CN111092214B - 一种含金属元素的锂硫电池正极材料的浆料制备方法 - Google Patents

一种含金属元素的锂硫电池正极材料的浆料制备方法 Download PDF

Info

Publication number
CN111092214B
CN111092214B CN201911417511.2A CN201911417511A CN111092214B CN 111092214 B CN111092214 B CN 111092214B CN 201911417511 A CN201911417511 A CN 201911417511A CN 111092214 B CN111092214 B CN 111092214B
Authority
CN
China
Prior art keywords
lithium
positive electrode
slurry
sulfur
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911417511.2A
Other languages
English (en)
Other versions
CN111092214A (zh
Inventor
朱甜
冯凯
屈亮辉
冯辉灿
李孟怀
管胜男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianmu Lake Institute of Advanced Energy Storage Technologies Co Ltd
Original Assignee
Tianmu Lake Institute of Advanced Energy Storage Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianmu Lake Institute of Advanced Energy Storage Technologies Co Ltd filed Critical Tianmu Lake Institute of Advanced Energy Storage Technologies Co Ltd
Priority to CN201911417511.2A priority Critical patent/CN111092214B/zh
Publication of CN111092214A publication Critical patent/CN111092214A/zh
Application granted granted Critical
Publication of CN111092214B publication Critical patent/CN111092214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种含金属元素的锂硫电池正极材料的浆料制备方法,本发明在正极混浆过程中,充分利用了超导碳黑的比表面积(>800m2g‑1)大于含金属元素的锂硫电池正极材料(100~800m2g‑1)、表面能(30~100mJ m‑2)小于含金属元素的锂硫电池正极材料(>500mJ m‑2)这一特点,在混浆过程中将超导碳黑均匀包覆在正极材料表面形成一种核壳结构,能够有效抑制硫在充放电过程中的体积变化,提高电池的循环稳定性。此外,传统的混浆工艺中碳黑仅充当导电剂的角色,本发明中所用的超导碳黑除了存在导电剂的作用,在后续极片烘烤过程中还可以防止硫的升华,减少活性物质硫的损失的,提高电池的容量性能。

Description

一种含金属元素的锂硫电池正极材料的浆料制备方法
技术领域
本发明属于锂硫电池浆料制备技术领域,具体涉及一种含金属元素的锂硫电池正极材料的浆料制备方法。
背景技术
锂硫电池因为理论比容量和比能量分别高达1675mAh/g和2600Wh/kg而快速成为下一代极具应用前景的储能产品之一。其中,含金属元素的锂硫电池正极材料是目前锂硫电池中研究的一大热点,原因有:导电性能较强;通过物理/化学作用束缚多硫化物;化学吸附能力较强,能够有效抑制锂硫电池中的穿梭效应。但是在实际应用中,含金属元素的锂硫电池正极材料中的活性物质硫存在以下缺点:充放电过程中易膨胀损伤电池;负载量较低;不耐高温,升华温度只有95℃,但是极片的烘烤温度为85~150℃、时间为 8h左右,烘烤过程中容易造成活性物质硫的损失,影响容量性能。
到目前为止,电池浆料中的导电剂的作用仅仅是为了进一步增强电池的导电性能。在干混工艺中,通常是将正极材料、导电剂、粘结剂加在一起充分搅拌。
CN105322132A公开了一种具有多功能弹性保护层的锂硫正极,通过化学或者物理方法在极片表面涂上一种多功能弹性保护层,能够缓解正极在电池充放电循环过程中因体积效应造成的结构破坏,同时增加的多功能弹性层结构能够保证正极中的活性物质不会大量溶解到电解液中导致容量损失。从摘要图及实施例中可以看出这一层保护层是位于极片表面,在后续极片烘烤过程中溶剂难以挥发完全,时间成本过高,难以运用于工业化生产。
发明内容
基于以上问题,本发明旨在提供一种含金属元素的锂硫电池正极材料的浆料制备方法,在混浆过程中,利用超导碳黑的比表面积(>800m2g-1)大于含金属元素的锂硫电池正极材料(100~800m2g-1)、表面能(30~100mJ m-2)小于含金属元素的锂硫电池正极材料(>500mJ m-2)这一特点,将超导碳黑均匀包覆在正极材料表面形成一种核壳结构,此时的超导碳黑不仅是导电剂的作用,在后续的极片烘烤过程中还能有效抑制活性物质硫的损失,提高电池的容量性能。
本发明的目的是通过以下技术方案实现的:
一种含金属元素的锂硫电池正极材料的浆料制备方法,包括以下步骤:
(1)将含金属元素的锂硫电池正极材料和超导碳黑加入到混合机中搅拌均匀,使超导碳黑均匀包覆在正极材料表面形成一种核壳结构;
(2)继续往混合机中加入粘结剂和分散剂,使其混合均匀;
(3)将步骤(2)中所得混合粉末倒入搅拌机中,然后加入溶剂继续搅拌,最终得到正极浆料。
进一步,所述步骤(1)中含金属元素的锂硫电池正极材料为金属硫化物、硫/金属氮化物复合材料、硫/金属氧化物复合材料、硫/金属有机聚合物材料、硫/金属有机化合物复合材料的一种或几种的混合。
进一步,步骤(2)中所述的粘结剂为PVDF、SBR、PTFE、TFE、氰基丙烯酸酯、 SPS固体聚合物、丙烯酸酯的一种或几种的混合。
进一步,步骤(2)中所述的分散剂为CMC、PFEA分散剂、聚氧丙烯聚氧乙烯共聚物、HPMA、聚乙二醇200的一种或几种的混合。
进一步,步骤(3)中所述溶剂为N-甲基吡咯烷酮、无水乙醇、异丙酮、丙醇、去离子水、正丁醇的一种或几种的混合。
进一步,该制备方法中,各成分的质量配比为:含金属元素的锂硫电池正极材料:65%~98%;超导碳黑:0.1%~15%;粘结剂:0.1%~10%;分散剂:0.001%~10%;各成分的质量百分比之和为100%。
进一步,步骤(1)中混合机的搅拌速率为25~45rpm,搅拌时间为30min~120min;步骤(2)中混合机的搅拌速率为25~45rpm,搅拌时间为30min~120min;步骤(3)中搅拌机的搅拌公转速率为25~45rpm,自转速率为2000~4500rpm,搅拌时间为120min~360min。
进一步,所述步骤(3)正极浆料的固含量为55%~80%。
本发明还提供了由上述方法制备得到的锂硫电池正极浆料。
现对于现有技术,本发明的有益效果在于:
本发明是在混浆过程中,利用超导碳黑的比表面积(>800m2g-1)大于含金属元素的锂硫电池正极材料(100~800m2g-1)、表面能(30~100mJ m-2)小于含金属元素的锂硫电池正极材料(>500mJ m-2)这一特点,在混浆过程中通过自组装将超导碳黑均匀包覆在正极材料表面形成一种核壳结构,能够有效抑制硫在充放电过程中的体积变化,提高电池的循环稳定性。
且传统的混浆工艺中碳黑仅充当导电剂的角色,本发明中所用的超导碳黑除了存在导电剂的作用,在后续极片烘烤过程中还可以防止硫的升华,减少活性物质硫的损失的,提高电池的容量性能,同时也不会增加极片烘烤得的时间成本。
附图说明
图1为实施例1硫/金属氮化物复合材料和超导碳黑混合搅拌后的SEM图。
图2为实施例1与对比例1的正极浆料制作成电池的循环性能对比图。
图3为实施例2中的极片断面的SEM图。
图4为实施例2-3的正极浆料制作成电池的循环性能图。
具体实施方式
为了使本发明的目的、技术方案及工艺优点更加清晰,以下结合实施例及附图,对本发明进行详细说明。除有定义外,以下实施例中所用的技术术语具有与本发明所属领域技术人员普遍理解的相同含义。以下实施例中所用的试验试剂,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规方法。
实施例1:
一种含金属元素的锂硫电池正极材料的浆料制备方法,包括以下步骤:
(1)按照粉末配比将95.5%的硫/氮化钒复合材料和2%的超导碳黑加入到混合机中搅拌均匀,搅拌速率为28rpm,搅拌时间为60min,使超导碳黑均匀包覆在硫/金属氮化物复合材料表面形成一种核壳结构;
(2)继续往混合机中加入配比2%的PVDF和0.5%的HPMA,搅拌速率为28rpm,搅拌时间为60min;
(3)将步骤(2)中得混合粉末倒入搅拌机中,然后加入一定量的N-甲基吡咯烷酮继续搅拌,公转速率为30rpm,自转速率为2800rpm,搅拌时间为180min,最终得到固含量为72%的正极浆料。
实施例2:
一种含金属元素的锂硫电池正极材料的浆料制备方法,包括以下步骤:
(1)按照粉末配比将90%的硫化铁、5%的超导碳黑加入到混合机中搅拌均匀,搅拌速率为31rpm,搅拌时间为90min,使超导碳黑均匀包覆在金属硫化物表面形成一种核壳结构;
(2)继续往混合机中加入配比3%丙烯酸酯和2%的聚乙二醇200继续搅拌,搅拌速率为25rpm,搅拌时间为75min;
(3)将步骤(2)中得混合粉末倒入搅拌机中,然后加入一定量的丙醇继续搅拌,公转速率为25rpm,自转速率为3200rpm,搅拌时间为200min,最终得到固含量为65%正极浆料。
实施例3:
一种含金属元素的锂硫电池正极材料的浆料制备方法,包括以下步骤:
(1)按照粉末配比将80%的硫/二氧化钛复合材料和10%的超导碳黑加入到混合机中搅拌均匀,搅拌速率为25rpm,搅拌时间为40min,使超导碳黑均匀包覆在硫/金属有机聚合物表面形成一种核壳结构;
(2)继续往混合机中加入配比4%的SBR和6%CMC继续搅拌,搅拌速率为34rpm,搅拌时间为55min;
(3)将步骤(2)中得混合粉末倒入搅拌机中,然后加入一定量的去离子水继续搅拌,公转速率为36rpm,自转速率为4100rpm,搅拌时间为150min,最终得到固含量为 50%的正极浆料。
对比实施例1:
未将含金属元素的锂硫电池正极材料包覆的浆料制备方法,包括以下步骤:
(1)按照粉末配比将95.5%的硫/氮化钒复合材料、2%的超导碳黑、2%的PVDF和0.5%的HPMA加入到搅拌机中,充分搅拌120min;
(2)加入一定量的N-甲基吡咯烷酮继续搅拌180min,最终得到固含量为70%正极浆料。
图1为实施例1硫/金属氮化物复合材料和超导碳黑混合搅拌后的SEM图,可以看出在混浆过程中将超导碳黑均匀包覆在硫/金属氮化物复合材料表面形成一种核壳结构。
图2为实施例1与对比实施例1的正极浆料制作成电池的循环性能对比图,由图2可知,采用超导碳黑包覆的含金属元素的锂硫电池正极材料的正极浆料所制备的电池,首次放电比容量为1085mAh/g,循环50圈后比容量为953mAh/g,容量保持率约为87.8%;然而,采用普通干混的正极浆料所制备的电池,首次放电比容量为936mAh/g,循环50 圈后比容量为553mAh/g,容量保持率约为55.3%,说明在混浆过程中将超导碳黑均匀包覆在正极材料表面形成一种核壳结构,有利于提高电池的容量性能。
图3为实施例2中的极片断面的SEM图,可以看出极片表面并无涂层,表明在极片烘烤过程中溶剂容易挥发完全,适合工业化生产。
图4为实施例2与实施例3的正极浆料制作成电池的循环性能图,首次放电比容量分别为1032mAh/g、1066mAh/g,循环50圈后比容量分别为834mAh/g、878mAh/g,容量保持率分别为80.8%、82.3%。
上述各实施例中各种材料的配比、各种搅拌时间等各种参数仅用于示例和解释,本发明的方案中并不限于上述数值,且不限于上述数值的组合,只要在权利要求书所述的各个参数内,均属于本发明的保护范围。

Claims (7)

1.一种含金属元素的锂硫电池正极材料的浆料制备方法,其特征在于,包括以下步骤:
(1)将含金属元素的锂硫电池正极材料和超导碳黑加入到混合机中搅拌均匀,使超导碳黑均匀包覆在正极材料表面形成一种核壳结构;
(2)继续往混合机中加入粘结剂和分散剂,使其混合均匀;
(3)将步骤(2)中得混合粉末倒入搅拌机中,然后加入溶剂继续搅拌,最终得到正极浆料;
步骤(1)所述的含金属元素的锂硫电池正极材料为金属硫化物、硫/金属氮化物复合材料、硫/金属氧化物复合材料、硫/金属有机聚合物材料、硫/金属有机化合物复合材料的一种或几种的混合;
步骤(1)中混合机的搅拌速率为25~45rpm,搅拌时间为30min~120min;步骤(2)中混合机的搅拌速率为25~45rpm,搅拌时间为30min~120min;步骤(3)中搅拌机的搅拌公转速率为25~45rpm,自转速率为2000~4500rpm,搅拌时间为120min~360min。
2.如权利要求1所述的含金属元素的锂硫电池正极材料的浆料制备方法,其特征在于:步骤(2)所述的粘结剂为PVDF、SBR、PTFE、TFE、氰基丙烯酸酯、SPS固体聚合物、丙烯酸酯的一种或几种的混合。
3.如权利要求1所述的含金属元素的锂硫电池正极材料的浆料制备方法,其特征在于:步骤(2)所述的分散剂为CMC、PFEA分散剂、聚氧丙烯聚氧乙烯共聚物、HPMA、聚乙二醇200的一种或几种的混合。
4.如权利要求1所述的含金属元素的锂硫电池正极材料的浆料制备方法,其特征在于:步骤(3)所述的溶剂为N-甲基吡咯烷酮、无水乙醇、异丙酮、丙醇、去离子水、正丁醇的一种或几种的混合。
5.如权利要求1所述的含金属元素的锂硫电池正极材料的浆料制备方法,其特征在于:该制备方法中,各成分的质量配比为:含金属元素的锂硫电池正极材料:65%~98%;超导碳黑:0.1%~15%;粘结剂:0.1%~10%;分散剂:0.001%~10%;各成分的质量百分比之和为100%。
6.如权利要求1所述的含金属元素的锂硫电池正极材料的浆料制备方法,其特征在于:步骤(3)所述的正极浆料的固含量为55%~80%。
7.权利要求1-6任一项方法制备得到的含金属元素的锂硫电池正极材料。
CN201911417511.2A 2019-12-31 2019-12-31 一种含金属元素的锂硫电池正极材料的浆料制备方法 Active CN111092214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911417511.2A CN111092214B (zh) 2019-12-31 2019-12-31 一种含金属元素的锂硫电池正极材料的浆料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911417511.2A CN111092214B (zh) 2019-12-31 2019-12-31 一种含金属元素的锂硫电池正极材料的浆料制备方法

Publications (2)

Publication Number Publication Date
CN111092214A CN111092214A (zh) 2020-05-01
CN111092214B true CN111092214B (zh) 2022-05-06

Family

ID=70398365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911417511.2A Active CN111092214B (zh) 2019-12-31 2019-12-31 一种含金属元素的锂硫电池正极材料的浆料制备方法

Country Status (1)

Country Link
CN (1) CN111092214B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687872A (zh) * 2020-12-25 2021-04-20 惠州亿纬锂能股份有限公司 一种锂硫电池正极浆料、其匀浆方法及用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832379A (zh) * 2012-09-29 2012-12-19 上海空间电源研究所 一种锂硫电池用正极材料的制备方法
CN104064374A (zh) * 2014-07-02 2014-09-24 长沙国容新能源有限公司 电容器电极制造过程中的混浆方法及制得浆料的使用方法
CN105489835A (zh) * 2015-11-27 2016-04-13 上海空间电源研究所 一种含硫正极、其制备方法及用途
CN108390022A (zh) * 2017-12-29 2018-08-10 桑德集团有限公司 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832379A (zh) * 2012-09-29 2012-12-19 上海空间电源研究所 一种锂硫电池用正极材料的制备方法
CN104064374A (zh) * 2014-07-02 2014-09-24 长沙国容新能源有限公司 电容器电极制造过程中的混浆方法及制得浆料的使用方法
CN105489835A (zh) * 2015-11-27 2016-04-13 上海空间电源研究所 一种含硫正极、其制备方法及用途
CN108390022A (zh) * 2017-12-29 2018-08-10 桑德集团有限公司 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池

Also Published As

Publication number Publication date
CN111092214A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN104934597A (zh) 一类钠离子电池正极材料的制备及应用
CN112701277A (zh) 一种锂离子电池预锂化添加剂及其应用
CN110817958B (zh) 一种碳包覆纳米五氧化二钒锂电池正极材料及其液相原位制备方法
CN104538640A (zh) 一种锂离子电池正极浆料及其制备方法
CN103682290A (zh) 一种用于锂离子电池富锂锰基正极的改性材料
CN114068866A (zh) 一种改性钠离子正极的制备方法及改性钠离子正极
CN112340786A (zh) 一种正极材料的改性方法、改性正极材料以及锂离子电池
CN105845886A (zh) 一种离子电池负极材料及其制备方法
CN111092214B (zh) 一种含金属元素的锂硫电池正极材料的浆料制备方法
CN114613948A (zh) 一种锂离子电池正极电极片的制备方法
Zhang et al. Low-cost batteries based on industrial waste Al–Si microparticles and LiFePO 4 for stationary energy storage
CN109216692B (zh) 改性三元正极材料及其制备方法、锂离子电池
CN116487563A (zh) 一种表面改性的钠离子电池正极材料及其制备方法和应用
CN1186267C (zh) 锂离子电池正极活性材料钴酸锂的制备方法
CN115084468A (zh) 一种嵌入型-转化型复合储镁正极活性材料及其制备方法和应用
CN111740108B (zh) 锂离子电池高镍三元正极水性粘结剂及其制备方法
CN111313008B (zh) 一种含镁富锂锰基正极及其制备方法
CN114388745A (zh) 一种高性能锂离子电池自支撑聚合物厚极片及其制备方法
CN114388759A (zh) 一种双包覆复合材料及其制备方法和应用
CN116845179B (zh) 一种基于粘结剂与导电剂耦合的高强度自支撑电极及其制备方法
CN116706042B (zh) 一种硅基负极材料及其制备方法与应用
CN114267840B (zh) 一种降低电池、混合离子电容器预金属化剂氧化电势的方法
CN115000363B (zh) 一种有机物/锰基氧化物复合材料及其制备方法和应用
CN117317200B (zh) 一种正极材料及其制备方法和钠离子电池
CN114597401B (zh) 一种高容量多硫化钼复合正极材料,制备方法及其在全固态电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant