CN105655421A - 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法 - Google Patents

一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN105655421A
CN105655421A CN201610001487.4A CN201610001487A CN105655421A CN 105655421 A CN105655421 A CN 105655421A CN 201610001487 A CN201610001487 A CN 201610001487A CN 105655421 A CN105655421 A CN 105655421A
Authority
CN
China
Prior art keywords
sulfide
stannous
solar cell
indium
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610001487.4A
Other languages
English (en)
Inventor
罗云荣
陈慧敏
陈春玲
周如意
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201610001487.4A priority Critical patent/CN105655421A/zh
Publication of CN105655421A publication Critical patent/CN105655421A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法。所述薄膜太阳能电池的结构从下至上依次为:基底1、金属纳米线2、N型β—硫化铟窗口层3、二硫化钼缓冲层4、P型硫化亚锡吸收层5、金属电极6。本发明的优点在于,一是充分利用硫化亚锡、二硫化钼和β—硫化铟禁带宽度的特点,分别将其用作太阳能电池的吸收层、缓冲层和窗口层,有利于充分吸收太阳光;二是利用硫化亚锡、二硫化钼和β—硫化铟都属硫化物的特点,减少它们之间的晶格失配,从而减少缺陷态密度,降低光生载流子的复合,有利于载流子的传输;三是利用金属纳米线来代替传统的导电薄膜,大大减小膜层电阻,有利于载流子的横向收集,极大地提高了太阳能电池的光电转换效率。

Description

一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法
技术领域
本发明涉及新能源领域,具体涉及一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法。
背景技术
硫化亚锡作为一种原料丰富、安全无毒、价格便宜的新型材料,具有巨大的潜在应用前景,一直是科研工作者的研究热点。其光学直接带隙和间接带隙分别为1.2~1.5eV和1.0~1.1eV,与太阳辐射中的可见光有很好的光谱匹配,非常适合用做太阳能电池的光吸收材料,也是一种非常有潜力的太阳能电池材料。硫化铟(In2S3)是一种III-VI族化合物半导体,具有特殊的光电、光致发光等性能,在燃料电池、电化学传感器以及光电功能材料等领域具有很大的潜在应用价值。研究表明,In2S3在不同热处理温度下会呈现三种不同的晶体类型:(1)693K,α—In2S3;(2)1027K,β—In2S3;(3)1027K以上,γ—In2S3。通常β—硫化铟(β—In2S3)是室温下的稳定结构,并且其禁带宽度为2~2.45eV,未掺杂情况下一般呈N型,可以作为铜铟硫、铜铟硒和铜铟镓硒薄膜太阳电池的缓冲层和窗口层。由于β—In2S3具有较大的禁带宽度,对可见光波段的吸收较小,生长过程中需要的温度较低,不会对先前沉积的薄膜层造成破坏,并且无毒性,可能用来替代有毒的硫化镉作为太阳能电池窗口层材料。二硫化钼,禁带宽度约为1.87ev,在硫化亚锡和硫化铟构成的PN结太阳能电池中,可以起到很好的缓冲的作用,因此适合用来作缓冲层材料。
通常有机太阳能电池使用的电极材料是掺锡的氧化铟(ITO),然而,由于ITO成本高、易碎等问题激发了人们对柔性、低成本导电材料的开发兴趣。因此,研究低成本、制备工艺相对简单能够替代ITO薄膜的透明导电薄膜就显得非常必要。而金属纳米线具有成本低、易制备、可实现柔性化大规模生产等优点,因而符合人们的需求。
发明内容
本发明的目的在于,提供一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法,以实现制备工艺简单,原材料无毒环保,衬底选择范围广,又能极大地提高太阳能电池的光电转换效率。
为了达到上述目的,本发明技术方案是这样实现的:
一种硫化亚锡和硫化铟薄膜太阳能电池,其结构从下至上依次为:基底、金属纳米线、N型β—硫化铟窗口层、二硫化钼缓冲层、P型硫化亚锡吸收层、金属电极,该结构的优点是,首先,充分利用硫化亚锡、二硫化钼和β—硫化铟禁带宽度的特点,分别将其用作太阳能电池的吸收层、缓冲层和窗口层,有利于充分吸收太阳光;其次,利用硫化亚锡、二硫化钼和β—硫化铟都属硫化物的特点,减少它们之间的晶格失配,从而减少缺陷态密度,降低光生载流子的复合,有利于载流子的传输;最后,利用金属纳米线来代替传统的导电薄膜,大大减小膜层电阻,有利于载流子的横向收集,提高太阳能电池的光电转换效率。
本发明技术方案所提供的一种硫化亚锡和硫化铟薄膜太阳能电池的制备方法包括如下步骤:
取一块干净的基底,利用直流电化学沉积法在基底上制备金属纳米线,然后利用真空蒸发法或超声喷雾法或磁控溅射法或化学浴法在金属纳米线上制备N型β—硫化铟,在N型β—硫化铟上利用双源蒸发法或脉冲电沉积法或化学气相沉积法制备二硫化钼薄膜,在二硫化钼薄膜上利用超声喷雾法或真空蒸发法或化学浴沉积法制备P型硫化亚锡薄膜,最后在硫化亚锡薄膜上丝网印刷金属电极。
附图说明
附图1是本发明提供的一种硫化亚锡和硫化铟薄膜太阳能电池的层结构示意图。
附图1标号说明:
1─基底;
2—金属纳米线;
3—N型β—硫化铟窗口层;
4—二硫化钼缓冲层;
5—P型硫化亚锡吸收层;
6—金属电极。
具体实施方式
下面结合附图1和具体实施例对本发明作进一步说明,但本发明内容不仅限于实施例中涉及的内容。
本发明按附图1所示结构,它包括从下至上依次分布的基底1、金属纳米线2、N型β—硫化铟窗口层3、二硫化钼缓冲层4、P型硫化亚锡吸收层5、金属电极6。
实施例一:
首先,利用直流电化学沉积法在玻璃基底上沉积铜纳米线,电解液由硫酸铜(CuSO4)(90g/L)和硼酸(H3BO3)(45g/L)的水溶液组成,再加入1M的硫酸(H2SO4)溶液调节pH值为PH=2.5。电沉积条件为:外加直流电压0.2V,沉积温度为25℃(室温),沉积时间为90分钟;第二,采用磁控溅射预制铟(In)薄膜和硫化热处理工艺在铜金属纳米线上沉积β—In2S3薄膜。溅射功率为120W,硫化热处理温度为450℃,溅射气体压强在0.5Pa,溅射时间是6min;第三,在真空环境中,以钼金属颗粒和硫粉末为原料,利用双源蒸发法在β—In2S3薄膜上沉积二硫化钼(MoS2)薄膜,通过调节钼金属蒸发的电子束流大小、硫粉末蒸发的温度以及生长时间使原子和原子的含量之比为1:2,钼(Mo)原子和硫(S)原子在加热的β—In2S3薄膜上反应生成MoS2分子,获得层数可控的MoS2薄膜;第四,利用化学浴沉积在缓冲层MoS2上沉积P型硫化亚锡(SnS)薄膜,将氯化亚锡(SnCl2·2H2O)溶解于适量的丙酮当中,然后加入体积比为50%的三乙醇胺溶液并搅拌使之均匀混合,待溶液中出现了白色絮状物时,给溶液中加入一定浓度的硫代乙酰胺溶液,并搅拌均匀。接着通过加入适量的氨水和氯化铵缓冲溶液来调节反应溶液的pH值。最后,用去离子水把溶液体积调节到200ml。将盛有反应溶液的烧杯置于85-2型恒温磁力搅拌器上,在室温下搅拌均匀,然后把沉积有二硫化钼薄膜的样品垂直插入反应溶液中进行SnS薄膜沉积,然后将SnS薄膜样品在250℃退火1h。最后,利用丝网印刷法在硫化亚锡薄膜上沉积金属铝(Al)电极。
实施例二:
首先,利用直流电化学沉积法在硅片基底上沉积银金属纳米线。电解液由硝酸银(AgNO3)(45g/L)和硼酸(H3BO3)(45g/L)的水溶液组成,再加入1M的硝酸(HNO3)溶液调节PH值为PH=2.3。电沉积条件为:外加直流电压0.2V,沉积温度为25℃(室温),沉积时间为30分钟;第二,利用超声喷雾法在银金属纳米线上沉积N型β—In2S3薄膜,采用氯化铟(InCl3·4H2O)和硫脲作为铟(In)源和硫(S)源,按In/S摩尔浓度比1∶5配制50ml溶液,取In离子的摩尔浓度为60mmol/L,通过压电陶瓷晶片雾化器将配制的溶液雾化,雾化速率为100ml/h,高纯氮气流量控5L/min,生长In2S3薄膜30min,生长温度控制在310℃,生长完成后继续通氮气作为保护气,在380℃下原位退火30min。后续RTP热处理分别在450℃,550℃温度下进行,保温时间2min,然后随炉冷却。整个RTP热处理过程使用Ar气作为保护气氛;第三,以MoS2粉末为原料,以氩气为携载气体,在500℃温度范围内利用热蒸发法在β—In2S3薄膜表面制备MoS2薄膜,沉积时间30min;第四,利用化学浴沉积在缓冲层MoS2上沉积P型硫化亚锡(SnS)薄膜,将氯化亚锡(SnCl2·2H2O)溶解于适量的丙酮当中,然后加入体积比为60%的三乙醇胺溶液并搅拌使之均匀混合,待溶液中出现了白色絮状物时,给溶液中加入一定浓度的硫代乙酰胺溶液,并搅拌均匀。接着通过加入适量的氨水和氯化铵缓冲溶液来调节反应溶液的pH值。最后,用去离子水把溶液体积调节到250ml。将盛有反应溶液的烧杯置于85-2型恒温磁力搅拌器上,在室温下搅拌均匀,然后把沉积有二硫化钼薄膜的样品垂直插入反应溶液中进行SnS薄膜沉积,然后将SnS薄膜样品在250℃退火1.5h。最后,利用丝网印刷法在硫化亚锡薄膜上沉积金属银(Ag)电极。
实施例三:
首先,利用直流电化学沉积法在有机柔性塑料基底上沉积镍金属纳米线。电解液由硫酸镍(NiSO4·6H2O)(100g/L),氯化镍(NiCl2·6H2O)(20g/L)和H3BO3(45g/L)的水溶液组成,再加入1M的H2SO4溶液调节PH值为PH=2.5。电沉积条件为:外加直流电压0.2V,沉积温度为25℃(室温),沉积时间为240分钟;第二,采用磁控溅射预制In薄膜和硫化热处理工艺在镍金属纳米线上沉积β—In2S3薄膜。溅射功率为120W,硫化热处理温度为450℃,溅射气体压强在0.5Pa,溅射时间是6min;第三,在真空环境中,以钼金属颗粒和硫粉末为原料,利用双源蒸发法在N型β—In2S3薄膜上沉积MoS2薄膜,通过调节钼金属蒸发的电子束流大小、硫粉末蒸发的温度以及生长时间使原子和原子的含量之比为1:2,Mo原子和S原子在加热的β—In2S3薄膜上反应生成MoS2分子,获得层数可控的MoS2薄膜;第四,利用化学浴沉积在缓冲层MoS2上沉积P型硫化亚锡(SnS)薄膜,将氯化亚锡(SnCl2·2H2O)溶解于适量的丙酮当中,然后加入体积比为60%的三乙醇胺溶液并搅拌使之均匀混合,待溶液中出现了白色絮状物时,给溶液中加入一定浓度的硫代乙酰胺溶液,并搅拌均匀。接着通过加入适量的氨水和氯化铵缓冲溶液来调节反应溶液的pH值。最后,用去离子水把溶液体积调节到250ml。将盛有反应溶液的烧杯置于85-2型恒温磁力搅拌器上,在室温下搅拌均匀,然后把沉积有二硫化钼薄膜的样品垂直插入反应溶液中进行SnS薄膜沉积,然后将SnS薄膜样品在300℃退火0.5h。最后,利用丝网印刷法在硫化亚锡薄膜上沉积金属银(Ag)电极。
实施例四:
首先,利用直流电化学沉积法在硅片基底上沉积钴金属纳米线。电解液由硫酸钴(CoSO4·7H2O)(100g/L)和H3BO3(45g/L)的水溶液组成,再加入1M的H2SO4溶液调节PH值为PH=2.5。电沉积条件为:外加直流电压1.6V,沉积温度为25℃(室温),沉积时间为120分钟;第二,利用超声喷雾法在硅片基底上沉积N型β—In2S3薄膜,采用氯化铟(InCl3·4H2O)和硫脲作为In源和S源,按In/S摩尔浓度比1∶5配制50ml溶液,取In离子的摩尔浓度为60mmol/L,通过压电陶瓷晶片雾化器将配制的溶液雾化,雾化速率为100ml/h,高纯氮气流量控5L/min,生长In2S3薄膜30min,生长温度控制在310℃,生长完成后继续通氮气作为保护气,在380℃下原位退火45min。后续RTP热处理分别在450℃,550℃温度下进行,保温时间2.5min,然后随炉冷却。整个RTP热处理过程使用Ar气作为保护气氛;第三,以MoS2粉末为原料,以氩气为携载气体,在500℃温度范围内利用热蒸发法在β—In2S3薄膜表面沉积MoS2薄膜,沉积时间45min;第四,利用化学浴沉积在缓冲层MoS2上沉积P型硫化亚锡(SnS)薄膜,将氯化亚锡(SnCl2·2H2O)溶解于适量的丙酮当中,然后加入体积比为60%的三乙醇胺溶液并搅拌使之均匀混合,待溶液中出现了白色絮状物时,给溶液中加入一定浓度的硫代乙酰胺溶液,并搅拌均匀。接着通过加入适量的氨水和氯化铵缓冲溶液来调节反应溶液的pH值。最后,用去离子水把溶液体积调节到250ml。将盛有反应溶液的烧杯置于85-2型恒温磁力搅拌器上,在室温下搅拌均匀,然后把沉积有二硫化钼薄膜的样品垂直插入反应溶液中进行SnS薄膜沉积,然后将SnS薄膜样品在250℃退火2h。最后,利用丝网印刷法在硫化亚锡薄膜上沉积金属铝(Al)电极。

Claims (5)

1.一种硫化亚锡和硫化铟薄膜太阳能电池,其特征在于,所述太阳能电池的结构从下至上依次为基底、金属纳米线、N型β—硫化铟窗口层、二硫化钼缓冲层、P型硫化亚锡吸收层、金属电极。
2.根据权利要求1所述的薄膜太阳能电池,其特征在于,所述基底为玻璃或硅片或有机柔性塑料。
3.根据权利要求1所述的薄膜太阳能电池,其特征在于,所述金属纳米线为银或铜或镍或钴纳米线。
4.根据权利要求1所述的薄膜太阳能电池,其特征在于,所述金属电极为银或铝电极。
5.一种如权利要求1所述的薄膜太阳能电池的制备方法,其特征在于,取一块干净的基底,利用直流电化学沉积法在基底上沉积金属纳米线,然后利用真空蒸发法或超声喷雾法或磁控溅射法或化学浴法在金属纳米线上沉积N型β—硫化铟,在N型β—硫化铟上利用双源蒸发法或脉冲电沉积法或化学气相沉积法沉积二硫化钼薄膜,在二硫化钼薄膜上利用超声喷雾法或真空蒸发法或化学浴沉积法沉积P型硫化亚锡薄膜,最后在硫化亚锡薄膜上丝网印刷金属电极。
CN201610001487.4A 2016-01-05 2016-01-05 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法 Pending CN105655421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610001487.4A CN105655421A (zh) 2016-01-05 2016-01-05 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610001487.4A CN105655421A (zh) 2016-01-05 2016-01-05 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN105655421A true CN105655421A (zh) 2016-06-08

Family

ID=56491286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610001487.4A Pending CN105655421A (zh) 2016-01-05 2016-01-05 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105655421A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409935A (zh) * 2016-10-19 2017-02-15 华中科技大学 一种MoO3/MoS2/LiF柔性异质结太阳能电池及其制备方法
CN110444622A (zh) * 2019-06-26 2019-11-12 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池窗口层的制备方法
CN112126959A (zh) * 2020-08-13 2020-12-25 法尔胜泓昇集团有限公司 一种基于电化学沉积的二硫化钼防腐涂层及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617165A (zh) * 2015-01-23 2015-05-13 中国石油大学(华东) 一种二硫化钼/缓冲层/硅n-i-p太阳能电池器件及其制备方法
CN205319168U (zh) * 2016-01-05 2016-06-15 湖南师范大学 一种硫化亚锡和硫化铟薄膜太阳能电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617165A (zh) * 2015-01-23 2015-05-13 中国石油大学(华东) 一种二硫化钼/缓冲层/硅n-i-p太阳能电池器件及其制备方法
CN205319168U (zh) * 2016-01-05 2016-06-15 湖南师范大学 一种硫化亚锡和硫化铟薄膜太阳能电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANIS AKKARI•CATHY GUASCH•MICHEL CASTAGNE•NAJOUA KAMOUN-TURKI: ""Optical study of zinc blend SnS and cubic In2S3:Al thin films prepared by chemical bath deposition"", 《SPRINGER》 *
邱浩,王欣然: ""二硫化钼的电子输运与器件"", 《南京大学学报(自然科学)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409935A (zh) * 2016-10-19 2017-02-15 华中科技大学 一种MoO3/MoS2/LiF柔性异质结太阳能电池及其制备方法
CN106409935B (zh) * 2016-10-19 2017-10-24 华中科技大学 一种MoO3/MoS2/LiF柔性异质结太阳能电池及其制备方法
CN110444622A (zh) * 2019-06-26 2019-11-12 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池窗口层的制备方法
CN112126959A (zh) * 2020-08-13 2020-12-25 法尔胜泓昇集团有限公司 一种基于电化学沉积的二硫化钼防腐涂层及其制备工艺

Similar Documents

Publication Publication Date Title
CN101789469B (zh) 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
US7838403B1 (en) Spray pyrolysis for large-scale production of chalcopyrite absorber layer in photovoltaic devices
CN101527332B (zh) 一种高效薄膜太阳能电池光吸收层的制备方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN102637755B (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
CN103746034A (zh) 一种通过界面改性制备铜锌锡硫类薄膜太阳能电池的方法
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
CN103762257A (zh) 铜锌锡硫吸收层薄膜及铜锌锡硫太阳能电池的制备方法
CN105655421A (zh) 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法
CN104465807A (zh) 一种czts纳米阵列薄膜太阳能光伏电池及其制备方法
CN102694077A (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN102437237A (zh) 黄铜矿型薄膜太阳能电池及其制造方法
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: a review on high throughput processed methods
CN104465810A (zh) 具有上转换层的铜锌锡硫硒类薄膜太阳能电池及其制备方法
CN103602982A (zh) 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
CN109638096A (zh) 一种化合物半导体薄膜太阳能电池制备方法
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN103715280B (zh) 一种微米/纳米二级阵列结构薄膜太阳能电池及其制备方法
Nagamalleswari et al. EFFECT OF TIN PRECURSORS ON THE DEPOSITION OF Cu 2 ZnSnS 4 THIN FILMS.
CN102912322B (zh) 一种化学浴沉积并硫化制备二硫化铁薄膜的方法
CN104600144A (zh) 基于体异质结结构吸光层的高效铜铟镓硒薄膜光电池
CN102629632B (zh) 一种cigs纳米结构薄膜光伏电池及其制备方法
CN205319168U (zh) 一种硫化亚锡和硫化铟薄膜太阳能电池
CN102024858B (zh) 油墨、薄膜太阳能电池及其制造方法
CN103194726A (zh) 一种铜铟镓硒薄膜的制造工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160608

WD01 Invention patent application deemed withdrawn after publication