CN111074560A - 聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用 - Google Patents

聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用 Download PDF

Info

Publication number
CN111074560A
CN111074560A CN201911290129.XA CN201911290129A CN111074560A CN 111074560 A CN111074560 A CN 111074560A CN 201911290129 A CN201911290129 A CN 201911290129A CN 111074560 A CN111074560 A CN 111074560A
Authority
CN
China
Prior art keywords
fiber
polyacrylonitrile
aminopyridine
chelate
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911290129.XA
Other languages
English (en)
Other versions
CN111074560B (zh
Inventor
沈忱
韩得满
张维权
王小青
杨陈义
厉炯慧
陈青
熊春华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Zhejiang Gongshang University
Original Assignee
Taizhou University
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University, Zhejiang Gongshang University filed Critical Taizhou University
Priority to CN201911290129.XA priority Critical patent/CN111074560B/zh
Publication of CN111074560A publication Critical patent/CN111074560A/zh
Application granted granted Critical
Publication of CN111074560B publication Critical patent/CN111074560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile

Abstract

本发明公开了一种聚丙烯腈基‑2‑氨基吡啶螯合纤维,其结构式为:
Figure DDA0002318846330000011
本发明还同时提供了上述聚丙烯腈基‑2‑氨基吡啶螯合纤维的合成方法,包括以下步骤:在溶剂中加入聚丙烯腈纤维(作为母体)、2‑氨基吡啶(作为配体)、碳酸钠,于微波条件下加热至110~140℃搅拌反应;反应所得的聚合物用去离子水冲洗,干燥,得到聚丙烯腈基‑2‑氨基吡啶螯合纤维。本发明还同时提供了其用途:选择性吸附Cr(Ⅵ),用于处理含Cr(Ⅵ)废水。

Description

聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用
技术领域
本发明属于化学技术领域,具体涉及一种聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用。
背景技术
铬元素常见的化合价有+2,+3和+6价,在含铬废水中主要含有六价铬,其毒性远远超过三价铬。植物吸收过量Cr(Ⅵ)后,会导致种子萌发率降低,光合作用异常并引发诱变。当人食用了Cr(Ⅵ)超标的蔬菜、粮食等食品,体内Cr(Ⅵ)超标后,可引发癌症。同时Cr(Ⅵ)也会通过粘膜和皮肤被人体吸收,蓄积在肺、肾和脾中,骨骼中也会存在。在2006版的《生活饮用水卫生标准》中规定,饮用水中Cr(Ⅵ)含量不得超过0.05mg/L。
由于铬产品的广泛应用,大量含铬废水、废气、废渣被排放,全国历年堆积含铬废渣600万吨,80%以上都不能得到妥善处理,行业年排放含铬废水40亿立方米以上,其中一半未达到国家排放标准,其危害性不能忽视。吸附材料可以吸附水中的重金属,一个良好的分离富集材料需要符合吸附速度快,选择性好,洗脱率高这三点要求。
螯合纤维是指具有配位功能的纤维,将含有N、O、P、S等元素的配体接枝在纤维上,这些原子能够与重金属离子的配位从而吸附重金属离子。常见的功能纤维母体有聚丙烯腈纤维、聚氨酯纤维、聚乙烯醇纤维、纤维素纤维等。由于纤维的直径小、比表面积大;其特殊的物理形态使其与吸附质有较大的接触面积与较小流体阻力,不仅吸附速率快,容量大,而且容易脱附,对于痕量重金属离子的吸附也十分有效。因此,螯合纤维材料在分离富集重金属方面具有很强的应用性。
常规的螯合纤维制备方法有传统加热法和辐照接枝法,目前传统加热法的使用比较普遍,使用水浴、油浴或电热套将反应物和溶剂共同加热搅拌,这种方法的合成时间普遍较长,会消耗相对多的水和电。辐照接枝法是利用高能辐射对纤维母体照射,在母体骨架上形成若干活性点,然后将配体通过接枝反应与纤维结合,但辐照法对仪器要求很高,价格昂贵。微波辅助法是制备螯合纤维的一种新方法,微波指频率为0.3~300GHz的电磁波,波长范围为1mm~1m。微波本身无法引起化学键破坏,但可以对极性物质加热,使极性分子重新排列,由于分子间摩擦和介电消耗,将电能转化为热能,从而实现对反应体系的内部和整体加热,升温更迅速,令反应时间大大缩短。目前,大部分螯合纤维的制备步骤较多,缺乏更简单的制备方案。
发明内容
本发明要解决的技术问题是提供一种聚丙烯腈基-2-氨基吡啶螯合纤维及其制备方法和用途。
为了解决上述技术问题,本发明提供一种聚丙烯腈基-2-氨基吡啶螯合纤维,其结构式为:
Figure BDA0002318846310000021
本发明还同时提供了上述聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法,包括以下步骤:
1)、以聚丙烯腈纤维为母体,以2-氨基吡啶作为配体;
在溶剂中加入聚丙烯腈纤维、2-氨基吡啶、碳酸钠,于微波条件下加热至110~140℃搅拌反应5-20min;
聚丙烯腈纤维的功能基-C≡N:2-氨基吡啶=1:2~5的摩尔比;
聚丙烯腈纤维的功能基-C≡N:碳酸钠=1:1~4的摩尔比;
2)、将步骤1)反应所得的聚合物用去离子水冲洗,干燥(例如50℃烘干),得到聚丙烯腈基-2-氨基吡啶螯合纤维。
说明:步骤1)反应所得物过滤,所得滤饼为聚合物。
作为本发明的聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法的改进:
步骤1)中,溶剂为乙二醇,聚丙烯腈纤维与乙二醇的料液比为50.0mg/(15±5)ml。
作为本发明的聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法的进一步改进:
步骤1)中,微波功率为400~1000W;搅拌速度为(300±50)rpm/min。
每50mg聚丙烯腈纤维作为原料时,可依据上述工艺参数。
作为本发明的聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法的进一步改进:
聚丙烯腈纤维的功能基-C≡N:2-氨基吡啶=1:3的摩尔比;
聚丙烯腈纤维的功能基-C≡N:碳酸钠=1:3的摩尔比;
微波功率800W,反应温度140℃,反应时间20min。
本发明还同时提供了上述聚丙烯腈基-2-氨基吡啶螯合纤维的用途:选择性吸附Cr(Ⅵ)。
作为本发明用途的改进:用于处理含Cr(Ⅵ)废水。
作为本发明用途的进一步改进:解吸剂为4mol/L的盐酸。
本发明的合成路线如下:
Figure BDA0002318846310000031
本发明采用微波辅助法,一步法制备聚丙烯腈基-2-氨基吡啶螯合纤维,使其能有效地选择吸附Cr(Ⅵ),吸附效果好,解吸效果好,可应用于处理污水中的Cr(Ⅵ)。
本发明的有益效果如下:
(1)本发明所合成的化合物为新化合物;
(2)本发明采用微波辅助一步法制备,合成方法简单,速度快,副产物少;
(3)本发明合成的聚丙烯腈基-2-氨基吡啶螯合纤维对Cr(Ⅵ)有较好的吸附选择性,吸附速度快,吸附量大,解吸效果好,热稳定性好等优势。
(4)本发明合成的聚丙烯腈基-2-氨基吡啶螯合纤维对去除含Cr(Ⅵ)废水中的Cr(Ⅵ)有良好的技术效果。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1是聚丙烯腈纤维、2-氨基吡啶和聚丙烯腈基-2-氨基吡啶螯合纤维等的红外光谱图;
图2是聚丙烯腈纤维和聚丙烯腈基-2-氨基吡啶螯合纤维的热重曲线图;
图3是反应温度对聚丙烯腈基-2-氨基吡啶螯合纤维吸附量的影响;
图4是反应时间对聚丙烯腈基-2-氨基吡啶螯合纤维吸附量的影响;
图5是反应摩尔比对聚丙烯腈基-2-氨基吡啶螯合纤维吸附量的影响;
图6是微波功率对聚丙烯腈基-2-氨基吡啶螯合纤维吸附量的影响;
图7是碳酸钠摩尔比对聚丙烯腈基-2-氨基吡啶螯合纤维吸附量的影响;
图8是聚丙烯腈基-2-氨基吡啶螯合纤维的选择性吸附效果;
图9是聚丙烯腈基-2-氨基吡啶螯合纤维的不同接触时间的吸附效果;
图10是初始浓度对聚丙烯腈基-2-氨基吡啶螯合纤维吸附量的影响;
图11是聚丙烯腈基-2-氨基吡啶螯合纤维在不同浓度含Cr(Ⅵ)溶液中的去除率;
图12是XPS分析结果。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1、一种聚丙烯腈基-2-氨基吡啶螯合纤维合成方法,依次进行以下步骤:
1)、称取50.0mg(含0.855mmol-C≡N基)作为母体的聚丙烯腈纤维(PAN),2.565mmol作为配体的2-氨基吡啶(TAP)、2.565mmol的碳酸钠,依次加入到三颈烧瓶中,再加入15mL乙二醇,转移到微波合成工作站。
即,母体功能基-C≡N:配体=1:3的摩尔比,
母体功能基-C≡N:碳酸钠=1:3的摩尔比。
设定微波功率800W,温度140℃,时间20min,并控制转子以300rpm/min的速度搅拌。
2)、反应结束后,待三颈烧瓶冷却至室温,将纤维取出(即,过滤,取滤饼)放到砂芯漏斗上,加去离子水反复抽滤至液体(即,所得洗涤液)澄清,以洗去表面残留的配体和碳酸钠,后置于50℃真空干燥箱中烘干至恒重,得到聚丙烯腈基-2-氨基吡啶螯合纤维(PAN-TAP)。
聚丙烯腈基-2-氨基吡啶螯合纤维(PAN-TAP)的结构式为:
Figure BDA0002318846310000041
本发明用傅里叶红外光谱仪对所合成的新化合物PAN-ATP进行了结构表征:
图1是PAN纤维和PAN-TAP纤维以及配体TAP等的红外光谱图;图1中,(a)为PAN,(b)为TAP,(c)为PAN+TAP,(d)为PAN-TAP;
“PAN+TAP”为:含0.855mmol-C≡N基的聚丙烯腈纤维与2.565mmol的配体TAP的混合物的红外光谱图。
如图1所示,合成后的PAN-TAP功能纤维与聚丙烯腈纤维相比,合成后的纤维在2243cm-1处的-C≡N键的吸收峰基本消失;合成后的PAN-TAP功能纤维与配体TAP相比,配体上1652cm-1处的C=C的伸缩振动峰,1629cm-1处吡啶环的-C=N伸缩谱带和1384cm-1处C-H的面内变形振动均出现在PAN-TAP纤维上,说明配体TAP的吡啶基团成功转移到聚丙烯腈纤维上;比较图(c)和(d)的光谱,PAN和2-氨基吡啶的混合物在3365cm-1和3444cm-1处具有-NH2-基团的伸缩振动峰,在PAN-TAP纤维中3440cm-1只有一个宽峰,可以认定纤维中没有游离的配体。综上可以认定配体2-氨基吡啶成功与聚丙烯腈纤维反应合成了PAN-TAP。
图2是PAN、PAN-TAP的热重曲线图。
如图2的热重曲线图所示,PAN的裂解失重主要分为3个阶段,其中260~340℃为第1阶段,340~400℃为第2阶段,400~500℃为第3阶段。第1、2阶段的失重主要由于氰基分解产生的氨气,以及-C≡N与-CH2反应脱除的氰化氢散失,第3阶段是由于纤维的炭化反应和持续散失的氰化氢,以及少许甲烷和氢气的释放。PAN-TAP的第1阶段几乎消失,说明剩余的氰基很少;第2阶段失重在330~500℃,与PAN类似,与分子链的炭化反应有关。热重分析表明,PAN-TAP具有良好的热稳定性,可以达到100℃以上的工作温度,满足吸附应用要求。
实验1、静态吸附实验
(1)选择性吸附
称取实施例1合成的PAN-TAP纤维10mg,加入到20mL溶液中,该溶液中含有浓度均为100mg/L的Cr(Ⅵ)、Cu(Ⅱ)、Zn(Ⅱ)、Ni(Ⅱ)、Cd(Ⅱ),用0.1mol/L HCl溶液和NaOH溶液调节溶液pH为1-6,25℃下进行吸附实验,吸附24小时后测定其吸附量,同时做平行实验。
吸附量计算方式如公式(1)所示。
Figure BDA0002318846310000051
式中Q(mg/g)为功能纤维吸附量,C0(mg/L)为对照组(即,不含PAN-TAP纤维,其余同上)的金属离子浓度,Ce为吸附后溶液中的金属离子浓度,V(mL)为溶液体积,m(mg)为纤维质量。
实验结果如图8所示,PAN-TAP纤维在pH=2时取得最大吸附量,约为150.62mg/g,然后随着pH的增加,吸附量快速减少。在低pH条件下,纤维表面的N原子被H+质子化,由于静电吸引,带负电荷的HCrO4 -和Cr2O7 2-很容易被吸附到带正电荷的纤维上。溶液pH=2时,PAN-TAP对Cr(Ⅵ)的吸附量高于pH=1时的吸附量,这是因为在pH=1时,Cr(Ⅵ)离子主要以H2CrO4和Cr2O7 2-的形式存在,需要2个单位活性位点吸附1个单位的Cr2O7 2-,而在pH=2时,Cr(Ⅵ)离子主要以HCrO4 -为主,只需要1个单位的活性位点,所以pH=2时吸附量高于pH=1。在较高pH值下,吸附量的降低是由于纤维的氮原子去质子化以及反应溶液中存在的OH-离子与CrO4 2-离子之间的竞争吸附,使吸附量不断降低。所以选取pH=2为PAN-TAP纤维对Cr(Ⅵ)吸附的最佳pH。
(2)接触时间对吸附量的影响
称取3份实施例1合成的PAN-TAP纤维,每份20mg,分别加入到40mL金属离子Cr(Ⅵ)浓度为100mg/L的pH=2的溶液中,分别在15℃、25℃、35℃条件下进行吸附实验,每隔一定时间吸取1mL溶液到5mL小试管中,加去离子水稀释到2mL,测定每个点的吸附量。
实验结果如图9所示,PAN-TAP的吸附量先随时间快速增加,然后逐渐趋于平缓,平衡时间约为60min。在吸附初始阶段,纤维上的活性位点最多,金属离子迅速在纤维表面薄液层中扩散,与活性位点结合,并且较高的浓度差也会促进吸附作用,此时的吸附速率最大;随着时间的增长,金属离子浓度降低,大量活性位点被占据,已经吸附的金属离子会对后来的金属离子产生静电排斥,金属离子在吸附剂内的扩散也被配位原子与金属离子形成的螯合物阻挡,吸附速率降低并最终达到吸附平衡。同时可以发现,当温度越高时吸附量也越高,这是因为升温能使纤维表面的薄液层变薄,降低吸附传质阻力,同时活性位点也随温度增加,使金属离子更容易被吸附。
(3)初始浓度对吸附量的影响
称取10份实施例1合成的PAN-TAP纤维,每份10mg,分别加入到20mL金属离子Cr(Ⅵ)浓度为20、30、40、60、80、100、200、300、400、500mg/L的pH=2的溶液中,在25℃条件下吸附24h,测定其吸附量。同时做15℃和35℃条件下的对比实验。
实验结果如图10所示,在相同的温度下,纤维吸附量随初始浓度的上升而上升,这是由于固液表面的浓度差对金属离子的驱动力,使得其更容易扩散至纤维表面,浓度越高这种驱动力就越大。而且在高浓度下,活性位点被占据的更多,直到活性位点吸附饱和,吸附量便不再增加。
实施例2、将实施例1中的反应温度由140℃改为110℃、120℃、130℃,其余等同于实施例1。按照上述实验1(1)的方式进行检测,得到的反应温度对纤维吸附量的影响如图3所示。
由图3可知,在实验温度范围内,功能纤维的吸附量随温度的上升而增加,这是因为在较高的温度下,纤维的溶胀度较高,有更多的配体可以扩散到PAN纤维的内部,与氰基进行反应,使得转化率更高。
实施例3、将实施例1中的反应时间由20min改为5min、10min、15min,其余等同于实施例1。按照上述实验1(1)的方式进行检测,得到的反应时间对纤维吸附量的影响如图4所示。
由图4可知,纤维的吸附量随着反应时间的增长而增长,这是因为反应物之间的接触时间变长,反应更加充分,但过长的反应时间也会使纤维吸收大量热,时间超过20min,纤维即断裂成细小的粉末状态。
实施例4、将实施例1中反应摩尔比(配体:母体功能基-C≡N)由3改为2、4、5,其余等同于实施例1。按照上述实验1(1)的方式进行检测,得到的反应摩尔比对纤维吸附量的影响如图5所示。
由图5可知,配体的加入量影响着纤维的吸附量,配体越多,与氰基的接触机会也就越高,当然而过多的配体会导致PAN纤维断裂结块,吸附量也大大减少,所以选择摩尔比为3的配体投加量为最佳配比。
实施例5、将实施例1中微波功率由800W改为400W、600W、1000W,其余等同于实施例1。按照上述实验1(1)的方式进行检测,得到的微波功率对纤维吸附量的影响如图6所示。
由图6可知,随着微波功率增加,吸附量也随之增加,选择大功率的微波可以使极性分子加速振动,温度快速提升,同时提高微波功率也可以促进PAN纤维的分子链结晶区的破坏,有利于配体进入纤维内部与氰基反应。但是,功率过大,反而导致效果的下降。
实施例6、将实施例1中反应摩尔比(碳酸钠:母体功能基-C≡N)由3改为1、2、4,其余等同于实施例1。按照上述实验1(1)的方式进行检测,得到的碳酸钠摩尔比对纤维吸附量的影响如图7所示。
由图7可知,碳酸钠可以促进聚丙烯腈的水解,提高反应效率,但过量的碳酸钠也会使聚丙烯腈纤维变性,所以选择摩尔比为3的碳酸钠添加量作为最佳添加量。
对比例1、将实施例1中的配体由2-氨基吡啶分别改为磺胺吡啶、对氨基苯磺酸、二苯氨基脲、盐酸硫胺,合成条件参照实施例1,得到的纤维对Cr(Ⅵ)的吸附量如表1所示。
根据表1所知,PAN纤维与磺胺吡啶、对氨基苯磺酸、二苯氨基脲、盐酸硫胺在微波条件下合成的产物对Cr(Ⅵ)基本没有吸附力,这说明并不是任何含有氨基的配体都可以成功接枝于PAN纤维上的。
表1、不同配体与PAN纤维合成产物对Cr(Ⅵ)的吸附量
Figure BDA0002318846310000071
Figure BDA0002318846310000081
实验2、静态解吸实验
称取多份实施例1合成的PAN-TAP纤维,每份10mg,分别加入到20mL金属离子Cr(Ⅵ)浓度为100mg/L的pH=2的溶液中,吸附3h,测定其剩余金属离子浓度,然后将纤维用去离子水洗涤多次,烘干;接着将烘干后的纤维放入不同的解吸剂中,25℃恒温振荡1h,测定解吸剂中的金属离子浓度,解吸后的纤维取出洗涤烘干,重复进行吸附解吸实验。解吸率计算公式如式(2):
Figure BDA0002318846310000082
式中E(%)为解吸率,C0(mg/L)为空白对照组金属离子浓度,C1为吸附后剩余金属离子浓度,C2为解吸剂中金属离子浓度。
实验结果如表2所示
表2、解吸剂对解吸率的影响
解吸剂 解吸率(%)
0.1mol/L HCl 12.48
0.5mol/L HCl 18.17
1mol/L HCl 32.47
2mol/L HCl 40.38
4mol/L HCl 72.37
当盐酸浓度为4mol/L时,解吸率达到72.37%。
实验3、PAN-TAP去除含Cr(Ⅵ)废水中Cr(Ⅵ)的应用:
准确称取300mg剪碎的螯合纤维PAN-TAP,装入到Φ3mm×30cm的动态吸附柱中,在柱的底端和顶端分别塞上棉花,将20mL不同初始浓度的含Cr(Ⅵ)溶液以1.0mL/min的流速过柱,用ICP-AES测量流出溶液中Cr(Ⅵ)的浓度,计算去除率,去除率计算公式如式(3):
Figure BDA0002318846310000091
其中R(%)为去除率,C0为初始浓度,Ct为流出液浓度,结果如图11所示:
由图11所示,PAN-TAP具有良好的去除含Cr(Ⅵ)废水中Cr(Ⅵ)的性能,在5mg/L的含Cr(Ⅵ)废水中去除率达到99.9%。
实验4、将实施例1中合成的PAN-TAP纤维和吸附Cr(Ⅵ)之后的PAN-TAP纤维进行XPS分析,XPS分析结果如图12所示。
图(a)是PAN-TAP纤维的XPS宽谱;与铬酸根离子结合后,PAN-TAP纤维的表面分别检测到Cr 2p的峰,如图(e)所示,Cr 2p可解卷积为四个峰,577.3eV、580.5eV和586.7eV、589.7eV处的Cr 2p3和Cr 2p1特征峰,其中577.3eV和586.7eV处的特征峰归属于Cr(Ⅲ)离子,位于580.5eV和589.7eV的峰则归属于Cr(Ⅵ)离子,上述对Cr 2p的解卷积证明了PAN-TAP纤维上Cr(Ⅲ)及Cr(Ⅵ)的存在,而Cr(Ⅲ)的存在是由于Cr(Ⅵ)被相邻的给电子基团还原,并且可以观察到2-氨基吡啶对Cr(Ⅵ)具有强还原能力。对吸附Cr(Ⅵ)前后的PAN-TAP纤维中C1s峰进行分峰拟合,如图(b)所示,结果发现与吸附Cr(Ⅵ)前的相比,C 1s峰在286.3eV处的峰在吸附后结合能减弱,偏移至286.1eV处,此处结合能对应了C-N-或C-O的吸收峰。对吸附Cr(Ⅵ)前后的PAN-TAP纤维中N1s峰进行分峰拟合,结果如图(c)所示,N元素分成了三个峰,在398.6eV、400.1eV和402.4eV处,分别对应-N-H、-C-N-和-NH+基团。PAN-TAP纤维在400.1eV处原本有较高信号的-C-N-,在吸附Cr(Ⅵ)之后,该峰的强度显著降低,这与C1s中所显示的该峰的强度趋势一致,而纤维中-N-H的氮原子峰结合能增大,-NH+峰结合能减小,这是由于氨基在酸性介质中被质子化并与Cr(Ⅵ)相互作用,表明Cr(Ⅵ)离子与PAN-TAP纤维上的N原子结合。根据以上分析结果,可以推断出PAN-TAP纤维吸附Cr(Ⅵ)离子的机理,Cr(Ⅵ)离子首先过静电离子交换和络合作用吸附到纤维上的质子化氨基,随后,大多数Cr(Ⅵ)被还原为Cr(Ⅲ)固定在纤维上。图(d)是PAN-TAP纤维的O1s谱图。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (8)

1.一种聚丙烯腈基-2-氨基吡啶螯合纤维,其特征在于结构式为:
Figure FDA0002318846300000011
2.如权利要求1所述的聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法,其特征在于包括以下步骤:
1)、以聚丙烯腈纤维为母体,以2-氨基吡啶作为配体;
在溶剂中加入聚丙烯腈纤维、2-氨基吡啶、碳酸钠,于微波条件下加热至110~140℃搅拌反应5-20min;
聚丙烯腈纤维的功能基-C≡N:2-氨基吡啶=1:2~5的摩尔比;
聚丙烯腈纤维的功能基-C≡N:碳酸钠=1:1~4的摩尔比;
2)、将步骤1)反应所得的聚合物用去离子水冲洗,干燥,得到聚丙烯腈基-2-氨基吡啶螯合纤维。
3.根据权利要求2所述的聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法,其特征在于:
步骤1)中,溶剂为乙二醇,聚丙烯腈纤维与乙二醇的料液比为50.0mg/(15±5)ml。
4.根据权利要求3所述的聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法,其特征在于:
步骤1)中,微波功率为400~1000W;搅拌速度为(300±50)rpm/min。
5.根据权利要求4所述的聚丙烯腈基-2-氨基吡啶螯合纤维的合成方法,其特征在于:
聚丙烯腈纤维的功能基-C≡N:2-氨基吡啶=1:3的摩尔比;
聚丙烯腈纤维的功能基-C≡N:碳酸钠=1:3的摩尔比;
微波功率800W,反应温度140℃,反应时间20min。
6.如权利要求1所述的聚丙烯腈基-2-氨基吡啶螯合纤维的用途,其特征在于:选择性吸附Cr(Ⅵ)。
7.根据权利要求6所述的用途,其特征在于:用于处理含Cr(Ⅵ)废水。
8.根据权利要求7所述的用途,其特征在于:解吸剂为4mol/L的盐酸。
CN201911290129.XA 2019-12-16 2019-12-16 聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用 Active CN111074560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911290129.XA CN111074560B (zh) 2019-12-16 2019-12-16 聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911290129.XA CN111074560B (zh) 2019-12-16 2019-12-16 聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN111074560A true CN111074560A (zh) 2020-04-28
CN111074560B CN111074560B (zh) 2022-07-26

Family

ID=70314652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911290129.XA Active CN111074560B (zh) 2019-12-16 2019-12-16 聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN111074560B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112900084A (zh) * 2021-02-04 2021-06-04 浙江中欣氟材股份有限公司 一种螯合纤维及其在钯离子回收中的应用
CN113089317A (zh) * 2021-03-18 2021-07-09 武汉纺织大学 氨基吡啶改性生物质纤维表面印迹吸附材料及其制备方法
CN113186718A (zh) * 2021-06-10 2021-07-30 浙江工商大学 一种螯合纤维pan-daam、其制备方法及其应用
CN113373541A (zh) * 2021-06-11 2021-09-10 浙江工商大学 一种4-氨基吡啶显色纤维的制备方法及其应用
CN114855451A (zh) * 2021-02-04 2022-08-05 浙江树人学院(浙江树人大学) 一种新型螯合纤维pan-ba、其制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430435A (zh) * 2011-09-06 2012-05-02 淮海工学院 多功能螯合离子交换纤维及其制备方法和应用
CN104018346A (zh) * 2014-05-26 2014-09-03 浙江工商大学 对Cr(VI)具有选择性吸附的螯合纤维的合成方法
CN105148870A (zh) * 2015-07-03 2015-12-16 天津大学 能够同时去除多种重金属离子的螯合功能纤维及其制备方法
CN105413651A (zh) * 2015-11-03 2016-03-23 浙江工商大学 一种新型螯合树脂从钽电解电容器中回收银离子的方法
CN107022037A (zh) * 2017-03-20 2017-08-08 浙江工商大学 一种2,6‑二氨基吡啶改性壳聚糖及其制备方法和应用
CN107100001A (zh) * 2017-03-20 2017-08-29 浙江工商大学 聚氨酯‑2‑氨基‑3‑羟基吡啶纤维制备方法及其在食品中重金属的富集检测中的应用
CN109603774A (zh) * 2018-11-19 2019-04-12 浙江工商大学 2-氨基-2-噻唑啉改性聚丙烯腈螯合纤维及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430435A (zh) * 2011-09-06 2012-05-02 淮海工学院 多功能螯合离子交换纤维及其制备方法和应用
CN104018346A (zh) * 2014-05-26 2014-09-03 浙江工商大学 对Cr(VI)具有选择性吸附的螯合纤维的合成方法
CN105148870A (zh) * 2015-07-03 2015-12-16 天津大学 能够同时去除多种重金属离子的螯合功能纤维及其制备方法
CN105413651A (zh) * 2015-11-03 2016-03-23 浙江工商大学 一种新型螯合树脂从钽电解电容器中回收银离子的方法
CN107022037A (zh) * 2017-03-20 2017-08-08 浙江工商大学 一种2,6‑二氨基吡啶改性壳聚糖及其制备方法和应用
CN107100001A (zh) * 2017-03-20 2017-08-29 浙江工商大学 聚氨酯‑2‑氨基‑3‑羟基吡啶纤维制备方法及其在食品中重金属的富集检测中的应用
CN109603774A (zh) * 2018-11-19 2019-04-12 浙江工商大学 2-氨基-2-噻唑啉改性聚丙烯腈螯合纤维及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊春华等: "4-氨基吡啶树脂吸附铬(VI)的研究", 《有色金属》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112900084A (zh) * 2021-02-04 2021-06-04 浙江中欣氟材股份有限公司 一种螯合纤维及其在钯离子回收中的应用
CN114855451A (zh) * 2021-02-04 2022-08-05 浙江树人学院(浙江树人大学) 一种新型螯合纤维pan-ba、其制备方法及其应用
CN114855451B (zh) * 2021-02-04 2023-09-15 浙江树人学院(浙江树人大学) 一种螯合纤维pan-ba、其制备方法及其应用
CN113089317A (zh) * 2021-03-18 2021-07-09 武汉纺织大学 氨基吡啶改性生物质纤维表面印迹吸附材料及其制备方法
CN113089317B (zh) * 2021-03-18 2022-09-30 武汉纺织大学 氨基吡啶改性生物质纤维表面印迹吸附材料及其制备方法
CN113186718A (zh) * 2021-06-10 2021-07-30 浙江工商大学 一种螯合纤维pan-daam、其制备方法及其应用
CN113373541A (zh) * 2021-06-11 2021-09-10 浙江工商大学 一种4-氨基吡啶显色纤维的制备方法及其应用
CN113373541B (zh) * 2021-06-11 2023-08-08 浙江工商大学 一种4-氨基吡啶显色纤维的制备方法及其应用

Also Published As

Publication number Publication date
CN111074560B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN111074560B (zh) 聚丙烯腈基-2-氨基吡啶螯合纤维及其合成方法和应用
Jin et al. Chitosan-derived three-dimensional porous carbon for fast removal of methylene blue from wastewater
CN107376849B (zh) 一种乙二胺四乙酸改性的硅藻土吸附剂及其制备方法和处理废水中重金属离子的应用
CN107175073B (zh) 一种水处理活性炭的制备方法及应用
CN111359650B (zh) 铁、镍、钯共掺杂石墨相氮化碳复合催化剂的制备方法、产品及应用
CN111346609B (zh) 一种用于含重金属染料废水的吸附材料及其制备方法
CN111375370A (zh) 一种Fe-g-C3N4多功能纳米复合材料制备方法
CN105642252A (zh) 一种污水重金属离子吸附剂及其制备方法
CN111101216B (zh) 聚丙烯腈基-羟基脲螯合纤维及其合成方法和应用
CN105435752A (zh) 一种重金属吸附剂及其制备方法
CN113351212A (zh) 一种氧空位丰富的镍掺杂类水滑石及其制备方法和应用
Zhang et al. Uptake of Fe (III), Ag (I), Ni (II) and Cu (II) by salicylic acid-type chelating resin prepared via surface-initiated atom transfer radical polymerization
CN111118895B (zh) 聚丙烯腈基-5-氨基-2-甲氧基吡啶螯合纤维及其合成方法和应用
CN112023889A (zh) 一种微波辅助油酸原位一步改性活性炭的方法
Tao et al. Fe-MOFs prepared with the DBD plasma method for efficient Fenton catalysis
CN109876774A (zh) 一种处理染料污水的吸附材料及其制备方法
Qin et al. Decorating covalent organic frameworks with high-density chelate groups for uranium extraction
CN110975823B (zh) 一种大豆壳重金属离子吸附剂的解吸方法
CN110665468A (zh) 工业废水处理用吸附剂的制备方法
CN114289023B (zh) 一种降解四环素的氧化铜-氧化铁/泡沫镍复合材料及制备方法
CN102634014B (zh) 一种复合氧化体系氧化制备聚间苯二胺的方法
CN112387251B (zh) 一种含铁螯合剂内嵌的mof材料、合成方法及应用
CN113773518A (zh) 一种含铜工业废水制备金属-有机框架材料hkust-1的方法
Li et al. Recovery of Indium (III) from a hydrochloric acid medium with two types of solvent impregnated resins containing sec-octylphenoxy acetic acid
Huang et al. Enhanced catalytic decoloration of Rhodamine B based on 4‐aminopyridine iron coupled with cellulose fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant