基因ERG1的核苷酸序列如SEQ ID NO.2所示;
所述截短的3-羟基-3甲基戊二酰CoA还原酶编码基因tHMG1的核苷酸序列如SEQ IDNO.3所示;
所述法尼基焦磷酸合成酶编码基因ERG20的核苷酸序列如SEQ ID NO.4所示。
2.权利要求1的方法构建的高产α-香树脂醇和β-香树脂醇重组菌Sc310LCZ02。
3.权利要求2的高产α-香树脂醇和β-香树脂醇重组菌Sc310LCZ02制备α-香树脂醇和β-香树脂醇的用途。
4.一种生产熊果酸和齐墩果酸的重组酵母菌的构建方法,包括如下步骤:通过同源重组的方法,向重组菌Sc310LCZ02中导入香树脂醇C-28位氧化酶编码基因CYP716A12和拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1,得到重组菌株Sc310LCZ03;
或向重组菌Sc310LCZ02中导入香树脂醇C-28位氧化酶编码基因CYP716AL1和拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1,得到重组菌株Sc310LCZ04;
所述香树脂醇C-28位氧化酶编码基因CYP716A12的核苷酸序列如SEQ ID NO.5所示;
所述拟南芥细胞色素-NADPH-还原酶1编码基因AtCPR1的核苷酸序列如SEQ ID NO.6所示;
所述香树脂醇C-28位氧化酶编码基因CYP716AL1的核苷酸序列如SEQ ID NO.7所示。
5.权利要求4的方法构建的生产熊果酸和齐墩果酸的重组酵母菌。
6.权利要求5的生产熊果酸和齐墩果酸的重组酵母菌发酵制备熊果酸和齐墩果酸的应用。
CN202010075904.6A 2020-01-22 2020-01-22 生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用 Active CN111205993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010075904.6A CN111205993B (zh) 2020-01-22 2020-01-22 生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010075904.6A CN111205993B (zh) 2020-01-22 2020-01-22 生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN111205993A true CN111205993A (zh) 2020-05-29
CN111205993B CN111205993B (zh) 2021-11-02

Family

ID=70782203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010075904.6A Active CN111205993B (zh) 2020-01-22 2020-01-22 生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN111205993B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440733A (zh) * 2020-02-07 2020-07-24 天津大学 产松油醇的重组酿酒酵母及构建方法及应用
CN112063647A (zh) * 2020-09-17 2020-12-11 云南农业大学 酿酒酵母重组菌Cuol01的构建方法、酿酒酵母重组菌Cuol02及应用
CN116121091A (zh) * 2022-10-19 2023-05-16 江南大学 一种高产熊果酸或齐墩果酸的酿酒酵母工程菌株及其应用
CN116732060A (zh) * 2023-05-25 2023-09-12 四川农业大学 喜树中的cyp716c氧化酶基因、载体、微粒体蛋白及应用
CN117467552A (zh) * 2023-09-04 2024-01-30 北京理工大学 高产齐墩果酸的酿酒酵母菌株、构建方法及其应用
CN117625569A (zh) * 2024-01-26 2024-03-01 东北林业大学 RrCYP450蛋白及编码基因和应用
CN117683651A (zh) * 2024-01-26 2024-03-12 东北林业大学 基因工程菌及其构建方法和应用
CN118325880A (zh) * 2024-04-18 2024-07-12 南京农业大学 夏枯草细胞色素氧化酶cyp蛋白及其编码基因与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946414A (zh) * 2004-01-15 2007-04-11 诺丽公司 改善脂蛋白的种类分布和抑制HMG-CoA还原酶
CN103275997A (zh) * 2013-06-08 2013-09-04 天津大学 一种生产7-脱氢胆甾醇的酿酒酵母菌株及构建方法
CN103509726A (zh) * 2013-09-16 2014-01-15 北京理工大学 一种酿酒酵母工程菌生产β-香树脂醇的方法
US20140234928A1 (en) * 2006-09-28 2014-08-21 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi
EP2812005A1 (en) * 2012-05-16 2014-12-17 Hans, Joachim Polyhydroxylated pentacyclic triterpene acids as hmg-coa reductase inhibitors
CN106318966A (zh) * 2016-09-26 2017-01-11 北京理工大学 一种利用酿酒酵母合成3‑o‑葡萄糖基齐墩果酸和纤维二糖齐墩果酸的方法
CN106635853A (zh) * 2016-12-28 2017-05-10 中国中医科学院中药研究所 产甘草次酸的重组酿酒酵母、其构建方法以及用途
KR20170076504A (ko) * 2015-12-24 2017-07-04 대한민국(농촌진흥청장) 신규한 올레아놀릭산 및 우르솔릭산의 생합성 증진 유전자 및 이의 이용
CN110468091A (zh) * 2018-05-09 2019-11-19 深圳艾格鑫科技有限公司 微生物及其用途
CN111235047A (zh) * 2020-02-12 2020-06-05 天津大学 异源合成α-香树脂醇和熊果酸的重组解脂耶氏酵母及构建方法
CN111235045A (zh) * 2020-01-19 2020-06-05 天津大学 异源合成β-香树脂醇和齐墩果酸的重组解脂耶氏酵母及构建方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946414A (zh) * 2004-01-15 2007-04-11 诺丽公司 改善脂蛋白的种类分布和抑制HMG-CoA还原酶
US20140234928A1 (en) * 2006-09-28 2014-08-21 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi
EP2812005A1 (en) * 2012-05-16 2014-12-17 Hans, Joachim Polyhydroxylated pentacyclic triterpene acids as hmg-coa reductase inhibitors
CN103275997A (zh) * 2013-06-08 2013-09-04 天津大学 一种生产7-脱氢胆甾醇的酿酒酵母菌株及构建方法
CN103509726A (zh) * 2013-09-16 2014-01-15 北京理工大学 一种酿酒酵母工程菌生产β-香树脂醇的方法
KR20170076504A (ko) * 2015-12-24 2017-07-04 대한민국(농촌진흥청장) 신규한 올레아놀릭산 및 우르솔릭산의 생합성 증진 유전자 및 이의 이용
CN106318966A (zh) * 2016-09-26 2017-01-11 北京理工大学 一种利用酿酒酵母合成3‑o‑葡萄糖基齐墩果酸和纤维二糖齐墩果酸的方法
CN106635853A (zh) * 2016-12-28 2017-05-10 中国中医科学院中药研究所 产甘草次酸的重组酿酒酵母、其构建方法以及用途
CN110468091A (zh) * 2018-05-09 2019-11-19 深圳艾格鑫科技有限公司 微生物及其用途
CN111235045A (zh) * 2020-01-19 2020-06-05 天津大学 异源合成β-香树脂醇和齐墩果酸的重组解脂耶氏酵母及构建方法
CN111235047A (zh) * 2020-02-12 2020-06-05 天津大学 异源合成α-香树脂醇和熊果酸的重组解脂耶氏酵母及构建方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HUANG,L.等: "Catharanthus roseus mixed amyrin synthase mRNA, complete cds", 《GENBANK》 *
LILI HUANG等: "Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus", 《PLANTA》 *
MAN LI等: "Biosynthesis of Soyasapogenol B by Engineered Saccharomyces cerevisiae", 《APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY》 *
MARIA CARELLI等: "Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins", 《THE PLANT CELL》 *
MIHO TAKEMURA等: "Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli—a method to biosynthesize plant-derived triterpene skeletons in E. coli", 《APPL MICROBIOL BIOTECHNOL》 *
YONGJIN J. ZHOU等: "Modular Pathway Engineering of Diterpenoid Synthases and the Mevalonic Acid Pathway for Miltiradiene Production", 《JOURNAL OFTHE AMERICAN CHEMICAL SOCIETY》 *
孙梦楚等: "产β-香树脂醇酿酒酵母细胞构建及高密度发酵", 《中国中药杂志》 *
陆春哲: "酿酒酵母生物合成熊果酸和齐墩果酸的研究", 《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑(电子期刊)》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440733A (zh) * 2020-02-07 2020-07-24 天津大学 产松油醇的重组酿酒酵母及构建方法及应用
CN112063647A (zh) * 2020-09-17 2020-12-11 云南农业大学 酿酒酵母重组菌Cuol01的构建方法、酿酒酵母重组菌Cuol02及应用
CN112063647B (zh) * 2020-09-17 2023-05-02 云南农业大学 酿酒酵母重组菌Cuol01的构建方法、酿酒酵母重组菌Cuol02及应用
CN116121091B (zh) * 2022-10-19 2024-03-08 江南大学 一种高产熊果酸或齐墩果酸的酿酒酵母工程菌株及其应用
CN116121091A (zh) * 2022-10-19 2023-05-16 江南大学 一种高产熊果酸或齐墩果酸的酿酒酵母工程菌株及其应用
CN116732060B (zh) * 2023-05-25 2024-05-03 四川农业大学 喜树中的cyp716c氧化酶基因、载体、微粒体蛋白及应用
CN116732060A (zh) * 2023-05-25 2023-09-12 四川农业大学 喜树中的cyp716c氧化酶基因、载体、微粒体蛋白及应用
CN117467552A (zh) * 2023-09-04 2024-01-30 北京理工大学 高产齐墩果酸的酿酒酵母菌株、构建方法及其应用
CN117467552B (zh) * 2023-09-04 2024-06-07 北京理工大学 高产齐墩果酸的酿酒酵母菌株、构建方法及其应用
CN117625569A (zh) * 2024-01-26 2024-03-01 东北林业大学 RrCYP450蛋白及编码基因和应用
CN117683651A (zh) * 2024-01-26 2024-03-12 东北林业大学 基因工程菌及其构建方法和应用
CN117625569B (zh) * 2024-01-26 2024-05-10 东北林业大学 RrCYP450蛋白及编码基因和应用
CN118325880A (zh) * 2024-04-18 2024-07-12 南京农业大学 夏枯草细胞色素氧化酶cyp蛋白及其编码基因与应用

Also Published As

Publication number Publication date
CN111205993B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN111205993B (zh) 生产熊果酸和齐墩果酸的重组酵母菌及其构建方法和应用
CN108949601B (zh) 利用木糖生产达玛烯二醇和原人参二醇的重组酿酒酵母菌及构建方法
CN111235045A (zh) 异源合成β-香树脂醇和齐墩果酸的重组解脂耶氏酵母及构建方法
CN110982720A (zh) 产达玛烯二醇和原人参二醇的重组解脂耶氏酵母菌及用途
CN112175848B (zh) 一种广藿香醇生产酵母菌株及其构建方法和应用
WO2023208037A1 (zh) 一种橙花叔醇合成酶及应用
CN111235046A (zh) 异源合成α-檀香烯的重组解脂耶氏酵母及其构建方法
CN111088254B (zh) 一种内源搭载的外源基因高效可控表达系统
CN111235047A (zh) 异源合成α-香树脂醇和熊果酸的重组解脂耶氏酵母及构建方法
CN111690549A (zh) 利用木糖生产原人参二醇的重组解脂耶氏酵母菌株及构建方法和应用
CN117187225A (zh) 一种橙花叔醇合成酶及应用
CN115976118B (zh) 一种生物合成诺卡酮的方法及载体
CN111118052A (zh) 重组酿酒酵母菌及其构建方法以及生产羟基脂肪酸的应用
CN116396876A (zh) 一种生产人参皂苷Rd的酿酒酵母工程菌及其构建方法
CN115305254B (zh) 一种萜类底盘微生物与工程菌及其构建方法和应用
CN112852847B (zh) 一种重组酿酒酵母菌株及其构建方法与应用
CN111548946B (zh) 一种生产次丹参酮二烯的重组酵母工程菌
KR102218160B1 (ko) 스테롤 생산능을 갖는 재조합 효모 균주, 이의 제조방법 및 용도
CN113817757A (zh) 一种生产樱桃苷的重组酵母工程菌株及应用
CN107903227B (zh) 琥珀酸酐类化合物、与其相关的基因和蛋白及其制备方法
CN111041040A (zh) 产左旋海松二烯和左旋海松酸的重组酿酒酵母及构建方法
CN114774442B (zh) 一种产灯盏乙素的重组解脂耶氏酵母及其构建方法和用途
CN114774503B (zh) 角鲨烯环氧化酶及其编码基因与应用
CN114634883B (zh) 产2′-岩藻糖基乳糖的重组工程菌及其构建方法与应用
CN115247183B (zh) 重组微生物的构建方法、相关生物材料及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant