CN111081756A - 一种优化米勒电容和导通压降的功率器件及制备方法 - Google Patents

一种优化米勒电容和导通压降的功率器件及制备方法 Download PDF

Info

Publication number
CN111081756A
CN111081756A CN201910999012.2A CN201910999012A CN111081756A CN 111081756 A CN111081756 A CN 111081756A CN 201910999012 A CN201910999012 A CN 201910999012A CN 111081756 A CN111081756 A CN 111081756A
Authority
CN
China
Prior art keywords
region
substrate
voltage drop
implantation
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910999012.2A
Other languages
English (en)
Other versions
CN111081756B (zh
Inventor
刘剑
龚大卫
郑泽人
王玉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Guoyang Electronic Co ltd
Original Assignee
Yangzhou Guoyang Electronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Guoyang Electronic Co ltd filed Critical Yangzhou Guoyang Electronic Co ltd
Priority to CN201910999012.2A priority Critical patent/CN111081756B/zh
Publication of CN111081756A publication Critical patent/CN111081756A/zh
Application granted granted Critical
Publication of CN111081756B publication Critical patent/CN111081756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种优化米勒电容和导通压降的功率器件及制备方法,包括衬底,位于衬底左上方的阱区域,阱区域右侧为局部高掺注入区域;阱区域上方依次离子注入形成第二导电类型重掺区和第一导电类型重掺区;阱区域重掺区上方设置发射极,衬底右上方依次生长栅氧化层和栅极,衬底下方设置收集极。本发明通过区域注入方式替代普遍注入方式,确保在阱周边3um~5um的区域进行注入,栅极下方其余位置不进行注入,可以实现注入浓度的提升,从5E11~1E12atom/cm2增加到3E12~5E12atom/cm2,从而在不影响米勒(Miller)电容的前提下,降低器件导通压降。

Description

一种优化米勒电容和导通压降的功率器件及制备方法
技术领域
本发明涉及功率半导体技术,尤其涉及一种优化米勒电容和导通压降的功率器件及制备方法。
背景技术
栅控型功率器件(如功率MOSFET和IGBT)是现代通用的电力半导体器件,主要应用于新能源、机车牵引、智能电网、高压变频器等领域。通过电力半导体器件对电能进行变换及控制,节能效果可达10%-40%。在全球气候变暖的背景下,栅控型功率器件应用技术是被公认的实现全球能效和二氧化碳减排目标的最佳综合性方法之一。
常规的栅控型功率器件(以IGBT为例)基本结构如图1所示,包含N型衬底4,栅极1,发射极2,收集极3,P型阱区域5,N型重掺区6,改进安全工作区的P型重掺区7。
在器件导通状态下,电子电流和空穴电流的通道如图1所示。其中,电子电流从N型重掺区6出发,流经沟道(栅极1和P型阱区域5相交的区域),注入N型衬底,从收集极3流出。而空穴电流从收集极3出发,流经N型衬底,P型阱区域,然后在N型重掺区6下方被发射极2吸收。
器件的导通压降主要由N型衬底中的自由电子和空穴的浓度决定。由于增加P+收集极3的掺杂浓度来降低器件导通压降的方法会导致器件在开关过程中的功耗增加,常规设计是通过引入N-注入8(注入浓度大于N型衬底掺杂浓度)来增加器件表面的载流子浓度,从而降低器件的导通压降。采用常规普遍注入方式(没有光罩)来实现。
通过N-注入改善导通压降的同时,由于器件表面载流子浓度增加,会导致米勒(Miller)电容增大,从而致使器件开关速度变慢,功耗增加。在器件的导通压降和米勒电容之间取折中(trade-off),在改善器件导通压降的同时减少米勒电容的增加。因此,采用常规普遍注入方式实现的N-掺杂浓度较小,保持在5E11~1E12 atom/cm2范围。
发明内容
发明目的:针对以上问题,本发明提出一种优化米勒电容和导通压降的功率器件及制备方法,通过区域注入方式,实现N-注入浓度的提升,在不影响米勒电容的前提下,降低器件导通压降。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种优化米勒电容和导通压降的功率器件,包括衬底,位于衬底左上方的阱区域,阱区域右侧为局部高掺注入区域;阱区域上方依次离子注入形成第二导电类型重掺区和第一导电类型重掺区;阱区域重掺区上方设置发射极,衬底右上方依次生长栅氧化层和栅极,衬底下方设置收集极。
进一步地,所述阱区域右侧3-5um为局部高掺注入区域。
进一步地,所述衬底和局部高掺注入区域为第一导电类型,所述阱区域和收集极为第二导电类型。
一种优化米勒电容和导通压降的功率器件制备方法,包括步骤:
(1)在衬底上方右侧区域进行光刻,形成光刻胶阻挡区域;
(2)在衬底上方进行离子注入,形成局部高掺注入区域;
(3)去除光刻胶,在衬底上方生长形成栅氧化层和多晶硅层,然后通过光刻和刻蚀工艺形成多晶硅栅极;
(4)以栅极作为阻挡层,进行P型阱离子注入,然后进行热过程推进,形成阱区域;
(5)通过光刻工艺,进行离子注入,依次形成第二导电类型重掺区和第一导电类型重掺区;
(6)通过金属溅射工艺在阱区域重掺区上方制备发射极,在衬底下方制备收集极;
(7)通过沉积和刻蚀制备器件表面钝化层,最终得到器件的完整结构。
进一步地,所述衬底和局部高掺注入区域为第一导电类型,所述阱区域和收集极为第二导电类型。
进一步地,所述第二导电类型重掺区的注入深度为30Kev~100Kev,注入浓度为1E15~5E15 atom/cm2;所述第一导电类型重掺区的注入深度为30Kev~70Kev,注入浓度为1E15~5E15 atom/cm2
进一步地,所述阱区域右侧3-5um为局部高掺注入区域。
进一步地,所述局部高掺注入区域注入浓度为3E12~5E12 atom/cm2
有益效果:本发明通过区域注入方式,可以实现注入浓度的提升,从5E11~1E12atom/cm2增加到3E12~5E12 atom/cm2,从而在不影响米勒(Miller)电容的前提下,降低器件导通压降。
附图说明
图1是现有技术普遍注入的功率器件结构图;
图2是本发明采用区域注入的功率器件结构图;
图3是光刻工艺示意图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
如图2所示,本发明所述的优化米勒电容和导通压降的功率器件,包括衬底4,位于衬底4左上方的阱区域5,阱区域5右侧3-5um为局部高掺注入区域8;阱区域5上方依次离子注入形成第二导电类型重掺区7和第一导电类型重掺区6;阱区域5重掺区上方设置发射极2,衬底4右上方依次生长栅氧化层和栅极1,衬底4下方设置收集极3。
衬底4和局部高掺注入区域8为第一导电类型,阱区域5和收集极3为第二导电类型。如果第一导电类型为N型,则第二导电类型为P型;如果第一导电类型为P型,则第二导电类型为N型。
如图2所示,本发明通过N-光罩(mask)实现区域注入,确保在P型阱区域5周边3um~5um的区域进行N-注入,这部分区域刚好是电子电流和和空穴电流流经的途径,栅极下方其余位置不进行N-注入,这部分区域是米勒(Miller)电容的主要构成部分。因此可以实现N-注入浓度的提升,N-注入浓度范围可增加到3E12~5E12 atom/cm2,从而在不影响米勒(Miller)电容的前提下,降低器件导通压降。
本发明所述的优化米勒电容和导通压降的功率器件制备方法,包括步骤:
(1)在衬底4上方右侧区域进行光刻,形成光刻胶阻挡区域,如图3所示;
(2)在衬底4上方进行离子注入,形成局部高掺注入区域8;局部高掺注入区域8注入浓度为3E12~5E12 atom/cm2
(3)去除光刻胶,在衬底4上方生长形成栅氧化层和多晶硅层,然后通过光刻和刻蚀工艺形成多晶硅栅极1;
(4)以栅极1作为阻挡层,进行P型阱离子注入,然后进行热过程推进,形成阱区域5;
(5)通过光刻工艺,进行离子注入,依次形成第二导电类型重掺区7和第一导电类型重掺区6;
第二导电类型重掺区7的注入深度为30Kev~100Kev,注入浓度为1E15~5E15atom/cm2;所述第一导电类型重掺区6的注入深度为30Kev~70Kev,注入浓度为1E15~5E15 atom/cm2
(6)通过金属溅射工艺在阱区域5重掺区上方制备发射极2,在衬底4下方制备收集极3;
(7)通过沉积和刻蚀制备器件表面钝化层,最终得到器件的完整结构。

Claims (8)

1.一种优化米勒电容和导通压降的功率器件,其特征在于,包括衬底(4),位于衬底(4)左上方的阱区域(5),阱区域(5)右侧为局部高掺注入区域(8);阱区域(5)上方依次离子注入形成第二导电类型重掺区(7)和第一导电类型重掺区(6);阱区域(5)重掺区上方设置发射极(2),衬底(4)右上方依次生长栅氧化层和栅极(1),衬底(4)下方设置收集极(3)。
2.根据权利要求1所述的优化米勒电容和导通压降的功率器件,其特征在于,所述阱区域(5)右侧3-5um为局部高掺注入区域(8)。
3.根据权利要求1所述的优化米勒电容和导通压降的功率器件,其特征在于,所述衬底(4)和局部高掺注入区域(8)为第一导电类型,所述阱区域(5)和收集极(3)为第二导电类型。
4.一种优化米勒电容和导通压降的功率器件制备方法,其特征在于,包括步骤:
(1)在衬底(4)上方右侧区域进行光刻,形成光刻胶阻挡区域;
(2)在衬底(4)上方进行离子注入,形成局部高掺注入区域(8);
(3)去除光刻胶,在衬底上方生长形成栅氧化层和多晶硅层,然后通过光刻和刻蚀工艺形成多晶硅栅极(1);
(4)以栅极(1)作为阻挡层,进行P型阱离子注入,然后进行热过程推进,形成阱区域(5);
(5)通过光刻工艺,进行离子注入,依次形成第二导电类型重掺区(7)和第一导电类型重掺区(6);
(6)通过金属溅射工艺在阱区域(5)重掺区上方制备发射极(2),在衬底(4)下方制备收集极(3);
(7)通过沉积和刻蚀制备器件表面钝化层,最终得到器件的完整结构。
5.根据权利要求4所述的优化米勒电容和导通压降的功率器件制备方法,其特征在于,所述衬底(4)和局部高掺注入区域(8)为第一导电类型,所述阱区域(5)和收集极(3)为第二导电类型。
6.根据权利要求4所述的优化米勒电容和导通压降的功率器件制备方法,其特征在于,所述第二导电类型重掺区(7)的注入深度为30Kev~100Kev,注入浓度为1E15~5E15atom/cm2;所述第一导电类型重掺区(6)的注入深度为30Kev~70Kev,注入浓度为1E15~5E15atom/cm2
7.根据权利要求4所述的优化米勒电容和导通压降的功率器件制备方法,其特征在于,所述阱区域(5)右侧3-5um为局部高掺注入区域(8)。
8.根据权利要求4所述的优化米勒电容和导通压降的功率器件制备方法,其特征在于,所述局部高掺注入区域(8)注入浓度为3E12~5E12atom/cm2
CN201910999012.2A 2019-10-21 2019-10-21 一种优化米勒电容和导通压降的功率器件及制备方法 Active CN111081756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910999012.2A CN111081756B (zh) 2019-10-21 2019-10-21 一种优化米勒电容和导通压降的功率器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910999012.2A CN111081756B (zh) 2019-10-21 2019-10-21 一种优化米勒电容和导通压降的功率器件及制备方法

Publications (2)

Publication Number Publication Date
CN111081756A true CN111081756A (zh) 2020-04-28
CN111081756B CN111081756B (zh) 2023-06-06

Family

ID=70310714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910999012.2A Active CN111081756B (zh) 2019-10-21 2019-10-21 一种优化米勒电容和导通压降的功率器件及制备方法

Country Status (1)

Country Link
CN (1) CN111081756B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130466A (zh) * 2023-04-13 2023-05-16 江苏润石科技有限公司 降低寄生电容的米勒补偿电容及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762230A (zh) * 2014-01-24 2014-04-30 东南大学 N沟道注入效率增强型绝缘栅双极型晶体管
CN103872115A (zh) * 2012-12-13 2014-06-18 中国科学院微电子研究所 一种增强微穿通型igbt
CN109494254A (zh) * 2018-10-16 2019-03-19 扬州国扬电子有限公司 改进栅控型功率器件安全工作区性能的自对准工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872115A (zh) * 2012-12-13 2014-06-18 中国科学院微电子研究所 一种增强微穿通型igbt
CN103762230A (zh) * 2014-01-24 2014-04-30 东南大学 N沟道注入效率增强型绝缘栅双极型晶体管
CN109494254A (zh) * 2018-10-16 2019-03-19 扬州国扬电子有限公司 改进栅控型功率器件安全工作区性能的自对准工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130466A (zh) * 2023-04-13 2023-05-16 江苏润石科技有限公司 降低寄生电容的米勒补偿电容及其制备方法
CN116130466B (zh) * 2023-04-13 2023-06-20 江苏润石科技有限公司 降低寄生电容的米勒补偿电容及其制备方法

Also Published As

Publication number Publication date
CN111081756B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN107623027B (zh) 一种沟槽栅电荷储存型绝缘栅双极型晶体管及其制造方法
CN114122139B (zh) 具有集成二极管的碳化硅mosfet器件及制造方法
CN114122123B (zh) 集成高速续流二极管的碳化硅分离栅mosfet及制备方法
CN110504310B (zh) 一种具有自偏置pmos的ret igbt及其制作方法
CN107731898B (zh) 一种cstbt器件及其制造方法
SE1850824A1 (en) MOSFET in SiC with self-aligned lateral MOS channel
CN114823911B (zh) 集成高速续流二极管的沟槽碳化硅mosfet及制备方法
CN111048580A (zh) 一种碳化硅绝缘栅双极晶体管及其制作方法
CN113838916A (zh) 一种具有pmos电流嵌位的分离栅cstbt及其制作方法
CN110473917B (zh) 一种横向igbt及其制作方法
CN113571415A (zh) Igbt器件及其制作方法
CN103872097B (zh) 功率半导体设备及其制造方法
CN109065608B (zh) 一种横向双极型功率半导体器件及其制备方法
CN111081756B (zh) 一种优化米勒电容和导通压降的功率器件及制备方法
CN113838918A (zh) 具有载流子浓度增强的超结igbt器件结构及制作方法
CN103839990B (zh) 一种igbt的缓冲层结构及其制作方法
CN110416295B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN110504314B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN109461769B (zh) 一种沟槽栅igbt器件结构及其制作方法
CN109087946B (zh) 一种沟槽栅mos控制晶闸管及其制作方法
CN103872108A (zh) 一种igbt结构及其制备方法
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN116230770A (zh) 肖特基结辅助耗尽镇流电阻的碳化硅mosfet器件及制备方法
CN113838913A (zh) 分段式注入的自钳位igbt器件及其制作方法
CN113206013A (zh) 具有背面缓冲层结构的igbt器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant