CN110937893B - 一种提高热释电复合陶瓷材料能量密度的方法 - Google Patents

一种提高热释电复合陶瓷材料能量密度的方法 Download PDF

Info

Publication number
CN110937893B
CN110937893B CN201911154752.2A CN201911154752A CN110937893B CN 110937893 B CN110937893 B CN 110937893B CN 201911154752 A CN201911154752 A CN 201911154752A CN 110937893 B CN110937893 B CN 110937893B
Authority
CN
China
Prior art keywords
pyroelectric
ceramic material
composite ceramic
composite
energy density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911154752.2A
Other languages
English (en)
Other versions
CN110937893A (zh
Inventor
沈孟
姜胜林
张光祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Original Assignee
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Shenzhen Huazhong University of Science and Technology Research Institute filed Critical Huazhong University of Science and Technology
Priority to CN201911154752.2A priority Critical patent/CN110937893B/zh
Publication of CN110937893A publication Critical patent/CN110937893A/zh
Application granted granted Critical
Publication of CN110937893B publication Critical patent/CN110937893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于热释电能量收集领域,更具体地,涉及一种提高热释电复合陶瓷材料能量密度的方法。本发明提供了一种提高热释电复合陶瓷材料能量密度的方法,其通过在热释电陶瓷材料中引入高热导率半导体材料,利用半导体材料的电荷补偿效应来调控自由电荷的传输从而提高复合陶瓷材料的热释电系数,同时半导体材料的高热导率提升了复合陶瓷的温度变化率,从而提高该复合陶瓷材料的能量密度,由此解决现有技术制备表面形状复杂的热释电陶瓷工艺复杂,成本高,难以与无源器件的应用需求相兼容等的技术问题。

Description

一种提高热释电复合陶瓷材料能量密度的方法
技术领域
本发明属于热释电能量收集领域,更具体地,涉及一种提高热释电复合陶瓷材料能量密度的方法。
背景技术
热释电能量收集能够将环境中广泛存在的废热转换为电能,供电于可穿戴电子设备、植入性医疗器械、无源传感器等。热释电能量收集一个周期输出的能量密度表达式如下:
Figure BDA0002284503020000011
其中,A,d,R,p,dT/dt分别为热释电陶瓷的电极面积,厚度,负载电阻值,热释电系数,温度变化率。由于A,d,R为确定值,热释电能量密度的大小取决于热释电系数及温度变化率。
为提升热释电能量收集的能量密度,一方面,国内外学者通过在热释电陶瓷中构建准同型相界、铁电-反铁电相变、极性纳米微区等来提升陶瓷的热释电系数;另一方面,研究者将热释电陶瓷表面制备成网孔状、条状、带状、涡旋状等复杂的形状来提升其温度变化率。然而,制备表面形状复杂的热释电陶瓷工艺复杂,成本高,难以与无源器件的应用需求相兼容。因此,提高热释电陶瓷能量密度的关键在于开发出同时具有高热释电系数及温度变化率的铁电材料。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种提高热释电复合陶瓷材料能量密度的方法,其通过在热释电复合陶瓷材料中引入高热导率第二相物质,利用第二相物质的电荷补偿效应来调控自由电荷的传输从而提高该复合陶瓷材料的热释电系数,同时第二相物质的高热导率提升了复合陶瓷的温度变化率,从而提高该复合陶瓷材料的能量密度,由此解决现有技术制备表面形状复杂的热释电陶瓷工艺复杂,成本高,难以与无源器件的应用需求相兼容等的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种提高热释电复合陶瓷材料能量密度的方法,在热释电复合陶瓷材料中引入第二相物质,该第二相物质的热导率大于25W m-1-1,且具有电荷补偿效应;利用该第二相物质的电荷补偿效应加快所述热释电复合陶瓷材料自由电荷的传输来提高该复合陶瓷材料的热释电系数,同时该第二相物质的高热导率能够提升该复合陶瓷材料的温度变化率,从而使得该复合陶瓷材料的能量密度提升。
优选地,所述的方法,包括如下步骤:
(1)将热释电复合陶瓷材料与第二相物质以粉体形式充分混合,得到粉体混合物;
(2)将步骤(1)获得的粉体混合物烘干后过筛,造粒、压片并制成陶瓷坯体;
(3)将步骤(2)得到的陶瓷坯体进行烧结,冷却后得到能量密度提高的热释电陶瓷复合材料。
优选地,所述热释电复合陶瓷材料为0.94Na0.56-xBi0.48+x/3TiO3-0.06BaZr0.2Ti0.8O3,其中0≤x≤0.1。
优选地,所述粉体混合物中第二相物质的质量百分数不大于0.3%。
优选地,所述第二相物质为氮化铝、氧化锌、碳化硅和氮化镓中的一种或多种。
优选地,步骤(1)将热释电复合陶瓷材料与第二相物质以粉体形式采用球磨混合,球磨4~6小时,得到所述粉体混合物。
优选地,步骤(3)所述烧结程序为:以2.5~4℃/min升温到550~600℃保温1~2小时,然后以8~10℃/min升温到1100~1130℃保温2~4小时,随炉冷却至室温。
按照本发明的另一个方面,提供了一种按照所述的提高热释电复合陶瓷材料能量密度的方法获得的热释电陶瓷复合材料。
优选地,所述热释电陶瓷复合材料在室温下的热导率范围为1.56~1.91W m-1K-1,峰值热释电系数范围为250~900×10-4C m-2K-1,热释电能量密度范围为60~420μJ cm-3
按照本发明的另一个方面,提供了一种所述的热释电陶瓷复合材料的应用,用于制备热释电能量收集器件。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明提供了一种提高热释电复合陶瓷材料能量密度的方法,其通过在热释电复合陶瓷材料中引入高热导率半导体材料,利用半导体材料的电荷补偿效应来调控自由电荷的传输从而提高该复合陶瓷材料的热释电系数,同时半导体的高热导率提升了复合陶瓷的温度变化率,从而提高该复合陶瓷材料的能量密度。
(2)本发明在BNT-BZT热释电陶瓷中引入AlN调控自由电荷的传输来获得高热释电系数p,同时高热导率AlN提升了复合陶瓷的温度变化率,以获得能量密度提高的无铅热释电复合陶瓷材料。
(3)本发明制备的BNT-BZT:AlN复合陶瓷的优点在于:BNT-BZT陶瓷具有较高的热释电系数,AlN具有较高的热导率。为解决现有陶瓷热释电系数可观然热导率低的问题,本发明将高热释电系数的BNT-BZT陶瓷与高热导率AlN复合,获得高热导率复合热释电陶瓷,其热导率由1.56W m-1K-1提升到1.91W m-1K-1
(4)本发明制备的复合陶瓷的优点在于:AlN的引入不仅提升了复合陶瓷的热导率,同时进一步提升了复合陶瓷的热释电系数,获得了高热释电系数的复合陶瓷,其峰值热释电系数由250×10-4C m-2K-1提升到900×10-4C m-2K-1
(5)本发明提供了一种简单有效的提升热释电陶瓷能量密度的方法。从热释电能量密度的表达式可知,复合BNT-BZT:AlN热释电陶瓷兼具了热释电系数高、热导率高的优点,获得了高热释电能量密度,所得样品的能量密度由60μJ cm-3提升到420μJ cm-3,这对热释电陶瓷在能量收集方向的应用具有重要价值。
(6)本发明的制备方法中,首先采用固相法制备BNT-BZT铁电陶瓷基体,其烧结温度范围:1150℃~1180℃,保温2~3小时。第二步采用复合的方法,以BNT-BZT陶瓷粉体以基体,以AlN粉体为第二相进行复合,两相复合中的烧结温度范围为:1100℃~1130℃,保温2~3小时。两相复合中合适的烧结工艺有效实现了BNT-BZT铁电基体与AlN共存,抑制了两相的扩散,获得热释电能量密度显著提升的复合陶瓷。
附图说明
图1:本发明实施例1BNT-BZT:0.25wt%AlN热释电复合陶瓷的背散射图以及元素分布图。(a)为本实施例制得的BNT-BZT:0.25wt%AlN热释电复合陶瓷的背散射图,(b)、(c)、(d)、(e)和(f)分别为该复合陶瓷材料中Al、O、Bi、Na和Ti元素的元素分布图。
图2:本发明对比例1及实施例1至实施例4热释电复合陶瓷的热导率示意图。
图3:本发明对比例1及实施例1至实施例4热释电复合陶瓷的热释电系数示意图。
图4:本发明对比例1及实施例1至实施例4热释电复合陶瓷的能量收集电流示意图。
图5:本发明对比例1及实施例1至实施例4热释电复合陶瓷的能量密度示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的一种提升热释电复合陶瓷材料能量密度的方法,其在热释电复合材料中引入第二相物质,该第二相物质的热导率大于25W m-1℃-1且具有电荷补偿效应。利用该第二相物质的电荷补偿效应来调控自由电荷的传输从而提高该复合陶瓷材料的热释电系数,同时该第二相物质的高热导率提升了复合陶瓷材料的温度变化率,从而使得该复合陶瓷材料的能量密度提升。
一些实施例中,该方法包括如下步骤:
(1)将热释电复合陶瓷材料与第二相物质以粉体形式充分混合,得到粉体混合物;
(2)将步骤(1)获得的粉体混合物烘干后过筛,造粒、压片并制成陶瓷坯体;
(3)将步骤(2)得到的陶瓷坯体进行烧结,冷却后得到能量密度提高的热释电陶瓷复合材料。
一些实施例中,所述第二相物质为氮化铝(其热导率为140~180W m-1-1)、氧化锌、碳化硅和氮化镓中的一种或多种。
一些实施例中,本发明所述的热释电复合陶瓷材料基体材料为0.94Na0.56- xBi0.48+x/3TiO3-0.06BaZr0.2Ti0.8O3(BNT-BZT);其中x为摩尔百分比,0≤x≤0.1。该热释电复合陶瓷材料基体材料,可通过如下方法制备得到:
a、按照0.94Na0.56-xBi0.48+x/3TiO3-0.06BaZr0.2Ti0.8O3化学计量比将Na2CO3、Bi2O3、TiO2、BaCO3、ZrO2原料粉体进行混合,球磨4~6小时,使之混合均匀;其中0≤x≤0.1。
b、将步骤a中球磨均匀的粉体烘干后,在850~900℃条件下预烧2~3小时;
c、将步骤b中煅烧好的材料球磨4~6小时得到陶瓷粉体;
d、将步骤c中的陶瓷粉体烘干,过筛,加入粘结剂,造粒,过筛,成型,得到陶瓷坯体;
e、将步骤d中的陶瓷坯体在空气中进行烧结:以2.5~4℃/min升温到600℃保温1小时,然后以2.5~4℃/min升温到1150~1180℃保温2~4小时,随炉冷却至室温;
f、将步骤e中的热释电陶瓷粉碎,球磨12~16小时,过水筛,烘干,即得热释电基体材料0.94Na0.56-xBi0.48+x/3TiO3-0.06BaZr0.2Ti0.8O3
一些实施例中,步骤f中的过水筛为过300目筛。
本发明所述粉体混合物中引入的第二相物质的质量不宜过大,一些实施例中,所述粉体混合物中第二相物质的质量百分数不大于0.3%。
一些实施例中,上述步骤(1)将热释电复合陶瓷材料与第二相物质以粉体形式采用球磨混合,球磨4~6小时,得到所述粉体混合物。
一些实施例中,步骤(2)中将步骤(1)得到的粉体混合物烘干,过筛,加入粘结剂,造粒,压片,冷等静压,得到陶瓷坯体。
本发明所述的球磨为湿法球磨,一些实施例中,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8~4:1.5:1,所述球磨介质为锆球。
一些实施例中,步骤d和步骤(2)所述的过筛为过60目筛。
本发明一些实施例中,所述的粘结剂是质量分数为4%~6%的聚乙烯醇水溶液,所述聚乙烯醇水溶液的加入量是陶瓷粉体质量的8%~10%。
本发明一些实施例中,步骤(2)中冷等静压的压力为100~150MPa,保压时间为120~180秒。
一些实施例中,步骤(3)所述烧结程序为:以2.5~4℃/min升温到550~600℃保温1~2小时,然后以8~10℃/min升温到1100~1130℃保温2~4小时,随炉冷却至室温。
本发明所述的第二相材料可以为具有电荷补偿效应的高热导率半导体材料,例如AlN(140~180W m-1℃-1)、ZnO(29W m-1℃-1)、SiC(180~220W m-1-1)、GaN(260~429W m-1℃-1),利用第二相半导体的电荷补偿效应来调控自由电荷的传输提升该复合陶瓷材料的热释电系数,同时半导体的高热导率提升了复合陶瓷的温度变化率,从而提高该复合陶瓷材料的能量密度。本发明还提供了按照所述的方法制得的热释电陶瓷复合材料。
一些实施例中,所述第二相物质为AlN,对应制得的所述复合陶瓷材料的化学组成为:(1-t)0.94Na0.5Bi0.5TiO3-0.06BaTi0.8Zr0.2O3:tAlN(BNT-BZT:tAlN),其中t为质量百分数,0≤t≤0.3%。本发明所述的能量密度提高的热释电复合陶瓷材料的热释电性能优异且具有高热导率,有望应用于热释电能量收集等领域。经过极化后的该热释电复合陶瓷材料在室温下的热导率范围为1.56~1.91W m-1K-1,峰值热释电系数范围为250~900×10-4C m- 2K-1,热释电能量密度范围为:60~420μJ cm-3。例如当x=0.25wt%时,BNT基陶瓷材料具有优异的热导率1.91W m-1K-1,高峰值热释电系数900×10-4C m-2K-1,高能量密度420μJ cm-3
本发明通过设计(1-t)0.94Na0.5Bi0.5TiO3-0.06BaTi0.8Zr0.2O3:tAlN的组分,来获得高热释电系数、高温度变化率的BNT基无铅热释电复合材料,从而提升其热释电能量密度,以满足热释电能量收集器件的应用需求。
以下为实施例:
实施例1:
(1)BNT-BZT热释电基体材料的制备
a、按照0.94Na0.5Bi0.5TiO3-0.06BaTi0.8Zr0.2O3化学计量比,称取1mol量0.94Na0.5Bi0.5TiO3-0.06BaTi0.8Zr0.2O3所需Na2CO3(24.96g)、Bi2O3(110.61g)、TiO2(80.52g)、BaCO3(11.90g)、ZrO2(1.49g)原料进行混合,用湿法球磨工艺使其原材料混合均匀,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8,球磨时间6小时。球磨介质为锆球。
b、将步骤a中球磨均匀的粉体烘干后,在850℃条件下预烧2小时;
c、将步骤b中煅烧好的材料球磨6小时得到陶瓷粉体;
d、将步骤c中的陶瓷粉体烘干,过60目筛,加入陶瓷粉体质量的10%粘结剂,粘结剂是质量分数为4%~6%的聚乙烯醇水溶液,造粒,过筛,预压成型,得到陶瓷坯体;
e、将步骤d中的陶瓷坯体在空气中进行烧结:以3.3℃/min升温到600℃保温1小时排胶,然后以2.5℃/min升温到1180℃保温2小时,随炉冷却至室温;
f、将步骤e中的热释电陶瓷粉碎,用湿法球磨工艺使其原材料混合均匀,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8,球磨时间12小时。球磨介质为锆球。过300目水筛,烘干,即得热释电基体材料。
(2)热释电复合陶瓷的制备
a、将步骤(1)中所得BNT-BZT基体材料与高热导率AlN粉体按照质量比99.75:0.25进行混合,用湿法球磨工艺使其原材料混合均匀,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8,球磨时间6小时。球磨介质为锆球。
b、将步骤a中混合均匀的粉体烘干,过筛,加入陶瓷粉体质量的10%粘结剂,粘结剂是质量分数为4%~6%的聚乙烯醇水溶液,造粒,压片,冷等静压成型,得到陶瓷坯体;
c、将步骤b中的陶瓷坯体在空气中进行烧结:以3.3℃/min升温到600℃保温1小时排胶,然后以8℃/min升温到1130℃保温2小时,随炉冷却至室温,即得到热释电复合陶瓷。
图1为本实施例制得的BNT-BZT:0.25wt%AlN热释电复合陶瓷的背散射图以及元素分布图。图1中(a)为本实施例制得的BNT-BZT:0.25wt%AlN热释电复合陶瓷的背散射图,(b)、(c)、(d)、(e)和(f)分别为该复合陶瓷材料中Al、O、Bi、Na和Ti元素的元素分布图。
将烧结好的复合陶瓷样品加工成所需尺寸,测试其热导率,测试结果如图2。
同时将烧结好的复合陶瓷样品加工成所需的尺寸,丝网印刷银浆,烘干,在600℃下保温30分钟。在室温下加4kV/mm的直流电压极化20分钟后,测试样品的热释电系数、能量收集的电流、能量密度,测试结果如图3、图4和图5。
实施例2:
a、将实施例1中所得BNT-BZT基体材料与高热导率AlN粉体按照质量比99.85:0.15进行混合,用湿法球磨工艺使其原材料混合均匀,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8,球磨时间6小时。球磨介质为锆球。
b、将步骤a中混合均匀的粉体烘干,过筛,加入陶瓷粉体质量的10%粘结剂,粘结剂是质量分数为4%~6%的聚乙烯醇水溶液,造粒,压片,冷等静压成型,得到陶瓷坯体;
c、将步骤b中的陶瓷坯体在空气中进行烧结:以3.3℃/min升温到600℃保温1小时排胶,然后以8℃/min升温到1130℃保温2小时,随炉冷却至室温,即得到热释电复合陶瓷。
将烧结好的复合陶瓷样品按实施例1中的条件测试其热导率、热释电系数、能量收集电流、能量密度,测试结果如图2、3、4、5。
实施例3:
a、将实施例1中所得BNT-BZT基体材料与高热导率AlN粉体按照质量比99.80:0.20进行混合,用湿法球磨工艺使其原材料混合均匀,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8,球磨时间6小时。球磨介质为锆球。
b、将步骤a中混合均匀的粉体烘干,过筛,加入陶瓷粉体质量的10%粘结剂,粘结剂是质量分数为4%~6%的聚乙烯醇水溶液,造粒,压片,冷等静压成型,得到陶瓷坯体;
c、将步骤b中的陶瓷坯体在空气中进行烧结:以3.3℃/min升温到600℃保温1小时排胶,然后以8℃/min升温到1130℃保温2小时,随炉冷却至室温,即得到热释电复合陶瓷。
将烧结好的复合陶瓷样品按实施例1中的条件测试其热导率、热释电系数、能量收集电流、能量密度,测试结果如图2、3、4、5。
实施例4:
a、将实施例1中所得BNT-BZT基体材料与高热导率AlN粉体按照质量比99.70:0.30进行混合,用湿法球磨工艺使其原材料混合均匀,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8,球磨时间6小时。球磨介质为锆球。
b、将步骤a中混合均匀的粉体烘干,过筛,加入陶瓷粉体质量的10%粘结剂,粘结剂是质量分数为4%~6%的聚乙烯醇水溶液,造粒,压片,冷等静压成型,得到陶瓷坯体;
c、将步骤b中的陶瓷坯体在空气中进行烧结:以3.3℃/min升温到600℃保温1小时排胶,然后以8℃/min升温到1130℃保温2小时,随炉冷却至室温,即得到热释电复合陶瓷。
将烧结好的复合陶瓷样品按实施例1中的条件测试其热导率、热释电系数、能量收集电流、能量密度,测试结果如图2、3、4、5。
对比例1:
a、将实施例1中所得BNT-BZT基体材料用湿法球磨工艺球磨6小时,球磨介质、球磨料、无水乙醇的质量比为4:1:0.8,球磨介质为锆球。
b、将步骤a中混合均匀的粉体烘干,过筛,加入陶瓷粉体质量的10%粘结剂,粘结剂是质量分数为4%~6%的聚乙烯醇水溶液,造粒,压片,冷等静压成型,得到陶瓷坯体;
c、将步骤b中的陶瓷坯体在空气中进行烧结:以3.3℃/min升温到600℃保温1小时排胶,然后以8℃/min升温到1130℃保温2小时,随炉冷却至室温,即得到热释电复合陶瓷。
将烧结好的复合陶瓷样品按实施例1中的条件测试其热导率、热释电系数、能量收集电流、能量密度,测试结果如图2、3、4、5。
结果分析:
根据实施例1至实施例4及对比例1中所得样品的测试结果图1-5可知,其中,图1至图5涉及到的样品中,A1为对比例1制得的陶瓷材料样品;A2、A3、A4和A5分别对应实施例2、实施例3、实施例1和实施例4制备得到的复合陶瓷材料样品,且对比例1、实施例1、实施例2、实施例3和实施例4制备得到的复合陶瓷材料中AlN的添加量分别为0、0.25wt%、0.15wt%、0.20wt%和0.30wt%。本发明的热释电复合陶瓷材料具有以下特点:
(1)图1中的BNT-BZT:0.25wt%AlN热释电复合陶瓷的背散射图以及元素分布图表明:复合陶瓷存在BNT-BZT和AlN两种晶粒,AlN位于BNT-BZT陶瓷晶界位置,两相分布均匀。
(2)图2中对比例1与实施例1至实施例4陶瓷样品的热导率曲线表明:适量引入AlN,有助于复合陶瓷的热导率的提升。
(3)图3中对比例1与实施例1至实施例4陶瓷样品的热释电系数曲线表明:适量引入AlN,复合陶瓷的热释电系数提升显著,同时热释电系数峰值的温度有所偏移。
(4)图4、图5中对比例1与实施例1至实施例4陶瓷样品的能量收集电流与能量密度曲线表面:适量引入AlN,复合陶瓷的能量收集的电流与能量密度提升显著,能量密度提升6倍。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种提高热释电复合陶瓷材料能量密度的方法,其特征在于,在热释电复合陶瓷材料中引入第二相物质,该第二相物质的热导率大于25W m-1-1,且具有电荷补偿效应;所述热释电复合陶瓷材料为0.94Na0.56-xBi0.48+x/3TiO3-0.06BaZr0.2Ti0.8O3,其中0≤x≤0.1;所述第二相物质为氮化铝、氧化锌、碳化硅和氮化镓中的一种或多种;热释电复合陶瓷材料和第二相物质的粉体混合物中第二相物质的质量百分数不大于0.3%;利用该第二相物质的电荷补偿效应加快所述热释电复合陶瓷材料自由电荷的传输来提高该复合陶瓷材料的热释电系数,同时该第二相物质的高热导率能够提升该复合陶瓷材料的温度变化率,从而使得该复合陶瓷材料的能量密度提升。
2.如权利要求1所述的方法,其特征在于,包括如下步骤:
(1)将热释电复合陶瓷材料与第二相物质以粉体形式充分混合,得到粉体混合物;
(2)将步骤(1)获得的粉体混合物烘干后过筛,造粒、压片并制成陶瓷坯体;
(3)将步骤(2)得到的陶瓷坯体进行烧结,冷却后得到能量密度提高的热释电陶瓷复合材料。
3.如权利要求2所述的方法,其特征在于,步骤(1)将热释电复合陶瓷材料与第二相物质以粉体形式采用球磨混合,球磨4~6小时,得到所述粉体混合物。
4.如权利要求2所述的方法,其特征在于,步骤(3)所述烧结程序为:以2.5~4℃/min升温到550~600℃保温1~2小时,然后以8~10℃/min升温到1100~1130℃保温2~4小时,随炉冷却至室温。
5.按照如权利要求1至4任一项所述的提高热释电复合陶瓷材料能量密度的方法获得的热释电陶瓷复合材料。
6.如权利要求5所述的热释电陶瓷复合材料,其特征在于,其在室温下的热导率范围为1.56~1.91W m-1K-1,峰值热释电系数范围为250~900×10-4Cm-2K-1,热释电能量密度范围为60~420μJ cm-3
7.如权利要求5所述的热释电陶瓷复合材料的应用,其特征在于,用于制备热释电能量收集器件。
CN201911154752.2A 2019-11-22 2019-11-22 一种提高热释电复合陶瓷材料能量密度的方法 Active CN110937893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911154752.2A CN110937893B (zh) 2019-11-22 2019-11-22 一种提高热释电复合陶瓷材料能量密度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911154752.2A CN110937893B (zh) 2019-11-22 2019-11-22 一种提高热释电复合陶瓷材料能量密度的方法

Publications (2)

Publication Number Publication Date
CN110937893A CN110937893A (zh) 2020-03-31
CN110937893B true CN110937893B (zh) 2020-11-24

Family

ID=69907899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911154752.2A Active CN110937893B (zh) 2019-11-22 2019-11-22 一种提高热释电复合陶瓷材料能量密度的方法

Country Status (1)

Country Link
CN (1) CN110937893B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592351B (zh) * 2020-05-21 2021-08-06 中南大学 一种热释电材料的应用
CN112250143A (zh) * 2020-10-22 2021-01-22 东南大学 一种基于相变的热释电效应降解有机染料的方法
CN114133239B (zh) * 2021-10-29 2022-09-06 湖北大学 一种无铅热释电陶瓷材料及其制备方法
CN115057703A (zh) * 2022-06-20 2022-09-16 南京理工大学 一种反铁电体与GaN半导体组成的复合陶瓷及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298670C (zh) * 2004-11-02 2007-02-07 清华大学 钛酸铋钠-锆钛酸钡无铅压电陶瓷及其制备方法
JP4756312B2 (ja) * 2004-11-15 2011-08-24 株式会社豊田中央研究所 異方形状粉末及びその製造方法、並びに、結晶配向セラミックスの製造方法
CN1884196A (zh) * 2006-06-02 2006-12-27 中国科学院上海硅酸盐研究所 锆钛酸铅/碳化硅复合陶瓷材料及其制备方法
CN102199036A (zh) * 2011-02-25 2011-09-28 武汉理工大学 一种击穿强度高的储能陶瓷的制备方法
CN103979954A (zh) * 2014-05-13 2014-08-13 哈尔滨工业大学 一种AlN改性具有高压电和高力学性能的钛酸钡基复合陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN110937893A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN110937893B (zh) 一种提高热释电复合陶瓷材料能量密度的方法
JP7412019B2 (ja) 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN112110740B (zh) 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品
CN105967674A (zh) 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
CN113307619A (zh) 一种铁酸铋-钛酸铅-铌镁酸铋三元体系高温压电陶瓷的制备方法
CN115073169A (zh) 一种高能量低损耗的(1-x)NBT-SBT-xBKT无铅陶瓷材料及其制备方法
CN110759732A (zh) 一种选择合适铌酸钾钠基压电陶瓷烧结气氛的方法及陶瓷制备工艺
CN102167585A (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN110981467B (zh) 一种无铅热释电复合陶瓷材料及其制备方法
CN104788093B (zh) 一种0.94Bi0.5Na0.5TiO3-0.06BaTiO3无铅压电陶瓷的制备方法
CN102815941B (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN107903055A (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
KR101470322B1 (ko) 고강도 질화알루미늄 소결체 및 이의 저온 소결방법
KR20130086093A (ko) 무연 압전 세라믹스 조성물
CN109592983A (zh) 一种高热导液相烧结碳化硅陶瓷及其制备方法
CN102815945A (zh) 锆酸镧钆透明陶瓷材料及其制备方法
CN114276128B (zh) 一种降低铁酸铋-钛酸钡压电陶瓷漏电流以及提高其高温电阻率的方法
KR101436468B1 (ko) 고강도 질화알루미늄(AlN) 소결체 및 이의 저온 소결방법
CN113683410A (zh) 具有负电卡效应的钛酸铋基铋层状结构无铅压电陶瓷及其制备方法
CN101913857A (zh) 一种高梯度高介电低损耗压敏材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant