CN110699660A - 在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法 - Google Patents

在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法 Download PDF

Info

Publication number
CN110699660A
CN110699660A CN201910952055.5A CN201910952055A CN110699660A CN 110699660 A CN110699660 A CN 110699660A CN 201910952055 A CN201910952055 A CN 201910952055A CN 110699660 A CN110699660 A CN 110699660A
Authority
CN
China
Prior art keywords
substrate
film
sulfide
nanosheet array
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910952055.5A
Other languages
English (en)
Inventor
王明均
谭亮
李晓燕
龚伟志
罗亮
余荣芬
杨玉蓉
张富英
樊善明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201910952055.5A priority Critical patent/CN110699660A/zh
Publication of CN110699660A publication Critical patent/CN110699660A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,属于纳米材料技术领域,该方法首先在密封、水存在条件下利用单质硫和碱金属硫化物通过水热反应制得含多硫离子水溶液,然后将铜基底或镀铜膜的其它任意基底放入含多硫离子水溶液中反应,其中含多硫离子水溶液中多硫离子的摩尔浓度为0.1 mol/L~1 mol/L,反应完成后,采用去离子水冲洗干净,干燥,即在任意基底上制得硫化亚铜纳米片阵列薄膜;本发明硫化亚铜纳米片阵列薄膜可在任意基底上进行制备,大大增加了硫化亚铜纳米片阵列薄膜的应用领域和适用性。

Description

在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法
技术领域
本发明涉及一种在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,属于纳米材料技术领域。
背景技术
硫化亚铜是一种p型半导体,带隙约1.2 eV,由于其窄的带隙可对太阳光进行有效吸收,能够有效产生光生载流子——电子空穴对,具有优异的光、电、磁以及其他物理化学性质,因此硫化亚铜纳米材料被广泛应用于LED发光二极管、太阳能电池、光电传感器和生物传感器等领域,备受关注与研究。目前,制备硫化亚铜纳米片阵列薄膜的方法众多,如水热法、化学气相沉积等,但这些方法存在一些缺点,如它们都难以大量、可重复地制备硫化亚铜纳米片阵列薄膜,此外,水热法可控性不高且难以在任意基底上生长硫化亚铜纳米片阵列薄膜,化学气相沉积难以制备几百纳米厚度以上的硫化亚铜纳米片阵列薄膜,并且化学气相沉积对设备要求高。因此,需要设计开发一种膜厚可控、易大量、易重复且能在任意基底上制备硫化亚铜纳米片阵列薄膜的方法。
发明内容
本发明针对现有技术存在的部分问题,提供一种在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,这种方法操作简单、膜厚可控,特别地,它可在任意基底上生长硫化亚铜纳米片阵列薄膜。
本发明方法是以单质硫、碱金属硫化物、去离子水和任意基底作为原材料,首先在密封、水存在条件下利用单质硫和碱金属硫化物通过水热反应制得含多硫离子水溶液,然后将铜基底或镀铜膜的其它任意基底放入含多硫离子水溶液中反应,其中含多硫离子水溶液中多硫离子的摩尔浓度为0.1 mol/L~1 mol/L,反应完成后,采用去离子水冲洗干净,干燥,即在任意基底上制得硫化亚铜纳米片阵列薄膜。
所述碱金属硫化物为硫化锂、硫化钠、硫化钾、硫化铷、硫化铯、硫化钫中的一种。
所述水热反应的温度为100 ℃~200 ℃,反应时间1 h以上。
所述镀铜膜的其它基底是指导电或不导电、柔性或非柔性的非铜基底,并在非铜基底上用磁控溅射方法镀铜膜获得,且厚度为几百纳米至几十微米。
所述多硫离子为Sn -2,其中n≥2,其制备过程为(n-1)S+A2S→A2Sn,其中n≥2,A为碱金属元素。
本发明的有益效果是:
(1)本发明以单质硫、碱金属硫化物、去离子水和任意基底(可包括铜基底,以及其他导电或不导电、柔性或非柔性的非铜基底)几种简单原材料,在温和条件下、在任意基底上制得硫化亚铜纳米片阵列薄膜,该方法膜厚可控、易重复和大量制备;
(2)本发明硫化亚铜纳米片阵列薄膜可在任意基底上进行可控制备,大大增加了硫化亚铜纳米片阵列薄膜的应用领域和适用性;
(3)本发明方法操作简单,制备过程易控制,生产成本低廉且环保,适用于工业化大量生产。
附图说明
图1为实施例3硫化亚铜纳米片阵列薄膜的Raman图谱;
图2为实施例3硫化亚铜纳米片阵列薄膜的EDS结果;
图3为实施例1硫化亚铜纳米片阵列薄膜的扫描电镜图;
图4为实施例2硫化亚铜纳米片阵列薄膜的扫描电镜图;
图5为实施例3硫化亚铜纳米片阵列薄膜的扫描电镜图;
图6为实施例4硫化亚铜纳米片阵列薄膜的扫描电镜图;
图7为实施例5硫化亚铜纳米片阵列薄膜的扫描电镜图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:在导电石墨纸上制备硫化亚铜纳米片阵列薄膜的方法,具体步骤如下:
将15 mmol单质硫(S)和5 mmol硫化钠(Na2S)混合,加入去离子水(H2O)至50 mL,然后将其密封于100 mL水热釜中在100 ℃保温1 h,制得含S4 -2水溶液(S4 -2的摩尔浓度为0.1mol/L),冷却至室温。然后,在2 cm×2 cm×0.1 mm的导电石墨纸上利用磁控溅射技术镀上约4 μm厚的铜膜,再放入含S4 -2水溶液反应2 s,随后立即用去离子水轻轻冲洗干净,干燥后,即在导电石墨纸上制得硫化亚铜纳米片阵列薄膜。
本实施例硫化亚铜纳米片阵列薄膜的扫描电镜图见图3,从图3可知,硫化亚铜纳米片阵列垂直于导电石墨纸竖直生长,整体形貌较均匀。
实施例2:在不导电普通A4打印纸上制备硫化亚铜纳米片阵列薄膜的方法,具体步骤如下:
将30 mmol单质硫(S)和10 mmol硫化钠(Na2S)混合,加入去离子水(H2O)至50 mL,然后将其密封于100 mL水热釜中在200 ℃保温2 h,制得含S4 -2水溶液(S4 -2的摩尔浓度为0.2mol/L),并冷却至室温。然后,在2 cm×2 cm×0.1 mm的不导电A4白纸上利用磁控溅射技术镀上约4 μm的铜膜,放入含S4 -2水溶液反应20 s,随后立即用去离子水轻轻冲洗干净,干燥后,即在不导电普通A4打印纸上制得硫化亚铜纳米片阵列薄膜。
本实施例硫化亚铜纳米片阵列薄膜的扫描电镜图见图4,从图4可知,硫化亚铜纳米片阵列形貌整体较均匀,纳米片长约2 μm,纳米片高(即膜厚)约0.9 μm。
实施例3:硫化亚铜纳米片阵列薄膜的制备方法,具体步骤如下:
将30 mmol单质硫(S)和10 mmol硫化钠(Na2S)混合,加入去离子水(H2O)至50 mL,然后将其密封于100 mL水热釜中在150 ℃保温1.5 h,制得含S4 -2水溶液(S4 -2的摩尔浓度为0.2mol/L),冷却至室温。然后,将2 cm×2 cm×0.3 mm铜片放入含S4 -2水溶液反应40 s,随后立即用去离子水轻轻冲洗干净,干燥后,即在铜片上快速生长出了硫化亚铜纳米片阵列薄膜。
本实施例硫化亚铜纳米片阵列薄膜的扫描电镜图见图5,从图5可知,硫化亚铜纳米片阵列形貌整体较均匀,纳米片长约2.4 μm,纳米片高(即膜厚)约2.4 μm;图1的Raman图谱显示制备的薄膜为Cu2S;图2的EDS结果显示制备的薄膜所含元素为S和Cu(以及微量的O和C,它们来自于薄膜里的结晶水和薄膜表面吸附的CO2)。
实施例4:硫化亚铜纳米片阵列薄膜的制备方法,具体步骤如下:
将30 mmol单质硫(S)和10 mmol硫化钠(Na2S)混合,加入去离子水(H2O)至50 mL,然后将其密封于100 mL水热釜中在150 ℃保温1.5 h,制得含S4 -2水溶液(S4 -2的摩尔浓度为0.2mol/L),并冷却至室温。然后,将2 cm×2 cm×0.3 mm铜片放入含S4 -2水溶液反应80 s,随后立即用去离子水轻轻冲洗干净,干燥后,即在铜片上快速生长出了硫化亚铜纳米片阵列薄膜。
本实施例硫化亚铜纳米片阵列薄膜的扫描电镜图见图6,从图6可知,硫化亚铜纳米片阵列形貌整体较均匀,纳米片长约4 μm,纳米片高(即膜厚)约4.2 μm。
实施例5:硫化亚铜纳米片阵列薄膜的制备方法,具体步骤如下:
将150 mmol单质硫(S)和50 mmol硫化钠(Na2S)混合,加入去离子水(H2O)至50 mL,然后将其密封于100 mL水热釜中在150 ℃保温1.5 h,制得含S4 -2水溶液(S4 -2的摩尔浓度为1mol/L),冷却至室温。然后,将2 cm×2 cm×0.3 mm铜片放入含S4 -2水溶液反应40 s,随后立即用去离子水轻轻冲洗干净,干燥后,即在铜片上快速生长出了硫化亚铜纳米片阵列薄膜。在这种条件下生长出的薄膜易局部脱落。
本实施例硫化亚铜纳米片阵列薄膜的扫描电镜图见图7,从图7可知,硫化亚铜纳米片阵列形貌整体较均匀,纳米片宽约7.4 μm,纳米片高(即膜厚)约8.6 μm。

Claims (5)

1.一种在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,其特征在于:首先在密封、水存在条件下利用单质硫和碱金属硫化物通过水热反应制得含多硫离子水溶液,然后将铜基底或镀铜膜的其它任意基底放入含多硫离子水溶液中反应,其中含多硫离子水溶液中多硫离子的摩尔浓度为0.1 mol/L~1 mol/L,反应完成后,采用去离子水冲洗干净,干燥,即在任意基底上制得硫化亚铜纳米片阵列薄膜。
2.根据权利要求1所述的在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,其特征在于:水热反应的温度为100 ℃~200 ℃,反应时间1 h以上。
3.根据权利要求1所述的在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,其特征在于:碱金属硫化物为硫化锂、硫化钠、硫化钾、硫化铷、硫化铯、硫化钫中的一种。
4.根据权利要求1所述的在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,其特征在于:镀铜膜的其它任意基底是在非铜基底上用磁控溅射方法镀铜膜获得。
5.根据权利要求1所述的在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法,其特征在于:多硫离子为 Sn -2,其中n≥2。
CN201910952055.5A 2019-10-09 2019-10-09 在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法 Pending CN110699660A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910952055.5A CN110699660A (zh) 2019-10-09 2019-10-09 在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910952055.5A CN110699660A (zh) 2019-10-09 2019-10-09 在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法

Publications (1)

Publication Number Publication Date
CN110699660A true CN110699660A (zh) 2020-01-17

Family

ID=69199056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910952055.5A Pending CN110699660A (zh) 2019-10-09 2019-10-09 在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法

Country Status (1)

Country Link
CN (1) CN110699660A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718507A (zh) * 2020-06-10 2020-09-29 暨南大学 一种基于3d打印的超疏水超亲水水分收集装置及其制作方法
CN117747311A (zh) * 2024-02-20 2024-03-22 苏州宝丽迪材料科技股份有限公司 一种硫化亚铜/碳纳米管纤维电极及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819512A (zh) * 2016-04-06 2016-08-03 清华大学 一种过渡金属硫化物的快速制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819512A (zh) * 2016-04-06 2016-08-03 清华大学 一种过渡金属硫化物的快速制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUELIAN YU ETAL.: "Friction behavior of in situ hydrothermal fabrication of sulfide film on copper", 《APPLIED SURFACE SCIENCE》 *
王太平: "多硫化钠釜的腐蚀与防腐", 《兰化科技》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718507A (zh) * 2020-06-10 2020-09-29 暨南大学 一种基于3d打印的超疏水超亲水水分收集装置及其制作方法
CN111718507B (zh) * 2020-06-10 2022-03-29 暨南大学 一种基于3d打印的超疏水超亲水水分收集装置及其制作方法
CN117747311A (zh) * 2024-02-20 2024-03-22 苏州宝丽迪材料科技股份有限公司 一种硫化亚铜/碳纳米管纤维电极及其制备方法和应用
CN117747311B (zh) * 2024-02-20 2024-05-28 苏州宝丽迪材料科技股份有限公司 一种硫化亚铜/碳纳米管纤维电极及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN102070184B (zh) 一种CuInS2纳米颗粒的制备方法
Kahraman et al. Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films
KR20140007332A (ko) 박막 태양 전지 방법을 위한 알칼리 금속 함유 잉크
Tombak et al. Solar cells fabricated by spray pyrolysis deposited Cu2CdSnS4 thin films
US20110189814A1 (en) Process for producing photoelectric conversion devices
Dhasade et al. A nanostructured copper telluride thin film grown at room temperature by an electrodeposition method
CN110699660A (zh) 在任意基底上快速生长硫化亚铜纳米片阵列薄膜的方法
Sun et al. Fabrication of pyrite FeS2 thin films by sulfurizing oxide precursor films deposited via successive ionic layer adsorption and reaction method
TW201313936A (zh) 於基板上形成半導體材料膜層之方法及混合膜層形成裝置
JP2015526884A (ja) Cis、cigs、又はcztsに基づく半導体薄膜を形成するための前駆体溶液
KR101322681B1 (ko) 정전분무법에 의하여 제조된 czts 박막 및 그의 제조방법
Sawant et al. Chemical bath deposition of CuInS2 thin films and synthesis of CuInS2 nanocrystals: a review
KR20110060211A (ko) 셀렌화에 의한 cigs 광흡수층의 제조방법
CN102153288A (zh) 一种择尤取向硫化二铜薄膜的制备方法
CN107723661B (zh) 一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法
Di Iorio et al. Characterization of CuInS 2 thin films prepared by one-step electrodeposition
CN105514192A (zh) 一种电沉积后硫化退火制备太阳能电池缓冲层硫化锌薄膜材料的方法
Ma et al. Synthesis of Cu2ZnSnS4 thin film through chemical successive ionic layer adsorption and reactions
CN105655421A (zh) 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法
CN103938189A (zh) 一种快速高效制备硫化铜纳米薄膜的方法
KR100838168B1 (ko) 인듐 셀레나이드 화합물의 제조방법
CN109830571B (zh) 一种电沉积铜后退火制备铜锡硫太阳能电池薄膜材料的方法
US8765518B1 (en) Chalcogenide solutions
KR101723096B1 (ko) 태양전지용 SnS 박막 형성 방법 및 이를 이용한 태양전지의 제조방법
KR20210087663A (ko) 구리-안티모니-주석-황 박막 태양전지의 광 흡수층 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200117

RJ01 Rejection of invention patent application after publication