CN110957358A - 晶体管结构及其制造方法 - Google Patents

晶体管结构及其制造方法 Download PDF

Info

Publication number
CN110957358A
CN110957358A CN201910885457.8A CN201910885457A CN110957358A CN 110957358 A CN110957358 A CN 110957358A CN 201910885457 A CN201910885457 A CN 201910885457A CN 110957358 A CN110957358 A CN 110957358A
Authority
CN
China
Prior art keywords
layer
fluorine
dielectric
dielectric layer
work function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910885457.8A
Other languages
English (en)
Other versions
CN110957358B (zh
Inventor
钱德拉谢卡尔·普拉卡什·萨万特
蔡家铭
陈明德
林士琦
张景舜
余典卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN110957358A publication Critical patent/CN110957358A/zh
Application granted granted Critical
Publication of CN110957358B publication Critical patent/CN110957358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82345MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01009Fluorine [F]

Abstract

本发明实施例涉及一种晶体管结构制造方法,包括:在衬底上形成鳍;在鳍上形成栅极介电堆叠件,栅极介电堆叠件包括设置在界面介电层上的高k介电层;将高k介电层浸在氟基气体中;以及在高k介电层上沉积覆盖层。一种晶体管结构,包括:衬底;鳍,位于衬底上;栅极介电堆叠件,位于鳍上,栅极介电堆叠件包括:界面介电层;及高k介电层,位于界面介电层上,高k介电层的氟浓度介于约0.01原子%和约35原子%间;以及一个或多个功函层,位于栅极介电堆叠件上。从而改善晶体管性能。

Description

晶体管结构及其制造方法
技术领域
本发明的实施例涉及晶体管结构及其制造方法
背景技术
可以通过调整晶体管的栅极结构内的功函层的厚度来调节晶体管(例如,p型晶体管)的阈值电压。然而,由于调整功函层厚度受限于晶体管之间的间隔的减小,因而缩放晶体管栅极结构(以制造更小的器件)对调整阈值电压带来挑战。
发明内容
根据本发明的实施例,本发明提供一种晶体管结构制造方法,包括:在衬底上形成鳍;在所述鳍上形成栅极介电堆叠件,其中,所述栅极介电堆叠件包括设置在界面介电层上的高k介电层;将所述高k介电层浸在氟基气体中;以及在所述高k介电层上沉积覆盖层。
根据本发明的另一实施例,本发明提供了一种晶体管结构,包括:衬底;鳍,鳍位于所述衬底上;栅极介电堆叠件,栅极介电堆叠件位于所述鳍上,其中,所述栅极介电堆叠件包括界面介电层以及高k介电层,高k介电层位于所述界面介电层上,其中,所述高k介电层的氟浓度介于约0.01原子%和约35原子%之间;该晶体管结构还包括一个或多个功函层,该一个或多个功函层位于所述栅极介电堆叠件上。
根据本发明的又一实施例,本发明提供了一种晶体管结构制造方法,包括:在设置在衬底上的鳍上形成界面电介质;在所述界面电介质上沉积高k介电层;在所述高k介电层上沉积一个或多个功函层;将所述衬底加热至介于约70℃和约950℃之间的温度;以及将所述一个或多个功函层中的至少一个功函层浸在氟基气体中,同时加热所述衬底。
附图说明
当结合附图进行阅读时,从以下详细描述可最佳理解本发明的各个方面。应该指出,根据工业中的标准实践,各个部件未按比例绘制。实际上,为了清楚的讨论,各个部件的尺寸可以任意地增大或减小。
图1是根据一些实施例的部分制造的栅极堆叠件的截面图。
图2是根据一些实施例的部分制造的p型晶体管的栅极堆叠件中的功函层的放大视图。
图3A和图3B是根据一些实施例的用于形成栅极堆叠件的方法,该方法包括氟化操作和可选退火操作。
图4是根据一些实施例的部分制造的栅极堆叠件的截面图。
图5是根据一些实施例的氟化操作期间的部分制造的栅极堆叠件的截面图。
图6是根据一些实施例的牺牲阻挡层的形成之后的部分制造的栅极堆叠件的截面图。
图7是根据一些实施例的部分制造的栅极堆叠件的高k介电层和界面介电层中的两个氟分布曲线的二次离子质谱(SIMS)图。
图8是根据一些实施例的阻挡层的氟化操作期间的部分制造的栅极堆叠件的截面图。
图9是根据一些实施例的在阻挡层上形成牺牲阻挡层之后的部分制造的栅极堆叠件的截面图。
图10是根据一些实施例的部分制造的栅极堆叠件的阻挡层、覆盖层、高k介电层和界面介电层中的两个氟分布曲线的二次离子质谱(SIMS)图。
图11是根据一些实施例的在对于一个或多个功函层的氟化操作期间的部分制造的栅极堆叠件的截面图。
图12是根据一些实施例的部分制造的栅极堆叠件的功函堆叠件中的两个氟分布曲线的二次离子质谱(SIMS)图。
具体实施方式
以下公开内容提供了许多用于实现所提供主题的不同特征的不同实施例或实例。下面描述了组件和布置的具体实例以简化本发明。当然,这些仅仅是实例,而不旨在限制本发明。例如,以下描述中,在第二部件上方或者上形成第一部件可以包括第一部件和第二部件直接接触形成的实施例,并且也可以包括在第一部件和第二部件之间可以形成额外的部件,从而使得第一部件和第二部件可以不直接接触的实施例。
而且,为便于描述,在此可以使用诸如“在…之下”、“在…下方”、“下部”、“在…之上”、“上部”等空间相对术语,以容易地描述如图所示的一个元件或部件与另一个(或另一些)原件或部件的关系。除了图中所示的方位外,空间相对术语旨在包括器件在使用或操作中的不同方位。装置可以以其它方式定向(旋转90度或在其它方位上),而本文使用的空间相对描述符可以同样地作出相应的解释。
本文使用的术语“标称”是指在产品或工艺的设计阶段期间设定的组件或工艺操作的特性或参数的期望值或目标值,以及高于期望值和/或低于期望值的值的范围。值的范围通常由于制造工艺或公差而轻微变化。
本文使用的术语“约”表示可以基于与主题半导体器件相关的特定技术节点而变化的给定量的值。在一些实施例中,基于特定技术节点,术语“约”可以表示在例如给定量的值的5%-30%内变化(例如,值的±5%、±10%,±20%或±30%)的值。
本文使用的术语“垂直”意味着标称垂直于衬底的表面。
鳍式晶体管(例如,鳍式场效应晶体管或“finFET”)的栅极结构内的功函层部分地控制晶体管的阈值电压。更具体地,finFET的阈值电压值取决于功函层的总厚度和类型。因此,通过控制每个finFET中的功函层的厚度(或功函层的数量),可以在同一衬底上形成具有不同阈值电压的finFET。例如,具有低阈值电压的finFET可以用于芯片内的“低”或“超低”功率应用,并且具有较高阈值电压的finFET可以用于芯片内的高功率应用。
因为在p型finFET和n型finFET中使用的功函金属在厚度、数量和/或组成方面可以不同,因此P型finFET和n型finFET显现出不同的绝对阈值电压(例如,阈值电压的大小而不考虑其符号)。因此,就绝对值而言,p型finFET比n型finFET具有更高的阈值电压。例如,p型finFET需要更高的电压来导通(例如,允许电流在晶体管的源极和漏极端子之间流动)。基于此,与n型finFET相比,p型finFET可以称为“弱”。减小(例如,降低)p型finFET的阈值电压的一种方法是增加它们相应的功函层的厚度。然而,功函层的厚度受到缩放约束的限制。例如,随着鳍至鳍间距和栅极至栅极间距的减小,用于功函层的可用空间相应地减小。因此,增加p型finFET中的一个或多个功函层的厚度变得具有挑战性。例如,由于鳍之间的有限空间,现有的或较厚的功函层可能显现出差的间隙填充,这可能导致空隙并且导致整个晶圆的不可预测的阈值电压变化。因此,p型finFET的更厚或更多功函层可能不是下一代技术节点的选择。
本发明的实施例针对包括一个或多个氟化操作的方法,其可以应用于n型和p型finFET的栅极堆叠层。每个氟化操作均可以引入介于约0.01原子%和约35原子%之间的氟含量。此外,氟化操作可以应用于栅极堆叠件的一层或多层,包括但不限于栅极堆叠件的栅极介电层、阻挡层和/或任何功函层。此外,氟化操作不涉及可能损坏栅极堆叠层的注入或高能量(例如,等离子体)工艺。在一些实施例中,氟化操作包括在约70℃和约950℃之间(例如,约70℃、约130℃、约250℃、约370℃、约550℃、约650℃、约700℃、约900℃)的温度下将一个或多个栅极堆叠件浸入氟基气体(例如,三氟化氮(NF3);纯氟气(F2)等)中。如果在栅极介电层和/或阻挡层处实施氟化操作,则可以实施可选退火操作以调制栅极电介质和/或阻挡层内的氟分布。在这种情况下,可以在栅极电介质和/或阻挡层上形成牺牲阻挡层,以防止退火操作期间氟的外扩散。在一些实施例中,栅极电介质的氟化通过钝化氧空位并且提高栅极电介质的可靠性来减少栅极电介质中的陷阱中心。在一些实施例中,栅极电介质的氟化通过悬空键钝化来减小栅极介电堆叠件和衬底之间的界面处的界面陷阱(DIT)中心的密度,这进而提高了栅极介电堆叠件的可靠性。在一些实施例中,阻挡层的氟化增加了阻挡层的功函数,这进而降低了p型晶体管的阈值电压。此外,阻挡层氟化可以通过氧空位钝化部分地减少栅极介电堆叠件中的陷阱中心来提高栅极介电堆叠件的可靠性。在一些实施例中,一个或多个功函层的氟化增加了这些层的有效功函数、降低了p型晶体管的阈值电压,并且通过氧空位钝化部分地减少了栅极介电堆叠件中的陷阱中心。因此,一个或多个功函层的氟化还可以提高栅极介电堆叠件的可靠性。
图1是位于鳍110的顶部上的部分制造的栅极堆叠件100,鳍110垂直于衬底120的顶面形成。隔离区域130电隔离鳍110。此外,隔离区域130将部分制造的栅极堆叠件100与衬底120电隔离。作为实例而非限制,衬底120可以是块状半导体晶圆(例如,硅晶圆)或绝缘体上半导体晶圆(例如,绝缘体上硅,SOI)。在一些实施例中,鳍110可以包括(i)硅,(ii)化合物半导体,诸如砷化镓(GaAs)、磷化镓(GaP)、磷化铟(InP)、砷化铟(InAs)和/或锑化铟(InSb)、硅锗(SiGe),(iii)合金半导体,包括磷砷化镓(GaAsP)、砷化铝铟(AlInAs)、砷化铝镓(AlGaAs)、砷化镓铟(GaInAs)、磷化镓铟(GaInP)和/或磷砷化镓铟(GaInAsP),或(iv)它们的组合。在一些实施例中,隔离区域130是浅沟槽隔离(STI)结构,其包括基于硅的介电材料,诸如氧化硅(SiO2)、氮化硅(Si3N4)、氮氧化硅(SiON)、氟掺杂硅酸盐玻璃(FSG)、低k介电材料(例如,k值小于约3.9)和/或具有适当间隙填充特性的其它合适的介电材料。
如图1所示,部分制造的栅极堆叠件100包括若干垂直堆叠层。作为实例而非限制,部分制造的栅极堆叠件100可以包括界面电介质100A、高k介电层100B、覆盖层100C、阻挡层100D、功函堆叠件100E和金属栅极层100F。在一些实施例中,界面电介质100A是基于氧化硅的电介质,并且高k介电层100B是高k材料,其介电常数(k值)大于约3.9(例如,约4.0、约10、约20、约30等)。作为实例而非限制,界面电介质100A可以包括氧化硅、氧化锗和/或氮氧化硅,并且高k介电层100B可以包括氧化铪、镧、氧化物、氧化铝、氧化钇或它们的组合。在一些实施例中,界面电介质100A和高k介电层100B在部分制造的栅极堆叠件100内形成栅极介电堆叠件。沉积覆盖层100C以从栅极介电堆叠件吸收氧并且在阻挡层100D、功函堆叠件100E和金属栅极层100F的形成期间保护高k介电层100B。在一些实施例中,覆盖层100C提高了栅极堆叠件(例如,界面电介质100A和高k介电层100B)的可靠性。作为实例而非限制,覆盖层100C可以是氮化钛(TiN)层或诸如氮化钛硅(TiSiN)的复合材料。此外,阻挡层100D可以是例如氮化钽(TaN)层。
在一些实施例中,功函堆叠件100E包括的一个或多个单独的功函层,为了简单起见,未在图1中示出。功函堆叠件100E中的功函层的总厚度可以设置晶体管的阈值电压。在一些实施例中,每个功函层均包括氮化钛和/或氮化钨,并且均可以具有在从约
Figure BDA0002207170020000061
至约
Figure BDA0002207170020000062
的范围内的厚度。最后,金属栅极层100F可以包括钛铝合金或钽铝合金。在一些实施例中,部分制造的栅极堆叠件100包括附加层,为简单起见,未在图1中示出。这些附加层可以包括附加阻挡层、金属或金属填充层、胶层、接触层等。
图2是用于示例性p型晶体管200、210和220的如图1所示的部分制造的栅极堆叠件100的区域150的一系列放大视图。在一些实施例中,基于功函堆叠件100E内的功函层WF1、WF2、WF3、WF4和WF5的数量和厚度,每个p型晶体管200、210和220均具有不同的阈值电压值。例如,功函堆叠件100E中的功函层的数量越大或功函堆叠件100E越厚,产生的晶体管的阈值电压值越低。因此,p型晶体管220的阈值电压低于p型晶体管210的阈值电压;并且p型晶体管210的阈值电压低于p型晶体管200的阈值电压。作为实例而非限制,p型晶体管220可以具有适合于芯片中的超低功率应用的阈值电压,p型晶体管210可以具有适合于芯片中的低功率应用的阈值电压,p类型晶体管200可以具有适合于芯片中的标准功率应用的阈值电压。此外,p型晶体管210和220可以与p型晶体管220一起形成,因为p型晶体管200、210和220包括可以同时沉积的用于p型晶体管200、210和220的共用功函层(例如,WF3、WF4和WF5)。
在一些实施例中,功函层WF1、WF2、WF3、WF4和WF5具有相同或不同的厚度以及类似或不同的组成(例如,钛与氮的摩尔比、钨与氮的摩尔比)。此外,更多功函层或更厚的功函层可能无法在降低p型晶体管220的阈值电压值方面提供额外的益处。例如,随着功函层的数量增加,对阈值电压的影响减弱。这是因为添加的功函层和/或较厚的功函层的形成将顶部功函层(例如,WF4和WF5层)进一步“推”离沟道,对沟道的影响较弱。因此,额外的功函层可能不一定使p型晶体管产生较低阈值电压值。此外,随着鳍至鳍间距140(例如,图1所示)在技术节点之间缩小,可用于部分制造的栅极堆叠件100的沉积的空间成比例地减小。因此,额外数量的功函层将占据鳍110之间的可用空间的更大部分,这减少了栅极堆叠件中其余层(例如,WF4层、WF5层、100F层等)的可用空间。
在一些实施例中,部分制造的栅极堆叠件100的氟化选择性层可以降低p型晶体管200、210和220的阈值电压并且提高晶体管的可靠性。图3A和图3B是包括氟化操作的示例性方法300的流程图,该氟化操作进一步减小p型晶体管的阈值电压并且提高p型和n型晶体管二者中介电堆叠件的可靠性。可以在方法300的各个操作之间实施其它制造操作,并且可以仅为了清楚起见而省略。本发明的实施例不限于方法300。
参照图3A,方法300开始于操作305以及界面电介质100A和高k介电层100B在鳍110的暴露部分和隔离区域130的顶面上的沉积。根据一些实施例,图4示出了产生的结构。作为实例而非限制,可以使用原子层沉积(ALD)或等离子体增强原子层沉积(PEALD)方法连续毯式沉积界面电介质100A和高k介电层100B。在一些实施例中,界面电介质100A和高k介电层100B一起形成部分制造的栅极堆叠件100的栅极介电堆叠件。
参照图3A和图5,方法300继续氟化操作310,其中,将高k介电层100B暴露于(例如,浸入)氟基气体500。作为实例而非限制,氟基气体500是氟源(例如,氟前体),诸如纯氟气(F2)、三氟化氮(NF3)、三氟甲烷(CHF3)、四氟甲烷(CF4)、六氟化硫(SF6)、六氟乙烷(C2F6)或它们的组合。上述氟基气体列表并非详尽无遗,并且可以使用额外的氟基气体。在一些实施例中,氟基气体500在高k介电层100B的表面上或在高k介电层100B的表面之上的环境中热分解。根据一些实施例,高k介电层100B的表面、阻挡层100D的表面、功函堆叠件100E的功函层WF1/WF2/WF3/WF4/WF5的表面可以用作用于氟基气体500热分解的催化剂。为了热分解氟基气体500,将衬底120加热至约70℃和约950℃之间(例如,约70℃、约100℃、约200℃、约300℃、约325℃、约650℃、约800℃、约900℃等)的温度。对于低于约70℃的工艺温度,氟基气体500可能不会在高k介电层100B的表面上或在高k介电层100B之上的环境中主动分解。因此,低于70℃的工艺温度可能限制将结合至高k介电层100B中的氟的量。另一方面,在高于约950℃的工艺温度下,高k介电层100B可以变成多晶并且形成晶界。高k介电层100B中的晶界可以成为栅极堆叠件和鳍之间的电荷的潜在路径,并且因此是不期望的。此外,在高工艺温度下(例如,高于950℃),界面电介质100A可以变厚,这可以减小界面电介质100A和高k介电层100B的组合介电常数(k值),并且对晶体管的电行为产生负面影响。根据一些实施例,将高k介电层100B暴露于氟基气体500是“热处理”,其不会物理损坏暴露的高k介电层100B或界面电介质100A。
根据一些实施例,用于氟化操作310的浸渍时间在从约1s(秒)至约30min(分钟)(例如,在从约1s至约20s、从约15s至约1min、从约50s至约5min、从约1min至约10min、从约5min至约20min、从约10min至约30min)的范围内。此外,浸渍工艺期间的环境压力可以在从约0.5Torr(托)至约150Torr(例如,在从约0.5Torr至约10Torr、从约5Torr至约50Torr、从约30Torr至约75Torr、从约60Torr至约100Torr、从约90Torr至约150Torr)的范围内。上述工艺参数(例如,浸渍时间和环境压力)是示例性而非限制性的。可以根据结合在高k介电层100B中的所需的氟的量进一步调节浸渍时间和环境压力。例如,长浸渍时间(例如,10min)和高环境压力(例如,70Torr)的组合可以有利于在高k介电层100B中结合更高量的氟。然而,长浸渍时间(例如,长于约30min)可能降低产量并且增加氟基气体的消耗,因此增加制造成本。此外,可以根据氟基气体500的类型、高k介电层100B的类型和其它因素(例如,发生氟化操作的反应器的几何形状)来进一步调整浸渍时间和环境压力。
在一些实施例中,在操作310期间,一些氟穿过高k介电层100B朝向与界面电介质100A的界面扩散。穿过高k介电层100B的氟扩散是期望的效果,其具有以下益处:(i)通过去除源自高k介电层100B的沉积工艺的碳和/或氯副产物污染来净化高k介电层100B,和(ii)减少高k介电层100B中(例如,在高k介电层100B和界面电介质100A之间的界面处)以及界面电介质100A和鳍110中的沟道之间的界面处的陷阱中心。在一些实施例中,通过高k电介质100B中的氧空位钝化以及通过界面电介质100A和鳍110中的沟道之间的界面处的悬空键钝化来减少陷阱中心。因此,穿过高k介电层100B的氟扩散可以提高晶体管的可靠性---例如,减小负偏压温度不稳定性(nBTI)、漏电流(Igi)和时间依赖性介电击穿(TDDB)。因此,操作310对于n型和p型晶体管都是有益的。
在一些实施例中,可以结合在高k介电层100B中的氟浓度可以在从约0.01原子%(“at.%”)至约35at.%(例如,在从约0.01at.%至约1at.%、从约0.5at.%至约5at.%、从约3at.%至约10at.%、从约8at.%至约25at.%、从约20at.%至约35at.%等)的范围内,这取决于诸如氟基气体500的类型、工艺温度、环境压力和浸渍时间的工艺参数。例如,对于给定的浸渍时间(例如,约1min),较高工艺温度(例如,约300℃)和环境压力(例如,约50Torr)的组合可以产生较高的氟浓度。相反地,并且对于相同的浸渍时间(例如,约1min),较低工艺温度(例如,约200℃)和环境压力(例如,约1Torr)的组合可以产生较低的氟浓度。
作为实例而非限制,操作310可以原位或非原位实施。例如,操作310可以在高k介电层100B的沉积之后在没有真空断裂的情况下或在独立反应器中有真空断裂的情况下实施。如果原位实施操作310,则高k介电层100B的沉积反应器可以配备有气体输送管线,以用于输送氟基气体500。
根据一些实施例,操作310之后的氟浓度的峰值更靠近高k介电层100B的表面并且朝向高k介电层100B和界面电介质100A之间的界面逐渐减小。在一些实施例中,氟峰值浓度位于距离高k介电层100B的处理表面约
Figure BDA0002207170020000091
和约
Figure BDA0002207170020000092
之间的位置。在一些实施例中,氟峰值浓度在高k介电层100B的总厚度的约5%和约75%之间延伸。
在一些实施例中,高k介电层100B和界面电介质100A内的氟分布可以通过适用于n型和p型晶体管的可选退火操作来修改。作为实例而非限制,如果实施可选退火操作,则在高k介电层100B上沉积牺牲阻挡层以防止退火期间氟的外扩散。随后可以在退火之后去除牺牲阻挡层。
在一些实施例中,牺牲阻挡层的沉积、退火操作和牺牲阻挡层的去除都是可选操作,其可以实施以进一步调制高k介电层100B和界面电介质100A内的氟分布(例如,将氟原子更深地驱入栅极介电堆叠件中)。这些可选操作对应于图3A所示的方法300的可选操作315至325。
在操作315中,如图6所示,可以在高k介电层100B上沉积牺牲阻挡层600。作为实例而非限制,牺牲阻挡层600可以是之后可以用湿蚀刻化学物质去除的硅层或氮化钛层。如上所述,牺牲阻挡层600的目的是阻挡或抑制氟从高k介电层100B外扩散回至高k介电层100B之上的环境。例如,在随后的退火操作期间可能发生氟的外扩散。根据一些实施例,牺牲阻挡层600可以通过ALD或PEALD沉积为在从约
Figure BDA0002207170020000101
至约
Figure BDA0002207170020000102
(例如,在从约
Figure BDA0002207170020000103
至约
Figure BDA0002207170020000104
从约
Figure BDA0002207170020000105
至约
Figure BDA0002207170020000106
从约
Figure BDA0002207170020000107
至约
Figure BDA0002207170020000108
)的范围内的厚度。小于
Figure BDA0002207170020000109
的牺牲阻挡层可能无法防止氟的外扩散。并且即使厚于约
Figure BDA00022071700200001010
的牺牲阻挡层可以防止氟的外扩散,也需要更长的沉积时间和去除工艺。
参照图3A,方法300可以通过可选退火操作320继续。在一些实施例中,可选退火操作320在约70℃和约550℃之间(例如,约70℃、约100℃、约200℃,约250℃、约325℃等)的范围的温度下实施约2s(秒)至约300s,以将氟原子“驱入”至界面电介质100A。在一些实施例中,可选退火操作320在氮气环境中、在合成气体环境(例如氮气/氢气混合物)中、在氨气环境中或在稀释的氧环境(例如氧气/氮气混合物)中实施。根据一些实施例,在退火操作320之后,氟浓度的分布可以更深地转移至高k介电层100B中(例如,朝向与界面电介质100A的界面)。作为实例,图7示出了根据一些实施例的通过二次离子质谱(SIMS)获得的高k介电层100B/界面电介质100A堆叠件的两个氟分布曲线。图7中的y轴表示氟原子浓度,并且x轴表示高k介电层100B/界面电介质100A堆叠件中的深度——其中,高k介电层100B是堆叠件的顶层并且界面电介质100A是堆叠件的底层。图7中的氟分布图示出了在有和没有可选退火操作320的情况下获得的高k介电层100B和界面电介质100A内的两种不同的氟分布。例如,在图7中,在氟化操作310之后,高k介电层100B和界面电介质100A内的氟分布(其相对厚度和位置由垂直虚线表示)由曲线700表示。另一方面,在可选退火操作320之后,高k介电层100B和界面电介质100A内的氟分布由曲线710表示。根据一些实施例,氟分布710(例如,在可选退火操作320之后)与在氟化操作310期间获得的“原始”氟分布700相比产生更大的半峰全宽(FWHM)。换句话说,氟分布710是“更宽”并且更均匀地分布在高k介电层100B内(例如,与氟分布700相比)并且更深地延伸至高k介电层100B和界面介电层100A中。
在一些实施例中,可选退火操作320不超过约550℃的温度,以避免连续的高温工艺损坏高k介电层100B、界面电介质100A和衬底120。例如,较低的退火温度(例如,低于约550℃)将可选退火操作320的总体热预算保持在低水平。根据一些实施例,较低的退火温度可能需要较长的退火时间来实现图7的氟分布710。相反地,较高的退火温度可能需要较短的退火时间来实现图7的氟分布710。在一些实施例中,退火温度和退火时间的不同组合可以产生与图7所示的氟分布710类似或不同的氟分布。例如,退火时间和温度的组合可以在氟分布700和710之间提供氟分布。
根据一些实施例,如果需要氟驱入工艺并且实施可选退火操作320,则操作310的工艺温度可以是低的(例如,接近约70℃),使得两个操作的总体热预算保持在低水平。例如,在有可选退火操作320的情况下,操作310的温度可以设置在约70℃,而可选退火操作320可以在约250℃下实施。另一方面,在没有可选退火操作320的情况下,操作310的温度可以设置得更高(例如,在约300℃)。
在可选退火操作320之后,根据图3A所示的方法300的操作325去除牺牲阻挡层600。作为实例而非限制,可以利用湿蚀刻化学物质去除牺牲阻挡层600,湿蚀刻化学物质诸如包括盐酸、过氧化氢和水(HPM)的溶液;氢氧化铵;磷酸;和/或氢氟酸。根据一些实施例,在牺牲阻挡层600的去除之后,可以恢复部分制造的栅极堆叠件100的形成。
如上所述,操作315、320和325是可选的,并且还被配置为通过界面电介质100A中的氧空位和悬空键钝化来增强高k介电层100B和界面电介质100A之间的界面处的陷阱中心的减少,从而提高n型和p型晶体管的可靠性。在一些实施例中,方法300可以实施操作310,并且然后进入操作330。
方法300继续操作330,其中,高k介电层100B上沉积覆盖层100C和阻挡层100D,如图1所示。在一些实施例中,用诸如例如ALD、PEALD、化学汽相沉积(CVD)、等离子体增强CVD(PECVD)等的共形沉积方法毯式沉积覆盖层100C和阻挡层100D。
方法300继续氟化操作335,其中,阻挡层100D暴露(或浸渍)于氟基气体800,如图8所示。在一些实施例中,氟化操作335与氟化操作310类似。例如,氟化操作335中的氟基气体800可以是F2、NF3、CHF3、CF4、SF6、C2F6或它们的组合。此外,用于氟化操作335的工艺温度可以介于约70℃和约950℃之间,并且浸渍时间可以在从约1s至约30min的范围内。此外,浸渍工艺期间的环境压力可以在从约0.5Torr至约150Torr的范围内。
在一些实施例中,并且取决于工艺条件(例如,氟基气体的类型、浸渍时间、工艺压力和温度),结合在阻挡层100D中的总氟浓度可以在从约0.01at.%至35at.%的范围内。在一些实施例中,阻挡层100D的氟化增加其功函数并且随后降低p型晶体管的阈值电压。作为实例而非限制,氟浓度越高,产生的p型晶体管的阈值电压值越低。在一些实施例中,结合高于约35at.%氟不为p型晶体管提供显著的阈值电压益处——例如,它不会进一步降低p型晶体管的阈值电压值。
在一些实施例中,为了通过覆盖层100C向高k介电层100B和界面电介质100A“驱入”氟原子,方法300包括图3B所示的可选操作340至350。例如,并且参照图3B,方法300可以继续可选操作340并且在阻挡层100D上沉积牺牲阻挡层900,如图9所示。在一些实施例中,操作340的牺牲阻挡层900与图6所示的操作315的牺牲阻挡层600类似。例如,操作340的牺牲层900可以包括硅层或氮化钛层,其随后可以用湿蚀刻化学物质去除。因此,操作340的牺牲层900可以通过ALD或PEALD沉积为在从约
Figure BDA0002207170020000121
至约
Figure BDA0002207170020000122
(例如,从约
Figure BDA0002207170020000123
至约
Figure BDA0002207170020000124
从约
Figure BDA0002207170020000125
至约
Figure BDA0002207170020000126
从约
Figure BDA0002207170020000127
至约
Figure BDA0002207170020000128
)的范围内的厚度。在一些实施例中,牺牲阻挡层低于
Figure BDA0002207170020000129
可能无法防止氟的外扩散,并且牺牲阻挡层的厚度大于约
Figure BDA00022071700200001210
需要更长的沉积时间和去除工艺,这会增加工艺时间和IC制造成本。
在一些实施例中,图3B所示的退火操作345与操作320类似。例如,在一些实施例中,可选退火操作345在约70℃和约550℃之间(例如,约70℃、约100℃、约200℃、约250℃、约325℃等)的范围内的温度下在氮气环境中、在合成气体环境(例如氮气/氢气混合物)、在氨气环境中或在稀释的氧环境(例如氧气/氮气混合物)中实施约2s至约300s,以将氟原子“驱入”覆盖层100C、高k介电层100B和界面电介质100A。根据一些实施例,在退火操作345之后,氟浓度的分布更深地转移至阻挡层100D、覆盖层100C和高k介电层100B中。
参照图3B,方法300继续操作350,其中,利用湿蚀刻化学物质去除在操作340中沉积的牺牲层900。在一些实施例中,牺牲阻挡层去除操作350与操作325类似。作为实例而非限制,在操作350中,可以使用HPM(例如,包括盐酸、过氧化氢和水的溶液)、氢氧化铵、磷酸和/或氢氟酸来去除牺牲阻挡层。
图10是阻挡层100D、覆盖层100C、高k介电层100B和界面电介质100A内的两个氟分布的SIMS曲线。图10中的y轴表示氟原子浓度,并且x轴表示堆叠件的深度,其中,功函堆叠件100E是顶层,并且界面电介质100A是堆叠件的底层。图10中的氟分布图示出了在有和没有可选退火操作345的情况下获得的两种不同的氟(浓度)分布。例如,在图10中,在氟化操作335之后,阻挡层100D内的氟分布(其相对厚度和位置由垂直虚线表示)由曲线1000表示。另一方面,在可选退火操作345之后,阻挡层100D内的氟分布由曲线1010表示。根据一些实施例,氟分布1010(例如,在可选退火操作345之后)与在氟化操作310期间获得的“原始”氟分布1000相比产生更大的FWHM。因此,氟分布1010延伸至覆盖层100C中、高k介电层100B和界面电介质100A。产生“更宽”的氟分布1010归因于可选退火操作345期间的氟原子的扩散。在一些实施例中,氟分布1010的尾部可以到达界面电介质100A。氟原子扩散至上述堆叠件中的深度取决于可选退火操作345的工艺条件。例如,较长的退火时间(例如,朝向约300s)和较高的退火温度(例如,朝向约550℃)倾向于产生更宽的氟浓度分布(例如,像氟分布1010),而较短的退火时间(例如,朝向约2s)和较低的退火温度(例如,朝向约70℃)倾向于产生窄的氟浓度分布(例如,比氟分布1010窄并且比氟分布1000宽)。
如上所述,操作340、345和350是可选的,并且配置为驱入结合在阻挡层100D中的氟。在一些实施例中,方法300可以实施操作335,并且然后直接进入操作355。
方法300继续操作355,其中,在阻挡层100D上沉积第n个功函层,如图1和2所示。根据所需的不同阈值电压晶体管的数量,沉积的功函层的数量“n”可以在从1至15的范围内。例如,当“n”为5时,可以沉积总共5个不同的功函层(例如,WF1、WF2、WF3、WF4、WF5层)以制造总共6(n+1)个不同的阈值电压器件(图2所示的子集)。在一些实施例中,用诸如例如ALD、PEALD、CVD、PECVD等的共形沉积方法毯式沉积功函层。
在一些实施例中,光刻工艺可用于在p型晶体管中实现不同数量的功函层,以产生具有不同标称阈值电压的器件。例如,可以用光刻胶掩蔽具有较少数量的功函层的n型或p型晶体管,而其它p型晶体管接收额外的功函层。可选地,具有较少数量的功函层的n型或p型晶体管可以在功函层沉积工艺之前被掩蔽,并且在功函层沉积工艺结束时暴露。
在一些实施例中,可以将可选氟化操作应用于部分制造的栅极堆叠件100的功函层,以引入额外量的氟,额外量的氟可以进一步降低p型晶体管的阈值电压。例如,在方法300的可选氟化操作360中,在先前的操作355中沉积的功函层WFn(例如,WF1、和/或WF2、和/或WF3、和/或WF4、和/或WF5),暴露(或浸渍)于氟基气体。在一些实施例中,氟化操作360与氟化操作310和335类似。例如,氟化操作360中的氟基气体可以是F2、NF3、CHF3、CF4、SF6、C2F6或它们的组合。此外,氟化操作360的工艺温度可以包括介于约70℃和约950℃之间的温度,而浸渍时间可以在从约1s至约30min的范围内。此外,浸渍工艺期间的环境压力可以在从约0.5Torr至约150Torr的范围内。图11示出了氟化操作360,其中,第n个功函层(例如,WF1和/或WF2和/或WF3和/或WF4和/或WF5)和/或功函堆叠件100E暴露于(例如,浸入)氟基气体1100。
在一些实施例中,也可以在氟化操作360之后实施诸如退火操作320和345的退火操作。
在一些实施例中,可以对功函层中的仅一个选择性地实施氟化操作360,以选择性地降低形成的p型晶体管的子集的阈值电压。例如,可以对功函层WF1实施操作360,以选择性地降低图2所示的p型晶体管220的阈值电压。在另一实例中,可以对功函层WF2实施操作360以选择性地降低图2所示的p型晶体管210和220的阈值电压。如果功函层WF2经历氟化操作360,则p型晶体管210将获得比p型晶体管220更低的阈值电压,因为与p型晶体管220中的功函层WF2相比,p型晶体管210中的功函层WF2更靠近鳍110的沟道区域。
根据一些实施例,图12是示出功函堆叠件100E内的氟浓度的两个示例性氟分布1200和1210的SIMS曲线。如果选择性地对功函层WF1实施方法300的氟化操作360,则可以获得氟分布1200。因此,如果在每个功函层的沉积之后(例如,在WF1的沉积之后、在WF2的沉积之后、在WF3的沉积之后、在WF4的沉积之后以及在WF5的沉积之后)实施方法300的氟化操作360则可以获得氟分布1210。因此,在氟分布1210中,每个功函层(Wn)均具有其自己的氟峰值,其对应于每个氟化操作360。根据一些实施例,氟分布1210增加了所有功函层(例如,WF1、WF2、WF3、WF4和WF5)的有效功函数。
在一些实施例中,并且在操作355或可选氟化操作360之后,可以根据操作370沉积金属栅极层100F。在一些实施例中,金属栅极层100F毯式沉积在阻挡层100D上或功函堆叠件100E上。如上所述,金属栅极层100F可以包括钛铝合金或钽铝合金。在一些实施例中,部分制造的栅极堆叠件100包括附加层,诸如金属或金属填充层、胶层、接触层等。在一些实施例中,在栅极层100F上沉积金属填充物以填充相邻鳍110之间的区域。
在一些实施例中,可以在p型和n型晶体管中实施氟化操作310和335,使得两种类型的晶体管都可以受益于其栅极堆叠件中提高的氟含量。例如,n型晶体管中提高的氟浓度可以通过去除源自高k介电层100B的沉积工艺的碳、氯化物或其它副产物并且通过减少如上所述的高k介电层100B和界面电介质100A之间的界面处的陷阱中心来提高高k介电层100B和界面电介质100A的质量。另一方面,氟化操作360可以保留用于p型晶体管——然而,这不是限制性的,并且n型晶体管可以经受氟化操作360而对其阈值电压的影响最小。
在一些实施例中,并且参照图2、图3A和图3B,可以在界面电介质100A的沉积之后,在界面电介质100A的氮化之后、在高k介电层100B的沉积之后、在阻挡层100D的沉积之后、在功函层WF1的沉积之后、在功函层WF2的沉积之后、在功函层WF3的沉积之后、在功函层WF4的沉积之后、在功函层WF5的沉积之后或它们的组合来实施方法300的氟化操作310和335以及360。
在一些实施例中,可以基于栅极堆叠件中所需结合氟的期望的量、栅极堆叠件中所需的氟的期望轮廓、热预算考虑、部分制造的栅极堆叠件100的制造阶段以及在部分制造的栅极堆叠件100的形成期间完成的氟化操作的总数量来调整控制氟化操作310、335和360的工艺参数。
在一些实施例中,当在靠近阻挡层100D附近实施时,氟化工艺在降低p型晶体管的阈值电压值方面的有效性更强,并且当进一步远离阻挡层100D(例如,在功函层WF5处)实施时,氟化工艺的有效性逐渐减弱。
在一些实施例中,方法300不限于finFET,并且可以应用于其它类型的p型晶体管,诸如包括(例如,水平全环栅(LGAA)晶体管、垂直全环栅(VGAA)晶体管等)的全环栅(GAA)晶体管,或可以受益于其栅极堆叠件的氟浓度增加的任何晶体管。
在一些实施例中,功函层100E可以直接沉积在栅极介电层100B上,例如,它们之间没有覆盖层和/或阻挡层。这可以通过跳过覆盖层100C和/或阻挡层100D的沉积来实现(例如,通过跳过方法300中操作330)。可选地,这也可以通过额外的工艺实现,额外的工艺诸如在利用湿蚀刻工艺和/或干蚀刻工艺沉积功函堆叠件100E之前去除覆盖层100C和阻挡层100D。例如,参照300,湿或干蚀刻工艺可以在操作355中功函层沉积之前去除覆盖层100C和/或阻挡层100D。在一些实施例中,湿蚀刻化学物质可以包括HPM、氢氧化铵、磷酸和/或氢氟酸。干蚀刻工艺可以包括氯化物或氟基气体,诸如六氟化钨(WF6)、五氯化钨(WCl5)、六氯化钨(WCl6)、氯化钽或氯化钛(TiCl4)。
本发明的实施例针对用于晶体管的栅极堆叠层的氟化方法,其实现介于约0.01at.%至约35at.%之间的结合的氟浓度。此外,本文描述的氟化方法可以应用于栅极堆叠件的一层或多层,包括栅极堆叠件的界面电介质、高k电介质、阻挡层和任何功函层。此外,如本文所述,在栅极堆叠层中结合氟,不涉及可能损坏栅极堆叠层的注入或高能量(例如,等离子体)工艺。在一些实施例中,氟化方法包括在约70℃和约950℃之间的温度下将一个或多个栅极堆叠层浸入氟基气体(例如,氟气、三氟化氮、三氟甲烷、四氟甲烷、六氟化硫、六氟乙烷或它们的组合)。如果对栅极电介质实施氟化方法,则可以实施可选退火操作以调制栅极介电层、阻挡层、功函层内的氟分布。牺牲阻挡层可以用于在退火操作期间防止氟的外扩散。在一些实施例中,对于n型和p型晶体管,在栅极电介质中结合氟提高了高k电介质和界面电介质的质量和可靠性。在一些实施例中,对于n型和p型晶体管,阻挡层和/或功函层中结合氟提高了阻挡层和/或功函层的有效功函数,从而降低了p型晶体管的阈值电压,并且还部分地提高了栅极介电层的质量和可靠性。
在一些实施例中,方法包括在衬底上形成鳍和在鳍上形成栅极介电堆叠件,其中,栅极介电堆叠件包括设置在界面介电层上的高k介电层。该方法还包括将高k介电层浸在氟基气体中并在高k介电层上沉积覆盖层。
在一些实施例中,晶体管结构包括其上具有鳍的衬底。晶体管结构还包括位于鳍上的栅极介电堆叠件,其中,栅极介电堆叠件包括界面介电层和位于界面介电层上的高k介电层,高k介电层的氟浓度介于约0.01原子%和约35原子%之间。晶体管还包括位于栅极介电堆叠件上的一个或多个功函层。
在一些实施例中,方法包括在设置在衬底上的鳍上形成界面电介质、在界面电介质上沉积高k介电层、在高k介电层上沉积一个或多个功函层、将衬底加热至约70℃至约950℃之间的温度,以及将一个或多个功函层中的至少一个浸在氟基气体中。
本发明一方面提供一种晶体管结构制造方法,包括:在衬底上形成鳍;在所述鳍上形成栅极介电堆叠件,其中,所述栅极介电堆叠件包括设置在界面介电层上的高k介电层;将所述高k介电层浸在氟基气体中;以及在所述高k介电层上沉积覆盖层。
根据本发明的一个或多个实施例,其中,所述氟基气体包括氟气(F2)、三氟化氮(NF3)、三氟甲烷(CHF3)、四氟甲烷(CF4)、六氟化硫(SF6)、六氟乙烷(C2F6)或它们的组合。
根据本发明的一个或多个实施例,其中,将所述高k介电层浸在所述氟基气体中包括在约70℃和约950℃之间的温度下加热所述衬底。
根据本发明的一个或多个实施例,其中,将所述高k介电层浸在所述氟基气体中包括在约0.5Torr和约150Torr之间的环境压力下浸渍所述高k介电层。
根据本发明的一个或多个实施例,该晶体管结构制造方法还包括:在所述覆盖层上沉积功函层;以及将所述功函层浸在所述氟基气体中。
根据本发明的一个或多个实施例,其中,在沉积所述功函层之前:在所述覆盖层上沉积阻挡层;以及在约70℃和约950℃之间的温度下将所述阻挡层浸在所述氟基气体中。
根据本发明的一个或多个实施例,该晶体管结构制造方法还包括:在所述阻挡层上沉积牺牲阻挡层;在约70℃和约550℃之间的温度下退火所述衬底;以及去除所述牺牲阻挡层。
根据本发明的一个或多个实施例,其中,在沉积所述覆盖层之前:在所述高k介电层上沉积牺牲阻挡层;在约70℃和约550℃之间的温度下退火所述衬底;以及去除所述牺牲阻挡层。
根据本发明的一个或多个实施例,其中,所述牺牲阻挡层包括厚度介于约
Figure BDA0002207170020000181
和约
Figure BDA0002207170020000182
之间的硅或氮化钛。
根据本发明的一个或多个实施例,其中,退火所述衬底包括:在氮气环境中、在合成气体环境中、在氨气环境中或在稀释的氧环境中退火所述衬底。
本发明另一方面还提供一种晶体管结构,包括:衬底;鳍,位于所述衬底上;栅极介电堆叠件,位于所述鳍上,其中,所述栅极介电堆叠件包括界面介电层以及高k介电层,高k介电层位于所述界面介电层上,其中,所述高k介电层的氟浓度介于约0.01原子%和约35原子%之间;以及一个或多个功函层,该一个或多个功函层位于所述栅极介电堆叠件上。
根据本发明的一个或多个实施例,其中,所述一个或多个功函层中的至少一个功函层包括约0.01原子%和约35原子%之间的氟浓度。
根据本发明的一个或多个实施例,其中,所述栅极介电堆叠件中的氟浓度的分布朝向位于所述高k介电层和所述界面介电层之间的界面逐渐减小,并且包括位于距离高k介电层的与所述界面相对的表面约
Figure BDA0002207170020000191
和约
Figure BDA0002207170020000192
之间的峰值。
根据本发明的一个或多个实施例,其中,所述栅极介电堆叠件中的氟浓度的分布在所述界面介电层内逐渐减小,并且包括在所述高k介电层的总厚度的约5%至约75%之间延伸的峰值。
根据本发明的一个或多个实施例,晶体管结构还包括:设置在所述栅极介电堆叠件和所述一个或多个功函层之间的覆盖层和阻挡层,其中,所述阻挡层包括介于约0.01原子%和约35原子%之间的氟浓度。
本发明又一方面提供一种晶体管结构制造方法,包括:在设置在衬底上的鳍上形成界面电介质;在所述界面电介质上沉积高k介电层;在所述高k介电层上沉积一个或多个功函层;将所述衬底加热至介于约70℃和约950℃之间的温度;以及将所述一个或多个功函层中的至少一个功函层浸在氟基气体中,同时加热所述衬底。
根据本发明的一个或多个实施例,其中,所述氟基气体包括氟气(F2)、三氟化氮(NF3)、三氟甲烷(CHF3)、四氟甲烷(CF4)、六氟化硫(SF6)、六氟乙烷(C2F6)或它们的组合。
根据本发明的一个或多个实施例,晶体管结构制造方法还包括:在沉积所述高k介电层之前,将所述界面电介质浸在所述氟基气体中同时加热所述衬底。
根据本发明的一个或多个实施例,其中,将所述一个或多个功函层中的至少一个功函层浸在所述氟基气体中包括:在约0.5Torr和约150Torr之间的环境压力下浸渍所述一个或多个功函数层中的至少一个功函层。
根据本发明的一个或多个实施例,晶体管结构制造方法还包括:在沉积所述一个或多个功函层之前:在所述高k介电层上沉积阻挡层;在约70℃至约950℃之间的温度下将所述阻挡层浸在所述氟基气体中;在所述阻挡层上沉积牺牲阻挡层;在约70℃和约550℃之间的温度下退火所述衬底;以及去除所述牺牲阻挡层。
应当理解,具体实施方式而不是本发明的摘要部分旨在用于解释权利要求。本发明的摘要部分可以阐述发明人所预期的本发明的一个或多个但不是所有可能的实施例,并且因此,并不旨在以任何方式限制所附权利要求。
上面概述了若干实施例的特征,使得本领域人员可以更好地理解本发明的方面。本领域人员应该理解,它们可以容易地使用本发明作为基础,来设计或修改用于实施与本文所介绍实施例相同的目的和/或实现相同优势的其它工艺和结构。本领域技术人员也应该意识到,这种等同构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,本文中它们可以做出多种变化、替换以及改变。

Claims (10)

1.一种晶体管结构制造方法,包括:
在衬底上形成鳍;
在所述鳍上形成栅极介电堆叠件,其中,所述栅极介电堆叠件包括设置在界面介电层上的高k介电层;
将所述高k介电层浸在氟基气体中;以及
在所述高k介电层上沉积覆盖层。
2.根据权利要求1所述的方法,其中,所述氟基气体包括氟气(F2)、三氟化氮(NF3)、三氟甲烷(CHF3)、四氟甲烷(CF4)、六氟化硫(SF6)、六氟乙烷(C2F6)或它们的组合。
3.根据权利要求1所述的方法,其中,将所述高k介电层浸在所述氟基气体中包括在约70℃和约950℃之间的温度下加热所述衬底。
4.根据权利要求1所述的方法,其中,将所述高k介电层浸在所述氟基气体中包括在约0.5Torr和约150Torr之间的环境压力下浸渍所述高k介电层。
5.根据权利要求1所述的方法,还包括:
在所述覆盖层上沉积功函层;以及
将所述功函层浸在所述氟基气体中。
6.根据权利要求5所述的方法,其中,在沉积所述功函层之前:
在所述覆盖层上沉积阻挡层;以及
在约70℃和约950℃之间的温度下将所述阻挡层浸在所述氟基气体中。
7.根据权利要求6所述的方法,还包括:
在所述阻挡层上沉积牺牲阻挡层;
在约70℃和约550℃之间的温度下退火所述衬底;以及
去除所述牺牲阻挡层。
8.根据权利要求1所述的方法,其中,在沉积所述覆盖层之前:
在所述高k介电层上沉积牺牲阻挡层;
在约70℃和约550℃之间的温度下退火所述衬底;以及
去除所述牺牲阻挡层。
9.一种晶体管结构,包括:
衬底;
鳍,位于所述衬底上;
栅极介电堆叠件,位于所述鳍上,其中,所述栅极介电堆叠件包括:
界面介电层;以及
高k介电层,位于所述界面介电层上,其中,所述高k介电层的氟浓度介于约0.01原子%和约35原子%之间;以及
一个或多个功函层,位于所述栅极介电堆叠件上。
10.一种晶体管结构制造方法,包括:
在设置在衬底上的鳍上形成界面电介质;
在所述界面电介质上沉积高k介电层;
在所述高k介电层上沉积一个或多个功函层;
将所述衬底加热至介于约70℃和约950℃之间的温度;以及
将所述一个或多个功函层中的至少一个功函层浸在氟基气体中,同时加热所述衬底。
CN201910885457.8A 2018-09-26 2019-09-19 晶体管结构及其制造方法 Active CN110957358B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862736766P 2018-09-26 2018-09-26
US62/736,766 2018-09-26
US16/376,432 US11088029B2 (en) 2018-09-26 2019-04-05 Gate stack treatment
US16/376,432 2019-04-05

Publications (2)

Publication Number Publication Date
CN110957358A true CN110957358A (zh) 2020-04-03
CN110957358B CN110957358B (zh) 2024-02-06

Family

ID=69725329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910885457.8A Active CN110957358B (zh) 2018-09-26 2019-09-19 晶体管结构及其制造方法

Country Status (5)

Country Link
US (3) US11088029B2 (zh)
KR (1) KR102263322B1 (zh)
CN (1) CN110957358B (zh)
DE (1) DE102019109861A1 (zh)
TW (1) TWI744690B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417517B2 (en) 2019-05-03 2022-08-16 Applied Materials, Inc. Treatments to enhance material structures
US11462626B2 (en) * 2019-10-29 2022-10-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of manufacture
US11264478B2 (en) 2019-10-31 2022-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with reduced defect and methods forming same
US11437240B2 (en) 2020-08-05 2022-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor gate structure and method of forming
US11437474B2 (en) 2020-08-17 2022-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structures in transistors and method of forming same
KR102634254B1 (ko) * 2020-11-18 2024-02-05 어플라이드 머티어리얼스, 인코포레이티드 반도체 구조를 형성하는 방법 및 이의 처리 시스템
US20230066477A1 (en) * 2021-08-31 2023-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structures in transistors and method of forming same
US20230253209A1 (en) * 2022-02-09 2023-08-10 Nanya Technology Corporation Semiconductor device with protection layer and method for fabricating the same
US20230253210A1 (en) * 2022-02-09 2023-08-10 Nanya Technology Corporation Semiconductor device with protection layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077547A1 (en) * 2003-09-29 2005-04-14 Reiner Jumpertz Method of fabricating a metal oxide semiconductor field effect transistor and a metal oxide semiconductor field effect transistor
US20080135984A1 (en) * 2006-12-12 2008-06-12 Yong-Ho Oh Semiconductor device
US20130017678A1 (en) * 2011-07-15 2013-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of anneal after deposition of gate layers
CN106711034A (zh) * 2015-08-31 2017-05-24 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN106972049A (zh) * 2015-12-15 2017-07-21 台湾积体电路制造股份有限公司 半导体装置的制造方法
CN107564863A (zh) * 2016-06-30 2018-01-09 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319295B2 (en) 2007-01-10 2012-11-27 Imec Use of F-based gate etch to passivate the high-k/metal gate stack for deep submicron transistor technologies
CN103681276B (zh) * 2012-09-18 2016-08-31 中芯国际集成电路制造(上海)有限公司 金属栅极、mos晶体管及cmos结构分别的形成方法
US9978601B2 (en) * 2015-10-20 2018-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for pre-deposition treatment of a work-function metal layer
US9502307B1 (en) * 2015-11-20 2016-11-22 International Business Machines Corporation Forming a semiconductor structure for reduced negative bias temperature instability
US10580643B2 (en) * 2016-02-16 2020-03-03 Applied Materials, Inc. Fluorination during ALD high-k, fluorination post high-k and use of a post fluorination anneal to engineer fluorine bonding and incorporation
CN107170683A (zh) 2016-03-08 2017-09-15 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管的形成方法
KR102553260B1 (ko) * 2016-08-03 2023-07-07 삼성전자 주식회사 집적회로 소자 및 그 제조 방법
US10522344B2 (en) * 2017-11-06 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuits with doped gate dielectrics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077547A1 (en) * 2003-09-29 2005-04-14 Reiner Jumpertz Method of fabricating a metal oxide semiconductor field effect transistor and a metal oxide semiconductor field effect transistor
US20080135984A1 (en) * 2006-12-12 2008-06-12 Yong-Ho Oh Semiconductor device
US20130017678A1 (en) * 2011-07-15 2013-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of anneal after deposition of gate layers
CN106711034A (zh) * 2015-08-31 2017-05-24 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN106972049A (zh) * 2015-12-15 2017-07-21 台湾积体电路制造股份有限公司 半导体装置的制造方法
CN107564863A (zh) * 2016-06-30 2018-01-09 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法

Also Published As

Publication number Publication date
TW202013441A (zh) 2020-04-01
TWI744690B (zh) 2021-11-01
US11088029B2 (en) 2021-08-10
KR102263322B1 (ko) 2021-06-15
US20230268231A1 (en) 2023-08-24
US20200098640A1 (en) 2020-03-26
US11670553B2 (en) 2023-06-06
US20210366778A1 (en) 2021-11-25
DE102019109861A1 (de) 2020-03-26
CN110957358B (zh) 2024-02-06
KR20200035837A (ko) 2020-04-06

Similar Documents

Publication Publication Date Title
CN110957358B (zh) 晶体管结构及其制造方法
CN111128737B (zh) 制造半导体器件的方法和半导体器件
US11011433B2 (en) NMOS and PMOS transistor gates with hafnium oxide layers and lanthanum oxide layers
CN111261522B (zh) 制造半导体器件的方法和半导体器件
EP3179507A2 (en) High-k metal gate transistor structure and fabrication method thereof
US11742395B2 (en) Selective etching to increase threshold voltage spread
TW201715583A (zh) 半導體裝置及其製造方法
CN106992154B (zh) 半导体器件及其制造方法
US20210375629A1 (en) Dipole-Engineered High-K Gate Dielectric and Method Forming Same
US20220181463A1 (en) Transistors with Reduced Defect and Methods of Forming Same
KR20170128170A (ko) 삽입 층을 구비한 반도체 구조체 및 이를 제조하는 방법
US20240063061A1 (en) In-situ formation of metal gate modulators
US11532509B2 (en) Selective hybrid capping layer for metal gates of transistors
TWI777390B (zh) 半導體元件及其形成方法
US20220367261A1 (en) Selective Hybrid Capping Layer for Metal Gates of Transistors
TW202215602A (zh) 製造半導體裝置的方法
KR20230009808A (ko) 반도체 디바이스의 게이트 구조체 및 그 형성 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant