CN110983144A - 一种氮化物强化高熵合金及其制备方法 - Google Patents

一种氮化物强化高熵合金及其制备方法 Download PDF

Info

Publication number
CN110983144A
CN110983144A CN201911189540.8A CN201911189540A CN110983144A CN 110983144 A CN110983144 A CN 110983144A CN 201911189540 A CN201911189540 A CN 201911189540A CN 110983144 A CN110983144 A CN 110983144A
Authority
CN
China
Prior art keywords
entropy alloy
forging
reinforced high
nitride
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911189540.8A
Other languages
English (en)
Other versions
CN110983144B (zh
Inventor
王威
李伟
杨柯
单以银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201911189540.8A priority Critical patent/CN110983144B/zh
Publication of CN110983144A publication Critical patent/CN110983144A/zh
Application granted granted Critical
Publication of CN110983144B publication Critical patent/CN110983144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Abstract

本发明涉及一种氮化物强化高熵合金及其制备方法,属于材料技术领域。以原子百分比计,该氮化物强化高熵合金的化学成分为:V/Nb:0.03~1.2%,N:0.40~1.2%;余量为等原子比Co、Cr、Fe、Ni。该氮化物强化高熵合金的制备方法为:配料→熔炼→浇注成型→均匀化退火→锻造→热处理。本发明通过控制材料中的V/Nb与N的含量,利用锻造及时效工艺控制第二相氮化物的含量,以固溶强化和第二相强化机制获得材料强度和韧性的最佳搭配。

Description

一种氮化物强化高熵合金及其制备方法
技术领域
本发明涉及一种氮化物强化高熵合金及其制备方法,属于材料技术领域。
背景技术
近年来高熵合金成为材料科学领域中的一个研究热点,它突破了以一种金属或两种金属为主要元素的传统合金框架,发展出一种全新的合金设计理念。Yeh.等给出了高熵合金的定义:五种或者五种以上的合金元素以等摩尔比的方式混合,形成一种多元素混乱合金。该类型的合金被总结为具有如下四个异于传统合金的性能:热力学上的高熵效应、动力学上的迟滞扩散效应、结构上的晶格畸变效应和性能上的“鸡尾酒”效应。
高熵合金具有较多合金元素,用传统冶金物理的观点来看,在成型后,合金内部必然会存在大量的金属间化合物。但研究表明,高熵合金倾向于形成一种单一结构的固溶体结构,这就简化了原本复杂的情况,使得这种合金易于设计及研究。图1给出了高熵合金与其他合金的屈服强度-断裂韧度对比图。从图中可以看出,高熵合金在力学性能方面,具有较大的应用潜力。
从高熵合金的性质可以看出,高熵合金的高熵效应决定了其具有优异的高温力学性能,即基体在高温环境中具有较高的稳定性,所以其有望作为航空航天发动机和涡轮叶片的候选材料。目前所发展的高温合金的高温力学性能主要是依靠基体中析出富Cr的Laves相或者具有立方形态的L12-Ni3Al等有序超结构相,然而,这些第二相在高温下稳定性低,极易长大,影响其高温蠕变性能。我们在研究耐热钢时发现,MX型氮化物相较于Laves相或者L12-Ni3Al具有优异的高温稳定性,能大幅提高材料的高温蠕变性能,因此,本发明在以CoCrFeNi为基体的合金中加入微量V/Nb、N元素,进而实现氮化物的析出而达到沉淀强化。
发明内容
本发明的目的在于提供一种氮化物强化高熵合金及其制备方法,通过控制材料中的V/Nb与N的含量,利用锻造及时效工艺控制第二相氮化物的含量,以固溶强化和第二相强化机制获得材料强度和韧性的最佳搭配。
本发明的技术方案是:
一种氮化物强化高熵合金,其特征在于,以原子百分比计,该氮化物强化高熵合金的化学成分为:V/Nb:0.03~1.2%,N:0.40~1.2%,余量为等原子比的Co、Cr、Fe和Ni。
本发明还提供了所述氮化物强化高熵合金的制备方法,其特征在于,具体工艺流程为:配料→熔炼→浇注成型→均匀化退火→锻造→热处理;其中原材料均采用纯金属或中间合金的形式加入,熔炼过程需按照熔点从低到高依次将配料放入真空感应炉的坩埚中,容易相互化合的原料块尽量分开装入,避免产生难熔化合物,熔炼过程保持真空度≤10Pa(熔炼前,应进行多次充氩气及抽真空操作),反复结壳熔炼四次及以上;将获得的铸锭在较高温度下长时间均匀化处理,之后再进行锻造和热处理。
作为优选的技术方案:
均匀化处理工艺为:温度1200-1250℃,时间≥24h。
锻造工艺为:初锻造温度1100~1200℃,锻造比大于5,锻后空冷至室温。
热处理工艺为:首先在1200-1250℃下保温30min-60min后直接淬火至室温,再经500℃/8h时效,冷却方式均为水冷。
采用所述方法制备得到的氮化物强化高熵合金,其特征在于:所得氮化物强化高熵合金基体中固溶V、Nb及N元素,且晶粒内部存在纳米级的氮化物析出。
所得氮化物强化高熵合金室温拉伸性能:锻态屈服强度达到500MPa以上,抗拉强度达到750MPa以上,延伸率达到60%以上。
本案发明的设计思想为:本发明在CoCrFeNi系高熵合金基础之上,通过新的成分设计和大量的实验,加入一定含量的V/Nb、N,通过控制V/Nb、N成分含量、严格控制非设计合金元素的含量、锻造处理及热处理工艺,使CoCrFeNi合金基体中析出纳米级氮化物,达到氮化物析出强化的目的。
本发明中主要元素含量范围说明如下:
铬:铬的主要作用是提高材料的耐蚀性能,并可以提高材料的硬度,耐磨性,屈服强度等。
钒:钒可导致枝晶区形成均匀散布的纳米颗粒,促使合金组织细化。钒极易与材料中的氮形成纳米级的氮化物,从而钉扎位错及阻碍晶界移动,增加材料强度。
钴:钴有利于生成FCC固溶体。加入少量可提高塑性和耐磨性,可富集在合金的枝晶间起到粘合剂的作用,降低合金的脆性,防止合金冷却时发生断裂。
镍:镍可使合金表现出典型的顺磁性,有利于生成FCC固溶体。加入有利于合金形成单一的FCC固溶体组织。
铌:铌极易与材料中的氮元素形成纳米级的析出相,且该析出相在较高温度下不易熟化长大,能够明显提高材料的高温力学性能。
氮:氮能与V/Nb等元素结合形成MX型的纳米级析出物,有助于提高材料综合性能。
本发明的优点及有益效果是:
本发明通过调整V/Nb、N元素的含量和锻造及热处理工艺,保证固溶强化、细晶强化及位错强化作用的同时,通过弥散析出V/Nb的纳米级氮化物,从而获得强韧性搭配优良的氮化物强化高熵合金。
附图说明
图1为高熵合金与其他合金的屈服强度-断裂韧度对比;
图2为实施例1样品的组织形貌;
图3为实施例2样品的组织形貌;
图4为实施例3样品的组织形貌;
图5为实施例4样品的组织形貌;
图6为实施例4在150MPa、600℃下的应变随时间变化曲线;
图7为实施例4在150MPa、600℃下的蠕变速率随时间变化曲线。
具体实施方式
以下实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1
名义成分如下(原子百分比,括号中为重量百分比):Co、Cr、Fe、Ni以等原子比进行配料(对比例,不含Nb/V、N)。按照熔点从低到高的顺序依次放料,熔炼过程中保持真空度10Pa,并结壳重熔五次。熔炼后的铸锭按下述工艺条件进行热加工和热处理:
(1)均匀化处理:温度1200℃,时间24h;
(2)锻造:初锻造温度1150℃,锻造比大于5,锻后空冷至室温;
(3)热处理:首先在1200℃下保温60min后直接淬火至室温,再经过500℃/8h时效,冷却方式均为水冷。
材料经热处理后加工成试样,分别测试其室温拉伸性能,并对测试试样进行金相观察。拉伸结果如表1所示;组织形貌如图2所示。
实施例2
名义成分如下(原子百分比,括号中为重量百分比):V:0.8%(0.73%),N:1.0%(0.25%);余量为等原子比的Co、Cr、Fe、Ni。按照熔点从低到高的顺序依次放料,N元素在熔炼过程中通过吊料(氮化铬)的方式加入,熔炼过程中保持真空度为10Pa,并结壳重熔五次。熔炼后的铸锭按下述工艺条件进行热加工和热处理:
(1)均匀化处理:温度1200℃,时间24h;
(2)锻造:初锻造温度1150℃,锻造比大于5,锻后空冷至室温;
(3)热处理:首先在1200℃下保温60min后直接淬火至室温,再经过500℃/8h时效,冷却方式均为水冷。
材料经热处理后加工成试样,分别测试其室温拉伸性能,并对测试试样进行金相观察。拉伸结果如表1所示;组织形貌如图3所示。
实施例3
名义成分如下(原子百分比,括号中为重量百分比):Nb:0.18%(0.30%),N:0.40%(0.1%);余量为等原子比Co、Cr、Fe、Ni。按照熔点从低到高的顺序依次放料,N元素在熔炼过程中通过吊料(氮化铬)的方式加入,熔炼过程中保持真空度为10Pa,并结壳重熔五次。熔炼后的铸锭按下述工艺条件进行热加工和热处理:
(1)均匀化处理:温度1200℃,时间24h;
(2)锻造:初锻造温度1150℃,锻造比大于5,锻后空冷至室温;
(3)热处理:首先在1200℃下保温60min后直接淬火至室温,再经过500℃/8h时效,冷却方式均为水冷。
材料经热处理后加工成试样,分别测试其室温拉伸性能,并对测试试样进行金相观察。拉伸结果如表1所示;组织形貌如图4所示。
实施例4
名义成分如下(原子百分比,括号中为重量百分比):Nb:1.0%(1.65%),N:1.2%(0.30%);余量为等原子比Co、Cr、Fe、Ni。按照熔点从低到高的顺序依次放料,N元素在熔炼过程中通过吊料(氮化铬)的方式加入,熔炼过程中保持真空度为10Pa,并结壳重熔五次。熔炼后的铸锭按下述工艺条件进行热加工和热处理:
(1)均匀化处理:温度1200℃,时间24h;
(2)锻造:初锻造温度1150℃,锻造比大于5,锻后空冷至室温;
(3)热处理:首先在1200℃下保温60min后直接淬火至室温,再经过500℃/8h时效,冷却方式均为水冷。
材料经热处理后加工成试样,分别测试其室温拉伸性能,并对测试试样进行金相观察。拉伸结果如表1所示;组织形貌如图5所示。试样在150MPa,600℃下的蠕变实验结果如图5、6所示。
实施例2、3、4与不含Nb/V、N对比例(实施例1)的比较结果如表2所示。
表1拉伸结果
Figure BDA0002293213240000071
Figure BDA0002293213240000081
表2比较结果
Figure BDA0002293213240000082
由表1可以看出,本发明通过优化调整高熵合金中Nb/V、N元素的含量,以及锻造、热处理诱导基体中弥散析出纳米级氮化物相。材料强度随着Nb/V、N元素含量的增加而升高,塑形变化不大。四组锻态样品在1200℃固溶后屈服强度明显下降,抗拉强度也有一定程度下降。
由表2可以看出,本发明在不损失材料塑性的情况下,通过控制MX型氮化物的析出,屈服强度和抗拉强度都有所提升,在一定程度上实现了氮化物强化的效果。
如图2、3、4、5所示,从本发明实施例1、2、3、4的显微组织图可以看出,四组锻态样品在1200℃固溶后发生明显的回复再结晶行为;实施例3样品的晶粒长大尺寸甚至超过10倍,这是导致强度下降的主要因素。由于N在基体中的固溶,从图5中可以看出,实施例4在固溶过程中出现了较明显的退火孪晶组织。
如图6、7所示,实施例4样品在150MPa,600℃下的蠕变曲线与传统耐高温材料的蠕变曲线相似,通过一定的成分调控,可以达到很好的抗蠕变效果。在晶界处细小的MX型氮化物析出相在高温蠕变过程中,能够阻止晶界的牵动,且MX型氮化物在高温下不易熟化长大,使材料的蠕变持久性能显著增加。
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种氮化物强化高熵合金,其特征在于,以原子百分比计,该氮化物强化高熵合金的化学成分为:V/Nb:0.03~1.2%,N:0.40~1.2%,余量为等原子比的Co、Cr、Fe和Ni。
2.一种权利要求1所述氮化物强化高熵合金的制备方法,其特征在于,具体工艺流程为:配料→熔炼→浇注成型→均匀化退火→锻造→热处理;其中熔炼过程需按照熔点从低到高依次将配料放入真空感应炉的坩埚中,熔炼过程保持真空度≤10Pa,反复结壳熔炼四次及以上;将获得的铸锭在较高温度下长时间均匀化处理,之后再进行锻造和热处理。
3.按照权利要求2所述氮化物强化高熵合金的制备方法,其特征在于:均匀化处理工艺为:温度1200-1250℃,时间≥24h。
4.按照权利要求2所述氮化物强化高熵合金的制备方法,其特征在于:锻造工艺为:初锻造温度1100~1200℃,锻造比大于5,锻后空冷至室温。
5.按照权利要求2所述氮化物强化高熵合金的制备方法,其特征在于:热处理工艺为:首先在1200-1250℃下保温30min-60min后直接淬火至室温,再经500℃/8h时效,冷却方式均为水冷。
6.一种采用权利要求2所述方法制备得到的氮化物强化高熵合金,其特征在于:所得氮化物强化高熵合金基体中固溶V、Nb及N元素,且晶粒内部存在纳米级的氮化物析出。
7.按照权利要求6所述氮化物强化高熵合金,其特征在于,所得氮化物强化高熵合金室温拉伸性能:锻态屈服强度达到500MPa以上,抗拉强度达到750MPa以上,延伸率达到60%以上。
CN201911189540.8A 2019-11-28 2019-11-28 一种氮化物强化高熵合金及其制备方法 Active CN110983144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911189540.8A CN110983144B (zh) 2019-11-28 2019-11-28 一种氮化物强化高熵合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911189540.8A CN110983144B (zh) 2019-11-28 2019-11-28 一种氮化物强化高熵合金及其制备方法

Publications (2)

Publication Number Publication Date
CN110983144A true CN110983144A (zh) 2020-04-10
CN110983144B CN110983144B (zh) 2021-11-09

Family

ID=70087706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911189540.8A Active CN110983144B (zh) 2019-11-28 2019-11-28 一种氮化物强化高熵合金及其制备方法

Country Status (1)

Country Link
CN (1) CN110983144B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621660A (zh) * 2020-05-29 2020-09-04 华中科技大学 原位析出碳化物的沉淀强化型高温高熵合金及其制备方法
CN112813328A (zh) * 2020-12-30 2021-05-18 大连理工大学 一种室温和低温性能优异的高熵合金及其制备方法
CN113201678A (zh) * 2021-04-28 2021-08-03 东南大学 一种含碳高熵合金材料及其制备方法
CN114411036A (zh) * 2022-01-21 2022-04-29 上海交通大学 一种氮化物增强难熔高熵合金复合材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159307A (ja) * 1987-07-31 1989-06-22 Takeshi Masumoto 窒化物含有非晶質合金粉末及びその製造法
CN105671392A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN107675061A (zh) * 2017-11-09 2018-02-09 湖南理工学院 一种含碳的Fe‑Co‑Cr‑Ni高熵合金及其制备工艺
CN107760963A (zh) * 2017-10-26 2018-03-06 福建工程学院 一种含氮FeCoCrNiMn高熵合金及其制备方法
KR20180035750A (ko) * 2018-03-22 2018-04-06 한국과학기술원 인시츄 강화 고엔트로피 합금 분말, 합금 및 이의 제조방법
CN109161780A (zh) * 2018-11-07 2019-01-08 安阳工学院 一种提高FeCrNiAl基高熵合金加工性能的方法
CN109207829A (zh) * 2018-10-11 2019-01-15 武汉理工大学 高熵合金与多组元碳化物共晶型复合材料及其原位制备方法
CN109604611A (zh) * 2019-01-09 2019-04-12 苏州科技大学 一种粉末冶金制备耐磨耐蚀高熵合金齿轮的成型方法
CN110157971A (zh) * 2019-06-06 2019-08-23 南京理工大学 一种原位增强高熵合金复合材料的感应熔炼方法
CN110218929A (zh) * 2019-07-08 2019-09-10 广西大学 一种强韧化FeMnNiCoCr高熵合金的方法
CN110438387A (zh) * 2019-09-23 2019-11-12 河南工业大学 硅化物析出强化难熔高熵合金及其制备方法
CN110438386A (zh) * 2019-09-20 2019-11-12 南方科技大学 一种高熵合金钎料的制备方法及用途

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159307A (ja) * 1987-07-31 1989-06-22 Takeshi Masumoto 窒化物含有非晶質合金粉末及びその製造法
CN105671392A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN107760963A (zh) * 2017-10-26 2018-03-06 福建工程学院 一种含氮FeCoCrNiMn高熵合金及其制备方法
CN107675061A (zh) * 2017-11-09 2018-02-09 湖南理工学院 一种含碳的Fe‑Co‑Cr‑Ni高熵合金及其制备工艺
KR20180035750A (ko) * 2018-03-22 2018-04-06 한국과학기술원 인시츄 강화 고엔트로피 합금 분말, 합금 및 이의 제조방법
CN109207829A (zh) * 2018-10-11 2019-01-15 武汉理工大学 高熵合金与多组元碳化物共晶型复合材料及其原位制备方法
CN109161780A (zh) * 2018-11-07 2019-01-08 安阳工学院 一种提高FeCrNiAl基高熵合金加工性能的方法
CN109604611A (zh) * 2019-01-09 2019-04-12 苏州科技大学 一种粉末冶金制备耐磨耐蚀高熵合金齿轮的成型方法
CN110157971A (zh) * 2019-06-06 2019-08-23 南京理工大学 一种原位增强高熵合金复合材料的感应熔炼方法
CN110218929A (zh) * 2019-07-08 2019-09-10 广西大学 一种强韧化FeMnNiCoCr高熵合金的方法
CN110438386A (zh) * 2019-09-20 2019-11-12 南方科技大学 一种高熵合金钎料的制备方法及用途
CN110438387A (zh) * 2019-09-23 2019-11-12 河南工业大学 硅化物析出强化难熔高熵合金及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANLING MENG等: "Nitriding of a high entropy FeNiMnAlCr alloy", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
YONGXIANG WANG等: "Effect of nitriding on the tribological properties of Al 1.3 CoCuFeNi 2 high-entropy alloy", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
李伟等: "多主元AlFeCuCoNiCrTi1.5合金的研究", 《桂林电子科技大学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621660A (zh) * 2020-05-29 2020-09-04 华中科技大学 原位析出碳化物的沉淀强化型高温高熵合金及其制备方法
CN111621660B (zh) * 2020-05-29 2021-08-10 华中科技大学 原位析出碳化物的沉淀强化型高温高熵合金及其制备方法
CN112813328A (zh) * 2020-12-30 2021-05-18 大连理工大学 一种室温和低温性能优异的高熵合金及其制备方法
CN113201678A (zh) * 2021-04-28 2021-08-03 东南大学 一种含碳高熵合金材料及其制备方法
CN113201678B (zh) * 2021-04-28 2022-03-25 东南大学 一种含碳高熵合金材料及其制备方法
CN114411036A (zh) * 2022-01-21 2022-04-29 上海交通大学 一种氮化物增强难熔高熵合金复合材料及其制备方法

Also Published As

Publication number Publication date
CN110983144B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN110983144B (zh) 一种氮化物强化高熵合金及其制备方法
CN110317990B (zh) 一种Ni-Co-Al-Cr-Fe系单晶高熵高温合金及其制备方法
CN108866417B (zh) 一种高强耐蚀中熵合金及其制备方法
CN111500917B (zh) 一种高强韧性中熵高温合金及其制备方法
CN111826573B (zh) 一种无σ相析出倾向的沉淀强化型高熵合金及其制备方法
CN106756249A (zh) 一种高强度且组织稳定的镍基单晶高温合金及其制备方法
CN110408850B (zh) 纳米金属间化合物析出强化的超级钢及其制备方法
CN111961946A (zh) 一种低成本高强高韧中熵合金及制备方法
CN114231765B (zh) 一种高温合金棒材的制备方法与应用
CN110172630B (zh) 一种强塑性匹配良好的四元亚共晶高熵合金及其制备方法
CN111850375B (zh) 一种纳米析出强化型高强高塑性多元合金及其制备方法
CN115094273B (zh) 一种富镍铁低钴的高强双相镍基合金及其制备方法
CN114032417A (zh) 一种耐冲刷腐蚀的铜镍合金及其制备方法
CN112813330B (zh) 一种多主元碳化物弥散型高熵合金材料及其制备方法
CN114032440A (zh) 一种Laves相强化奥氏体耐热钢及其制备方法
CN113249630A (zh) 一种高熵合金的锻压工艺
CN114574703A (zh) 一种可同时、短流程回收利用高温合金废料的方法
CN113584371A (zh) 一种具有桁架结构的析出强化型高熵合金及其制备方法
Zhang et al. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys
CN115323245B (zh) 一种胞状组织Ni-Cr-Fe高温合金及其制备方法
CN115011886B (zh) 一种析出强化的高强度抗氧化铁基高温合金及其制备方法
CN114645159B (zh) 一种高温抗氧化高强度镍钨钴铬合金及制备方法
CN108374108A (zh) 一种高强度高耐腐蚀性含铊系镍基高温合金及其制备方法
CN114438402B (zh) 用于低温高酸性工况的能量回收透平叶片材料及制备方法
CN115874085B (zh) 一种纳米相增强的无钨钴镍基高温合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant