CN110872369A - 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置 - Google Patents

一种抗菌性光固化3d打印材料及其制备方法和3d打印装置 Download PDF

Info

Publication number
CN110872369A
CN110872369A CN201811014123.5A CN201811014123A CN110872369A CN 110872369 A CN110872369 A CN 110872369A CN 201811014123 A CN201811014123 A CN 201811014123A CN 110872369 A CN110872369 A CN 110872369A
Authority
CN
China
Prior art keywords
antibacterial
printing material
printing
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811014123.5A
Other languages
English (en)
Other versions
CN110872369B (zh
Inventor
崔可建
李屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Appotronics Corp Ltd
YLX Inc
Original Assignee
Appotronics Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appotronics Corp Ltd filed Critical Appotronics Corp Ltd
Priority to CN201811014123.5A priority Critical patent/CN110872369B/zh
Priority to CN202111046122.0A priority patent/CN113651933A/zh
Priority to PCT/CN2019/086934 priority patent/WO2020042669A1/zh
Publication of CN110872369A publication Critical patent/CN110872369A/zh
Application granted granted Critical
Publication of CN110872369B publication Critical patent/CN110872369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • C08F299/028Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight photopolymerisable compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0407Processes of polymerisation
    • C08F299/0421Polymerisation initiated by wave energy or particle radiation
    • C08F299/0428Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • C08K5/08Quinones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明提供了一种抗菌性光固化3D打印材料,所述材料包括以下重量份的组分:生物相容低聚物/单体100重量份,超分子光引发体系0.05‑5重量份,抗菌剂5‑30重量份,助剂1‑20重量份,其中所述超分子光引发体系为在可见光波段的光辐射下具有活性的超分子化合物。

Description

一种抗菌性光固化3D打印材料及其制备方法和3D打印装置
技术领域
本发明涉及一种抗菌性光固化3D打印材料及其制备方法和3D打印装置,属于3D打印应用技术领域。具体涉及一种具有抗菌性的可见光固化3D打印材料及其制备方法和打印该材料的3D打印装置。
背景技术
3D打印(3D Printing),又称增材制造(Additive Manufacturing),是一项新兴的快速成型(Rapid Prototyping Manufacturing)技术,具有成型效率高、材料成本低、可制备复杂结构等优点,独特的制造优势使其受到了各领域极大青睐,被誉为第三次工业革命的标志。3D打印技术涉及多种成型方式,其中基于光固化成型原理,以光固化树脂为原料的打印技术主要有立体光刻(SLA)、数字光处理(DLP)和三维喷墨打印(3DSP)三种。与其他成型方式相比,光固化3D打印成型具有成型精度高、打印速度快及工艺成熟等优点,目前被广泛应用于产品设计、模具制造、科学研究、文化创意、医疗等众多领域。
随着3D打印技术应用的不断拓展,3D打印产品已广泛进入人们的生活。在现代高度文明的社会中,人们对于生活用品是否环保和是否有害健康有着极大重视,开发具有抗菌性能的3D打印材料非常重要。在医疗领域,许多医疗用品和设备都很容易感染微生物,随着3D打印的医疗辅具和医疗植入物数量日益增多,进一步加剧了对抗菌性3D打印材料的需求。目前已有少量抗菌性光固化3D打印材料的相关报道,但这些材料大都需要使用紫外(UV)光固化3D打印技术。紫外光固化3D打印技术具有环境不友好,设备成本高以及固化深度低等不足,尤其是对于上述抗菌性光敏材料,其所包含的抗菌组分,常常是无机粉体或颗粒,对紫外光具有一定的吸收,从而会极大影响UV 3D打印的效率。如专利CN107312133A和CN205668388U所述,可见光3D打印技术可有效解决上述紫外光固化引起的问题,但目前并未有抗菌性可见光固化3D打印材料的报道。
现有技术中,材料构成中的光引发剂多为小分子化合物,在打印形成制件后,小分子光引发剂很容易迁移到制件表面,危害到接触者的健康。有研究人员将小分子化合物与可聚合单体接枝,合成了大分子光引发剂,可以有效减少光引发剂的迁移,但大分子光引发剂合成过程复杂,不利于规模化制备。
因此,亟待解决的一个问题是开发出一种能够减少或避免小分子光引发剂迁移到制件表面的具有抗菌性的可见光固化3D打印材料。
发明内容
技术问题
本发明的目的在于克服现有技术的不足,提供一种新型的抗菌性光固化3D打印材料,该材料通过可见光固化,能够解决现有技术中采用紫外光固化所存在的安全性和打印效率问题;该材料使用超分子光引发体系进行固化,能够解决现有的常规光引发剂容易迁移到制件表面而引起健康威胁的问题;该材料具有显著的抗菌性,能够解决制件容易感染微生物的问题。
另外,本发明的另一个目的在于提供一种上述抗菌性光固化3D打印材料的制备方法,通过该方法能够制备出具有上述优异性能的抗菌性光固化3D打印材料,制备方法简便易行。同时,在该方法中,将光引发剂通过主客体作用制备成超分子,制备方法简单,防迁移效果显著。
此外,本发明的再一个目的在于提供一种用于打印上述抗菌性光固化3D打印材料的3D打印装置,所述3D打印装置能够采用可见光激光光源进行打印,且容纳材料的容器可加热材料,能够改善材料的流动性,通过该3D打印装置能够将上述抗菌性光固化3D打印材料打印成具有抗菌性能和良好机械性能的制件,成型速度快,0.5~5s即可固化一层,打印效率高,克服了UV同类产品固化时间长的问题。
为实现上述目的,本发明采用如下技术方案:
一种抗菌性光固化3D打印材料,所述材料包括以下重量份的组分:
生物相容低聚物/单体100重量份,
超分子光引发体系0.05-5重量份,
抗菌剂5-30重量份,
助剂1-20重量份,
其中所述超分子光引发体系为在可见光波段的光辐射下具有活性的超分子化合物。
根据本发明,所述生物相容低聚物/单体为生物相容环氧丙烯酸酯、生物相容聚氨酯丙烯酸酯、生物相容聚酯丙烯酸酯、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、聚丙二醇二丙烯酸酯、聚丙二醇二甲基丙烯酸酯中的一种或多种。
根据本发明,所述超分子光引发体系为主体化合物包结客体光引发剂所形成的;所述主体化合物为葫芦[5]脲、葫芦[6]脲、葫芦[7]脲、葫芦[8]脲、α-环糊精、β-环糊精、γ-环糊精、杯环芳烃、冠醚中的一种或多种;所述客体光引发剂为下述在可见光辐射下具有活性的化合物中的一种或多种:染料/硼酸盐类化合物、樟脑醌、氟化二苯基二茂钛、双(五氟化苯基)二茂钛、有机过氧化合物。
根据本发明,所述超分子光引发体系的主体化合物和所述超分子光引发体系的客体光引发剂的加料比例为1.1~1.5:1,进一步优选为1.2~1.3:1。
根据本发明,所述超分子光引发体系的含量优选为0.5-2重量份,进一步优选为0.5-1重量份。
根据本发明,所述抗菌剂为银(Ag)纳米颗粒、氧化亚铜(Cu2O)纳米颗粒、氧化锌(ZnO)纳米颗粒、镁掺杂羟基磷石灰、季铵化巯基二氧化硅杂化粒子中的一种或多种。
根据本发明,所述助剂包括颜料、填料、抗氧化剂、消泡剂、润湿剂、阻聚剂中的一种或多种。
根据本发明,所述颜料包括镉黄、镉红、铬绿、铁蓝中的至少一种;所述填料包括碳酸钙、硫酸钡、蒙脱土、滑石粉中的至少一种;所述消泡剂包括乙醇、正丁醇、有机硅酯、矿物油中的至少一种;所述润湿剂包括卵磷脂、多氨基盐、多价羧酸盐中的至少一种;以及所述阻聚剂包括羟基苯甲醚、对苯二酚中的至少一种。
根据本发明,所述抗菌性光固化3D打印材料在常温下的粘度为20-5000cps,优选为100-1000cps。
另一方面,本发明还提供了一种上述抗菌性光固化3D打印材料的制备方法,所述方法包括以下步骤:
S1:制备超分子光引发体系:称取一定量的作为客体光引发剂的小分子光引发剂,将其溶解在有机溶剂中,调节其pH值为2~5,然后在进行500~2000r/min转速的搅拌的同时分批加入作为主体化合物的大环分子,在添加完主体化合物之后继续搅拌60~100min,然后使用旋转蒸发仪蒸去溶剂并干燥以得到所述超分子光引发体系;
S2:制备抗菌性光固化3D打印材料:在常温下采用机械搅拌的方式将100重量份的生物相容低聚物/单体、0.05-5重量份的上述步骤S1中制备得到的超分子光引发体系、5-30重量份的抗菌剂、1-20重量份的助剂混合均匀,其中搅拌速度为500~2000r/min,从而得到均一态混合物,所述混合物遮光保存,从而得到所述抗菌性光固化3D打印材料,
其中在所述步骤S1中,所述pH值优选为2~3,并且
其中在所述步骤S2中,所述混合物优选用锡箔纸遮光保存。
另一方面,本发明进一步提供了一种用于打印上述的抗菌性光固化3D打印材料的3D打印装置,所述3D打印装置包括光源、机械运动装置、软件控制系统和容纳所述抗菌性光固化3D打印材料的容器,所述光源在所述机械运动装置和所述软件控制系统的配合下,在使所述容器提供的所述抗菌性光固化3D打印材料逐层累积的同时将其固化以形成制件。
根据本发明,所述光源为发光波长为415nm-750nm的可见激光光源。
根据本发明,所述容器能够加热所容纳的所述抗菌性光固化3D打印材料,加热范围为室温至70℃以改善所述抗菌性光固化3D打印材料的流动性。
本发明的有益效果:
根据本发明的上述技术方案,提供了一种抗菌性光固化3D打印材料。所述抗菌性光固化3D打印材料通过可见光固化,解决了现有技术中采用紫外光固化所存在的安全性和打印效率问题,打印速度快,0.5~5s即可固化一层,克服了UV同类产品固化时间长的问题。该材料使用超分子光引发体系进行固化,解决了现有的常规光引发剂容易迁移到制件表面而引起制件接触者的健康威胁的问题。该材料具有显著的抗菌性,解决了制件容易感染微生物的问题。
此外,本发明还提供了一种上述抗菌性光固化3D打印材料的制备方法,通过该方法制备出了具有上述优异性能的抗菌性光固化3D打印材料,制备方法简便易行。同时,在该方法中,将光引发剂通过主客体作用制备成超分子,制备方法简单,防迁移效果显著。
另外,本发明还提供了一种用于打印上述抗菌性光固化3D打印材料的3D打印装置,所述3D打印装置采用可见光激光光源进行打印,且容纳材料的容器可加热材料,改善了材料的流动性,通过该3D打印装置能够将上述抗菌性光固化3D打印材料打印成具有抗菌性能和良好机械性能的制件,打印效率高,成型速度快。
具体实施方式
以下,更全面地说明本发明的一个或多个示例性实施例。如本领域技术人员应认识到的,只要不脱离本发明的精神或范围,可以以各种不同的方式对所述示例性实施例进行修改,本发明的精神或范围不限于本文所述的示例性实施例。
如上所述,本发明创造性地首次提出了一种具有抗菌性的可见光固化3D打印材料。所述材料包括以下重量份的组分:生物相容低聚物/单体100重量份,超分子光引发体系0.05-5重量份,抗菌剂5-30重量份,助剂1-20重量份,其中所述超分子光引发体系为在可见光波段的光辐射下具有活性的超分子化合物。
需要指出的是,本发明中的超分子光引发体系是由主体化合物和客体化合物通过非化学键自组装而形成的分子配合物体系。也就是说,本发明中的超分子光引发体系是由大环分子和小分子光引发剂通过非化学键自组装而形成的分子配合物体系。具体地,本发明的超分子光引发体系是通过主体化合物包结客体光引发剂所形成。光引发剂是引发低聚物/单体发生聚合反应的关键组分,在使用常规小分子引发剂时,得到的打印制品中小分子光引发剂与聚合物之间的相容性存在差异,容易迁移到表面,从而带来一定的化学污染,影响制品的抗菌性能。在3D打印材料中引入超分子体系引发剂,可有效防止引发剂组分向制品表面的迁移,避免化学污染,减少对制品抗菌性能的影响。在本发明中,通过将大环分子和小分子光引发剂制成超分子光引发体系,抑制了光引发剂分子的强烈运动,可以有效减少小分子光引发剂的表面迁移现象,从而避免制件接触者产生健康问题。
需要说明的是,超分子光引发体系中的主体化合物和客体化合物理论比例为1:1,但考虑到反应的可逆性以及反应完整性,本发明将主体化合物稍作过量添加,过量过多则会产生浪费,增加成本。因此,为了制出具有合适性能的上述超分子光引发体系,所述主体化合物和所述客体化合物的加料比例可以为1.1~1.5:1,进一步优选可以为1.2~1.3:1。根据本发明,所述主体化合物和所述客体化合物配合所需要的pH值为2~5,进一步优选为2~3,pH过小或过大不利于主体化合物与客体化合物的配合。举例来说,所述主体化合物可以为葫芦脲、环糊精、杯环芳烃、冠醚中的一种或多种,并且所述客体化合物可以为下述在可见光辐射下具有活性的化合物中的一种或多种:染料/硼酸盐类化合物、醌类化合物、茂钛类化合物、有机过氧化合物。
举例来说,上述环糊精可以为α-环糊精、β-环糊精、γ-环糊精中的一种或多种,并且上述醌类化合物例如可以为樟脑醌(CQ);上述茂钛类化合物可以为氟化二苯基二茂钛(Irgacure 784)、双(五氟化苯基)二茂钛等。
进一步需要指出的是,本发明的上述具有抗菌性的可见光固化3D打印材料中所含的超分子光引发体系的含量优选为0.5-2重量份,进一步优选为0.5-1重量份以实现良好的光引发效果,引发剂含量过少时,引发速度慢,过多时产生浪费,且不再增加引发速度。
需要指出的是,所述生物相容低聚物/单体是指与生物组织相接触时,不产生排异、刺激、毒性等作用的低聚物/单体,抗菌性光固化3D打印材料一般用于打印与生物组织相接触的三维结构,因此需要选择与生物相容性好的低聚物及单体,减少打印制件与生物组织的排斥作用。根据本发明,为方便计量,以生物相容低聚物/单体为基准重量份,如上所述取为100重量份。其中所述生物相容低聚物/单体可以为生物相容环氧丙烯酸酯、生物相容聚氨酯丙烯酸酯、生物相容聚酯丙烯酸酯、聚乙二醇二丙烯酸酯(PEGDA)、聚乙二醇二甲基丙烯酸酯(PEGDMA)、聚丙二醇二丙烯酸酯(PPGDA)、聚丙二醇二甲基丙烯酸酯(PEGDA)中的一种或多种。
为了使得本发明的抗菌性光固化3D打印材料具有良好的抗菌性能,上述抗菌剂可以为银(Ag)纳米颗粒、氧化亚铜(Cu2O)纳米颗粒、氧化锌(ZnO)纳米颗粒、镁掺杂羟基磷石灰、季铵化巯基二氧化硅杂化粒子中的一种或多种。
需要说明的是,纳米粒子对紫外光的吸收和粒径相关,只要是纳米级别的颗粒,都不免会进行紫外光吸收。实验表明,如果想要大幅减小UV吸收,那么只能增大颗粒粒径,直至该颗粒不再是纳米粒子,也就失去了纳米粒子的性能,起不到抗菌的效果了。另外,调节紫外光强度和辐照时间可以解决光固化抗菌问题,但是却不能用于3D打印。原因是,首先,如果紫外光强度升高,那么热量会增大,一方面3D打印制品很难承受如此大的热量,另一方面也很难找到大功率UV设备用于3D打印。其次,如果增加辐照时间,那么只能在一定固化厚度下有用,随着打印层厚度增加,增加UV光照时间作用很小,一味的增加时间,同样也不能完成3D打印。也就是说,利用UV固化进行3D打印,无法实现高掺杂抗菌材料的成型。
由此可见,对于3D打印技术来说,如果采用UV固化方式,由于抗菌性纳米颗粒对于UV光具有强烈吸收,因此为了能够完成3D打印,抗菌性纳米颗粒的添加含量非常有限。也就是说,采用UV固化方式进行3D打印得到的打印制品的抗菌性能并不会优异。
有鉴于此,本发明提出了利用可见光固化的方式,原因是可见光固化深度远远高于紫外光,并且抗菌性纳米粒子在可见光固化时不存在紫外光固化时所存在的上述问题。因此,本发明通过引进可见光作为3D打印光源,可大大提高抗菌剂添加量,起到优异的抗菌效果。
在聚合物体系中通过共掺杂方式加入抗菌组分,是最简便、最直接、最高效的制备抗菌材料的方式,通常情况下聚合物制品的抗菌性与所添加的抗菌组分含量成正比,即抗菌剂含量越高,抗菌性越好。但抗菌组分添加量过多会影响材料的固化深度,进而影响打印效率。采用可见光为固化光光源,可以显著提高材料的固化深度,从而可以支持更高的抗菌组分添加量。在现有技术中,使用紫外光进行固化,由于抗菌性光敏材料对紫外光具有一定的吸收,从而会极大影响UV 3D打印的效率,所以其添加量有限。相对地,本发明采用可见光固化,不存在现有技术中的所述问题,因此本发明中的上述抗菌剂的含量可以为5-30重量份,优选为20-30重量份,远远大于UV固化中的添加量。因此,与现有技术中的UV固化3D打印材料相比可以实现更好的抗菌效果。
根据本发明,上述助剂可以包括颜料(如镉黄、镉红、铬绿、铁蓝等)、填料(如碳酸钙、硫酸钡、蒙脱土、滑石粉等)、抗氧化剂、消泡剂(如乙醇、正丁醇、有机硅酯、矿物油等)、润湿剂(如卵磷脂、多氨基盐、多价羧酸盐等)、阻聚剂(如羟基苯甲醚、对苯二酚等)中的一种或多种。另外,上述助剂的含量为1-20重量份,优选为2-5重量份。
需要指出的是,上述抗菌性光固化3D打印材料在常温下的粘度为20-5000cps,优选为100-1000cps,表面张力适中,适合用于可见光3D打印。
根据本发明,上述抗菌性光固化3D打印材料在可见光条件下的固化速度快,0.5~5s即可固化一层。
如上所述,本发明的抗菌性光固化3D打印材料具有良好的抗菌性,适用于对诸如医疗、食品等领域抗菌性要求比较高的技术领域的制件的制备。此外,本发明的抗菌性光固化3D打印材料可以通过可见光来固化,避免了使用紫外光来固化而导致的安全性差等问题,并且打印速度快,0.5~5s即可固化一层,克服了UV同类产品固化时间长的问题。另外,本发明的抗菌性光固化3D打印材料使用超分子光引发体系代替现有技术中的小分子光引发剂,克服了小分子光引发剂很容易迁移到制件表面,危害到接触者的健康的问题。
另外,本发明还提供了一种上述抗菌性光固化3D打印材料的制备方法,包括如下步骤:
S1:超分子光引发体系的制备:称取一定量的客体化合物,即小分子光引发剂,将其溶解在有机溶剂(优选二氯甲烷、甲醇、乙酸乙酯等低沸点溶剂)中,调节体系pH值至2~5,进一步优选为2~3,在500~2000r/min转速的搅拌下分批加入主体化合物,即大环分子,加料完毕后继续搅拌60~100min,使用旋转蒸发仪,在减压情况下保持温度在30~50℃蒸去溶剂,取出样品后在真空干燥箱60~80℃下干燥8~12h以得到所述超分子光引发体系。需要指出的是,在该步骤中,各组分的添加顺序不能改变,否则将会影响到超分子光引发体系的形成,对最终的防迁移造成影响。
S2:3D打印材料的制备:在常温环境中采用机械搅拌的方式将100重量份的生物相容低聚物/单体、0.05-5重量份的上述步骤S1中制备得到的超分子光引发体系、5-30重量份的抗菌剂、1-20重量份的助剂混合均匀,其中搅拌速度为500~2000r/min,得到均一态混合物,混合物遮光保存,优选用锡箔纸遮光保存,从而得到所述抗菌性光固化3D打印材料。需要指出的是,在该步骤中,上述组分添加顺序的改变不会对材料性能造成影响。
通过使用上述方法可以制备出本发明的具有抗菌性的可见光固化3D打印材料,制备方法简便易行。同时,在该方法中,将光引发剂通过主客体作用制备成超分子,制备方法简单,防迁移效果显著。
另外,本发明还提出了一种用于打印上述抗菌性光固化3D打印材料的装置,其包括光源、机械运动装置、软件控制系统和容纳本发明的抗菌性光固化3D打印材料的容器,所述光源在所述机械运动装置和所述软件控制系统的配合下,在使所述容器提供的所述抗菌性光固化3D打印材料逐层累积的同时将其固化以形成制件。根据本发明,所述光源为发光波长为415nm-750nm的可见激光光源。需要指出的是,所述光源必须为纯色激光光源,例如蓝色激光光源。根据本发明,所述容纳3D打印材料的容器,具有加热所容纳的材料的能力,加热范围为室温至70℃,加热下打印用材料的流动性得到明显改善。在本发明中,室温指的是23℃至30℃的温度范围。
根据本发明,利用上述3D打印装置能够将本发明的抗菌性光固化3D打印材料打印成具有抗菌性能和良好机械性能的制件,打印效率高,成型速度快。
以下,将参照具体实施例来对本发明进行详细说明。
实施例1
在本实施例中,按照1.2:1的比例称取葫芦[8]脲与樟脑醌(CQ)并按该顺序进行加料混合,选用乙酸乙酯作为溶剂,搅拌45min,蒸干溶剂,干燥,备用。
然后,将30重量份的生物相容双酚A型环氧丙烯酸酯、70重量份的聚乙二醇二丙烯酸酯(PEGDA)、1重量份的葫芦[8]脲与樟脑醌(CQ)组装的超分子光引发体系、10重量份的银纳米颗粒、2重量份的助剂在常温环境中搅拌混合均匀,得到均一态混合物,遮光保存备用。
将上述混合物加入到可见光3D打印装置的材料容器中,保持室温(25℃)打印,打印一层速度为2s,最后打印成制品。
可以通过以下方法来检测本实施例中的制品表面是否含有光引发剂:(1)采用高效液相色谱法(HPLC)测定光引发剂的特征保留时间,配制一系列不同浓度的样品,并生成标准曲线;(2)打印完成后,用有机溶剂洗涤制品表面,浓缩洗涤液后用容量瓶定量标定;(3)从上述(2)所得溶液中取样品进行HPLC检测,并与标准品的HPLC特征峰进行对比,参考样品的标准曲线计算光引发剂含量;(4)在制品储存10d(天)、30d后,用有机溶剂洗涤制品表面,浓缩洗涤液后用容量瓶定量标定;(5)从上述(4)所得溶液中取样品进行HPLC检测,并与标准品的HPLC特征峰进行对比,参考样品的标准曲线计算光引发剂含量;(6)对比0d、10d、30d时制品表面残留的引发剂含量。
根据测试,本实施例的打印制件表面在0d到30day内未检测出小分子光引发剂。同时,本实施例的打印制件具有良好的抗菌性。
实施例2
在本实施例中,按照1.3:1的比例称取环糊精与樟脑醌(CQ)并按该顺序进行加料混合,选用乙醇作为溶剂,搅拌50min,蒸干溶剂,干燥,备用。
将50重量份的生物相容脂肪族聚氨酯丙烯酸酯、50重量份的聚乙二醇二甲基丙烯酸酯(PEGDMA)、2重量份的环糊精与樟脑醌(CQ)组装的超分子光引发体系、15重量份的氧化亚铜纳米颗粒、2重量份的助剂在常温环境中搅拌混合均匀,得到均一态混合物,遮光保存备用。
将上述混合物加入到可见光3D打印装置的材料容器中,调整材料温度到35℃后打印,打印一层速度为2s,最后打印成制品。
同样可以采用实施例1中的检测方法来检测本实施例中的制品表面是否含有光引发剂,具体检测方法不再赘述。
根据测试,本实施例的打印制件表面在0d到30day内未检测出小分子光引发剂。同时,本实施例的打印制件具有良好的抗菌性。
实施例3
在本实施例中,按照1.5:1的比例称取杯环芳烃与氟化二苯基二茂钛(Irgacure784)并按该顺序进行加料混合,选用丙酮作为溶剂,搅拌55min,蒸干溶剂,干燥,备用。
将70重量份的生物相容聚酯丙烯酸酯、30重量份的聚丙二醇二丙烯酸酯(PPGDA)、1.5重量份的杯环芳烃与氟化二苯基二茂钛(Irgacure 784)、10重量份的氧化锌纳米颗粒、2重量份的助剂在常温环境中搅拌混合均匀,得到均一态混合物,遮光保存备用。
将上述混合物加入到可见光3D打印装置的材料容器中,调整材料温度到55℃后打印,打印一层速度为2s,最后打印成制品。
同样可以采用实施例1中的检测方法来检测本实施例中的制品表面是否含有光引发剂,具体检测方法不再赘述。
根据测试,本实施例的打印制件表面在0d到30day内未检测出小分子光引发剂。同时,本实施例的打印制件具有良好的抗菌性。
由此可见,在上述各个实施例中,都制备出了根据本发明的抗菌性光固化3D打印材料,并且使用本发明的抗菌性光固化3D打印材料在可见光环境下制备出了具有良好抗菌性的3D打印制品,制品制备过程中不需要使用环境不友好的紫外光,该制品表面没有小分子光引发剂,避免了制件接触者产生健康问题,因此对现有技术提供了极大的改进。
虽然具体示出和说明了本发明构思的示例性实施例,但是本领域普通技术人员将会理解,在不脱离所附权利要求书的精神和范围的情况下,可以在其中产生形式和细节上的改变。

Claims (13)

1.一种抗菌性光固化3D打印材料,所述材料包括以下重量份的组分:
生物相容低聚物/单体100重量份,
超分子光引发体系0.05-5重量份,
抗菌剂5-30重量份,
助剂1-20重量份,
其中所述超分子光引发体系为在可见光波段的光辐射下具有活性的超分子化合物。
2.如权利要求1所述的抗菌性光固化3D打印材料,其特征在于,
所述生物相容低聚物/单体为生物相容环氧丙烯酸酯、生物相容聚氨酯丙烯酸酯、生物相容聚酯丙烯酸酯、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、聚丙二醇二丙烯酸酯、聚丙二醇二甲基丙烯酸酯中的一种或多种。
3.如权利要求1所述的抗菌性光固化3D打印材料,其特征在于,所述超分子光引发体系为主体化合物包结客体光引发剂所形成的;所述主体化合物为葫芦[5]脲、葫芦[6]脲、葫芦[7]脲、葫芦[8]脲、α-环糊精、β-环糊精、γ-环糊精、杯环芳烃、冠醚中的一种或多种;所述客体光引发剂为下述在可见光辐射下具有活性的化合物中的一种或多种:染料/硼酸盐类化合物、樟脑醌、氟化二苯基二茂钛、双(五氟化苯基)二茂钛、有机过氧化合物。
4.如权利要求3所述的抗菌性光固化3D打印材料,其特征在于,
所述超分子光引发体系的主体化合物和所述超分子光引发体系的客体光引发剂的加料比例为1.1~1.5:1,进一步优选为1.2~1.3:1。
5.如权利要求1所述的抗菌性光固化3D打印材料,其特征在于,
所述超分子光引发体系的含量优选为0.5-2重量份,进一步优选为0.5-1重量份。
6.如权利要求1所述的抗菌性光固化3D打印材料,其特征在于,
所述抗菌剂为银(Ag)纳米颗粒、氧化亚铜(Cu2O)纳米颗粒、氧化锌(ZnO)纳米颗粒、镁掺杂羟基磷石灰、季铵化巯基二氧化硅杂化粒子中的一种或多种。
7.如权利要求1所述的抗菌性光固化3D打印材料,其特征在于,
所述助剂包括颜料、填料、抗氧化剂、消泡剂、润湿剂、阻聚剂中的一种或多种。
8.如权利要求7所述的抗菌性光固化3D打印材料,其特征在于,
所述颜料包括镉黄、镉红、铬绿、铁蓝中的至少一种;所述填料包括碳酸钙、硫酸钡、蒙脱土、滑石粉中的至少一种;所述消泡剂包括乙醇、正丁醇、有机硅酯、矿物油中的至少一种;所述润湿剂包括卵磷脂、多氨基盐、多价羧酸盐中的至少一种;以及所述阻聚剂包括羟基苯甲醚、对苯二酚中的至少一种。
9.如权利要求1所述的抗菌性光固化3D打印材料,其特征在于,
所述抗菌性光固化3D打印材料在常温下的粘度为20-5000cps,优选为100-1000cps。
10.一种如权利要求1~9中任一项所述的抗菌性光固化3D打印材料的制备方法,所述方法包括以下步骤:
S1:制备超分子光引发体系:称取一定量的作为客体光引发剂的小分子光引发剂,将其溶解在有机溶剂中,调节其pH值为2~5,然后在进行500~2000r/min转速的搅拌的同时分批加入作为主体化合物的大环分子,在添加完主体化合物之后继续搅拌60~100min,然后使用旋转蒸发仪蒸去溶剂并干燥以得到所述超分子光引发体系;
S2:制备抗菌性光固化3D打印材料:在常温下采用机械搅拌的方式将100重量份的生物相容低聚物/单体、0.05-5重量份的上述步骤S1中制备得到的超分子光引发体系、5-30重量份的抗菌剂、1-20重量份的助剂混合均匀,其中搅拌速度为500~2000r/min,从而得到均一态混合物,所述混合物遮光保存,从而得到所述抗菌性光固化3D打印材料,
其中在所述步骤S1中,所述pH值优选为2~3,并且
其中在所述步骤S2中,所述混合物优选用锡箔纸遮光保存。
11.一种用于打印如权利要求1~9中任一项所述的抗菌性光固化3D打印材料的3D打印装置,所述3D打印装置包括光源、机械运动装置、软件控制系统和容纳所述抗菌性光固化3D打印材料的容器,所述光源在所述机械运动装置和所述软件控制系统的配合下,在使所述容器提供的所述抗菌性光固化3D打印材料逐层累积的同时将其固化以形成制件。
12.如权利要求11所述的3D打印装置,其特征在于,所述光源为发光波长为415nm-750nm的可见激光光源。
13.如权利要求11所述的3D打印装置,其特征在于,所述容器能够加热所容纳的所述抗菌性光固化3D打印材料,加热范围为室温至70℃以改善所述抗菌性光固化3D打印材料的流动性。
CN201811014123.5A 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置 Active CN110872369B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811014123.5A CN110872369B (zh) 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置
CN202111046122.0A CN113651933A (zh) 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置
PCT/CN2019/086934 WO2020042669A1 (zh) 2018-08-31 2019-05-15 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811014123.5A CN110872369B (zh) 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111046122.0A Division CN113651933A (zh) 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置

Publications (2)

Publication Number Publication Date
CN110872369A true CN110872369A (zh) 2020-03-10
CN110872369B CN110872369B (zh) 2021-10-01

Family

ID=69642630

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111046122.0A Pending CN113651933A (zh) 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置
CN201811014123.5A Active CN110872369B (zh) 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111046122.0A Pending CN113651933A (zh) 2018-08-31 2018-08-31 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置

Country Status (2)

Country Link
CN (2) CN113651933A (zh)
WO (1) WO2020042669A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334539A (zh) * 2020-08-13 2021-02-05 香港理工大学 三维打印抗菌产品
CN112406095A (zh) * 2020-11-05 2021-02-26 三阳纺织有限公司 一种具有抗菌功能的织物及其快速成形方法
CN112590342A (zh) * 2020-12-14 2021-04-02 台州市路桥瑞康家庭用品厂 一种抗菌保鲜膜及其制备工艺
WO2022032817A1 (en) * 2020-08-13 2022-02-17 The Hong Kong Polytechnic University Three-dimensional printing antimicrobial products
CN116144134A (zh) * 2023-03-14 2023-05-23 吉林大学 一种3d打印含聚醚醚酮的抗菌流体光敏树脂及制备方法
CN116813843A (zh) * 2023-06-29 2023-09-29 深圳永昌和科技有限公司 一种工程高韧性3d打印用光敏树脂及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185826B2 (ja) * 2018-12-27 2022-12-08 セイコーエプソン株式会社 三次元造形物の造形材料
CN114907500B (zh) * 2021-02-22 2023-07-07 中国科学院理化技术研究所 一种碳量子点可见光引发剂体系及其应用
CN113121987A (zh) * 2021-04-21 2021-07-16 李立 一种水性3d打印材料及其制备方法和应用
CN113637329B (zh) * 2021-07-22 2022-06-14 广东工业大学 一种高生物相容性的光敏有机硅材料及其制备方法和在光固化3d打印中的应用
CN113662861B (zh) * 2021-07-27 2023-05-19 广州黑格智造信息科技有限公司 一种抗菌材料及其制备方法和应用
CN113968945A (zh) * 2021-12-15 2022-01-25 一汽解放汽车有限公司 抗菌聚氨酯复合树脂及其制备方法与应用
CN114478947B (zh) * 2021-12-23 2023-12-08 山东华夏神舟新材料有限公司 新型光固化3d打印树脂材料及其制备方法
GB202219052D0 (en) * 2022-12-16 2023-02-01 Ucl Business Ltd Antimicrobial compositions and objects, and methods of making them

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516421A (zh) * 2011-12-08 2012-06-27 上海交通大学 一种裂解型主客体水溶性光引发剂及其制备方法
CN106146689A (zh) * 2016-07-21 2016-11-23 中科院广州化学有限公司南雄材料生产基地 一种水性主客体型光引发剂及其制备方法
CN107312133A (zh) * 2016-04-26 2017-11-03 中国科学院化学研究所 一种用于3d打印的可见光固化材料及3d打印装置和制件
CN107418133A (zh) * 2017-08-30 2017-12-01 杭州高兴工程塑料有限公司 一种具有抗菌功能的免喷涂3d打印耗材及其制备方法
CN107936146A (zh) * 2017-06-05 2018-04-20 宁波七诺新材料科技有限公司 用于3d打印技术的由可见光引发的光引发剂组合物及应用
CN108215160A (zh) * 2017-11-21 2018-06-29 马潮升 3d打印装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516420A (zh) * 2011-11-29 2012-06-27 上海交通大学 一种夺氢型主客体水溶性光引发剂及其制备方法
US10828399B2 (en) * 2015-03-27 2020-11-10 The Trustees Of The University Of Pennsylvania Three dimensional printing of supramolecular (hydro)gels
CN205668388U (zh) * 2016-04-26 2016-11-02 中国科学院化学研究所 一种采用光固化技术的3d打印装置
CN106167537A (zh) * 2016-07-29 2016-11-30 佛山市高明区诚睿基科技有限公司 一种具有自清洁抗菌的3d打印用的光固化树脂材料
CN107383290B (zh) * 2017-08-09 2019-11-12 成都美益达医疗科技有限公司 一种聚丙烯酸酯接枝改性明胶-胶黏剂及其制备方法
CN107522827B (zh) * 2017-09-20 2020-08-21 杨军 一种光固化3d打印光敏树脂及其制备方法和应用
CN108329437B (zh) * 2017-10-23 2020-07-07 同济大学 一种3d打印用紫外光固化抗菌材料及其制备方法
CN108455966B (zh) * 2018-01-17 2020-09-01 龙泉市金宏瓷业有限公司 一种基于光固化的3d打印陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516421A (zh) * 2011-12-08 2012-06-27 上海交通大学 一种裂解型主客体水溶性光引发剂及其制备方法
CN107312133A (zh) * 2016-04-26 2017-11-03 中国科学院化学研究所 一种用于3d打印的可见光固化材料及3d打印装置和制件
CN106146689A (zh) * 2016-07-21 2016-11-23 中科院广州化学有限公司南雄材料生产基地 一种水性主客体型光引发剂及其制备方法
CN107936146A (zh) * 2017-06-05 2018-04-20 宁波七诺新材料科技有限公司 用于3d打印技术的由可见光引发的光引发剂组合物及应用
CN107418133A (zh) * 2017-08-30 2017-12-01 杭州高兴工程塑料有限公司 一种具有抗菌功能的免喷涂3d打印耗材及其制备方法
CN108215160A (zh) * 2017-11-21 2018-06-29 马潮升 3d打印装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王渊龙: "高效β-环糊精复合光引发剂的研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334539A (zh) * 2020-08-13 2021-02-05 香港理工大学 三维打印抗菌产品
WO2022032817A1 (en) * 2020-08-13 2022-02-17 The Hong Kong Polytechnic University Three-dimensional printing antimicrobial products
GB2611971A (en) * 2020-08-13 2023-04-19 Univ Hong Kong Polytechnic Three-dimensional printing antimicrobial products
CN112406095A (zh) * 2020-11-05 2021-02-26 三阳纺织有限公司 一种具有抗菌功能的织物及其快速成形方法
CN112590342A (zh) * 2020-12-14 2021-04-02 台州市路桥瑞康家庭用品厂 一种抗菌保鲜膜及其制备工艺
CN112590342B (zh) * 2020-12-14 2022-03-08 台州市路桥瑞康家庭用品厂 一种抗菌保鲜膜及其制备工艺
CN116144134A (zh) * 2023-03-14 2023-05-23 吉林大学 一种3d打印含聚醚醚酮的抗菌流体光敏树脂及制备方法
CN116813843A (zh) * 2023-06-29 2023-09-29 深圳永昌和科技有限公司 一种工程高韧性3d打印用光敏树脂及其制备方法
CN116813843B (zh) * 2023-06-29 2024-07-02 深圳永昌和科技有限公司 一种工程高韧性3d打印用光敏树脂及其制备方法

Also Published As

Publication number Publication date
CN110872369B (zh) 2021-10-01
CN113651933A (zh) 2021-11-16
WO2020042669A1 (zh) 2020-03-05

Similar Documents

Publication Publication Date Title
CN110872369B (zh) 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置
JP3844824B2 (ja) エネルギー線硬化性エポキシ樹脂組成物、光学的立体造形用樹脂組成物及び光学的立体造形方法
CN105308082B (zh) 光固化性树脂组合物和图像显示装置的制造方法
CN101301805B (zh) 层叠薄膜的制造方法
CN107001632B (zh) 活性能量射线固化性组合物及其用途
CN109517111B (zh) 3d打印方法、3d打印光固化变色指示树脂及其制备方法
CN105273167B (zh) 芳茂铁盐作为碘鎓盐可见光下引发光固化的增感剂的用途
DE19709765A1 (de) Härtbare Verbundmaterialzusammensetzung und Verfahren zu deren Härtung
CN107001631B (zh) 活性能量射线固化性组合物及其用途
JPS61500974A (ja) 2つの硬化タイプのプレポリマ−を含む光硬化性組成物
CN112028893B (zh) 一种基于吡咯并吡咯结构的光引发剂配制的光聚合体系和应用
CN108976470B (zh) 1,4-二(2-苯硫基苯基)-1,3-丁二炔作为紫外光吸收剂的应用
CN109111555A (zh) 一种高效生物相容性自由基光聚合可见光引发体系的制备方法
GB2575056A (en) Curable compositions comprising filled multistage polymers
CN108102510A (zh) 一种高性能双重固化树脂及其制备方法
CN101954119B (zh) 一种含双键硅氧烷包覆改性羟基磷灰石制备光固化骨修复材料的方法
CN114907500B (zh) 一种碳量子点可见光引发剂体系及其应用
CN114957514B (zh) 一种双组份自由基型可见光引发剂及其应用
KR20150074901A (ko) 양이온 광경화용 조성물 및 상기 조성물로 코팅된 강판
CN114907502B (zh) 一种可见光引发剂体系及其应用
JP2005187385A (ja) 歯科用カチオン硬化性組成物
CN107227119A (zh) 一种紫外光固化胶黏剂及其生产工艺
CN117126332A (zh) 3d打印光固化树脂及其制备方法
JPS5971370A (ja) 紫外線硬化性被覆組成物
JP4189314B2 (ja) カチオン重合性組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant