CN110691627A - 用于辐射疗法的距离补偿器 - Google Patents

用于辐射疗法的距离补偿器 Download PDF

Info

Publication number
CN110691627A
CN110691627A CN201880035124.XA CN201880035124A CN110691627A CN 110691627 A CN110691627 A CN 110691627A CN 201880035124 A CN201880035124 A CN 201880035124A CN 110691627 A CN110691627 A CN 110691627A
Authority
CN
China
Prior art keywords
distance
patient
compensator
compensators
distance compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880035124.XA
Other languages
English (en)
Inventor
E·阿贝尔
C·赞克维斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Medical Systems Inc filed Critical Varian Medical Systems Inc
Publication of CN110691627A publication Critical patent/CN110691627A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1096Elements inserted into the radiation path placed on the patient, e.g. bags, bolus, compensators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1097Means for immobilizing the patient

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种用于在辐射疗法期间治疗患者的系统,包括距离补偿器。所述距离补偿器中的每一个使由从辐射治疗系统的喷嘴发射的射束递送到所述患者的剂量的分布成形。定位部件将所述距离补偿器相对于所述患者保持在适当位置,使得所述距离补偿器位于所述射束的路径上。

Description

用于辐射疗法的距离补偿器
背景技术
使用辐射疗法治疗癌症是众所周知的。通常,辐射疗法涉及将高能辐射射束引导到患者体内的目标(例如,肿瘤或病灶)中。
除其他部件之外,辐射疗法装置通常包括支撑患者的平台(例如,桌子或睡椅)以及发射辐射射束的喷嘴。患者处于例如仰卧位置,并且喷嘴将射束引导到目标(例如,正被治疗的肿瘤)中。
在治疗期间,重要的是要使患者尽可能保持静止(固定),以便使射束保持指向目标并且指向目标内的适当位置。否则,辐射射束可能会错过目标的某些部分,或者会降落在目标外部的正常(健康)组织上。锁定或固定装置用于固定患者的位置,并使患者在放射疗法期间保持静止。
标准治疗过程包括:在治疗之前对患者进行扫描和成像,以检测内部器官并定位目标(例如,肿瘤)。设计为患者定制的固定装置,并生成治疗计划。将固定装置的设计发送给制造商。将所制造的固定装置递送到治疗中心,在治疗中心处,在开始放射疗法之前对它们进行测试。如果需要改动,则重复与制造商交互的过程。然后患者返回并且可开始治疗。
由于多种原因,上文描述的常规方法是有问题的。首先,需要多次患者就诊—治疗前至少需要就诊一次以便设计固定装置。而且,制造商参与的需要增加了成本。另外,在从制造商运送固定装置以及可能地将固定装置运送回制造商时会浪费时间。
而且在治疗期间,喷嘴和/或患者通常相对于彼此移动,使得可从不同的方向/角度(射束几何)将射束引导到目标中。目标可能具有不规则的形状,并且/或者射束路径上的正常健康组织的量(深度)可根据射束几何而变化。总体上,可能必须根据目标的形状和深度以及射束几何来使由射束递送的剂量分布成形。
距离补偿器用于改变(例如,减小)射束中的粒子的能量,以影响射束穿透到目标中的距离。距离补偿器可位于喷嘴之前的粒子加速器的下游或位于喷嘴本身中。
最近的辐射生物学研究已经证明在单个短暂的时间段内将全部的相对高的治疗性辐射剂量递送到目标的效用。这种类型的指令在本文中总体上称为FLASH辐射疗法(FLASH RT)。迄今为止的证据表明当正常健康组织暴露于仅单次辐照达仅非常短暂的时间段时,FLASH RT有利地使所述组织免受损害。总体上,由于与FLASH RT相关联的较高剂量率,因此期望使辐照目标外部的正常健康组织的时间的量最小化。实现这一点的手段是制定辐射治疗计划,在此计划中,射束在目标外部不重叠或尽可能少地重叠。在FLASH RT的情况下,将喷嘴的方向/角度设置为使得喷嘴瞄准目标;调整距离补偿器以考虑射束能量、到目标的距离、以及目标的形状(跨越目标的距离);然后将射束打开并将其迅速关闭。此过程针对下一射束几何重复。为了出于患者舒适度而减少总治疗时间,期望能够针对不同的射束几何快速调整距离补偿器。
发明内容
在实施方案中,一种用于辐射疗法期间限制患者在患者支撑装置上的移动的固定装置包括距离补偿器和定位部件。距离补偿器使由从辐射治疗系统的喷嘴发射的射束递送给患者的剂量的分布成形。剂量分布跨目标可以是相对均匀的或者可以是不均匀的(例如,分布可包括布拉格峰)。定位部件将固定装置相对于患者保持在适当位置。实际上,在一个或多个此这样的实施方案中,距离补偿器从辐射治疗系统的喷嘴移动到固定装置。固定装置的这种多功能方面可改善辐射治疗并降低成本。
固定装置可使用三维打印机来制造。因此,可在现场容易、快速、廉价且有效地产生患者特定的装置而无需外部制造商,从而避免了从制造商运送以及可能地运送回制造商。患者就诊的次数可减少,因为例如可在患者接受治疗时制造固定装置,和/或因为可在针对拟合性和/或功能进行测试之后或在执行辐射治疗时现场快速修改固定装置。另外,固定装置可循环使用并且不需要储存,这有助于节省成本。
在实施方案中,一种用于在辐射疗法期间治疗患者的系统包括多个距离补偿器。实际上,每个距离补偿器定位在患者身上。至少一个定位部件相对于患者将距离补偿器保持在适当位置,使得每个距离补偿器位于从辐射治疗系统的喷嘴发射的射束的路径上。在实施方案中,距离补偿器中的至少一个是诸如前述固定装置的固定装置的一部分。距离补偿器中的每一个使由射束递送到患者的剂量的分布成形。剂量分布跨目标可以是相对均匀的或者可以是不均匀的(例如,分布可包括布拉格峰)。实际上,在实施方案中,距离补偿器从辐射治疗系统的射束递送系统(例如,从喷嘴)移动到患者身上的位置。
在另一实施方案中,一种计算机实现的辐射治疗计划方法包括:从计算机的存储器访问辐射治疗计划的参数。参数包括例如射束的数量以及射束相对于患者在患者支撑装置上的位置的路径。标识距离补偿器在患者身上的位置。具体地,每个距离补偿器位于患者身上,使得每个距离补偿器位于射束路径中的至少一个上。
在另一实施方案中,一种计算机实现的辐射治疗计划方法包括:从计算机的存储器访问辐射治疗计划,辐射治疗计划规定将由从辐射治疗系统的喷嘴发射的多个射束递送到患者体内的目标的剂量的分布。控制喷嘴以将射束瞄准定位在患者身上的不同位置处的距离补偿器。将喷嘴瞄准第一距离补偿器,然后打开第一射束并将其朝向第一距离补偿器发射。然后关闭第一射束,将喷嘴瞄准第二距离补偿器,再打开第二射束并将其朝向第二距离补偿器发射。此过程可针对多个射束中的每一个重复。
根据本发明的实施方案中的距离补偿器可代替常规距离补偿器但也可与常规距离补偿器结合用于使目标中的剂量分布成形。通过策略性地将距离补偿器定位在患者身上,可容易适应不同的射束几何。在射束几何改变时,不必等到距离补偿器被调整;相反,正确配置的距离补偿器已在适当位置。因此,可快速地执行辐射疗法,从而有利于患者舒适度。根据本发明的实施方案中的距离补偿器还可用于在目标内部提供规定剂量,并且因此可通过使得更易于解决使用FLASH RT的辐射治疗计划的这一方面而促进计划。
阅读以下详细描述后,本领域技术人员将认识到在各种附图中示出的根据本发明的实施方案的这些和其他目标和优点。
此发明内容提供用于以简化的形式介绍下面在以下详细描述中进一步描述的一些概念。此发明内容并不意图明确所要求保护的主题的关键特征或基本特征,也不意图用于限制所要求保护的主题的范围。
附图说明
并入本说明书中并形成本说明书一部分并且其中相似数字描绘相似元件的附图示出本公开的实施方案,并且连同详细描述一起用于解释本公开的原理。
图1示出可在其上实现本文描述的实施方案的计算系统的实例的框图。
图2是示出可在其上实现根据本发明的实施方案的辐射治疗系统的选定部件的框图。
图3示出根据本发明的实施方案中的辐射治疗系统的元件。
图4是示出根据本发明的实施方案中的用于制造固定装置的过程中的部件的框图。
图5A、图5B、图5C和图5D示出根据本发明的实施方案中的固定装置。
图6是根据本发明的实施方案中的用于产生固定装置的计算机实现的操作的实例的流程图。
图7是根据本发明的实施方案中的用于执行辐射治疗的计算机实现的操作的实例的流程图。
图8A是根据本发明的实施方案中的用于在辐射疗法期间治疗患者的系统。
图8B是根据本发明的实施方案中的射束几何的实例的透视图。
图8C示出根据本发明的实施方案中的射束几何的实例的透视图。
图9是根据本发明的实施方案中的用于辐射治疗计划的计算机实现的操作的实例的流程图。
图10是根据本发明的实施方案中的用于辐射治疗的计算机实现的操作的实例的流程图。
具体实施方式
现在将详细参考本公开的各种实施方案,所述实施方案的实例在附图中示出。虽然结合这些实施方案进行描述,但是应当理解,它们并不意图将本公开局限于这些实施方案。相反,本公开意图涵盖替代方案、修改方案和等效方案,它们可包括在由所附权利要求限定的本公开的精神和范围内。此外,在本公开的以下详细描述中,阐述众多具体细节以便提供对本公开的透彻理解。然而,应当理解,本公开可在没有这些具体细节的情况下实践。在其他情况下,未对众所周知的方法、规程、部件和电路进行详细描述,以免不必要地混淆本公开的方面。
以下的详细描述的一些部分以规程、逻辑块、处理和对计算机存储器内的数据位的操作的其他象征性表示来呈现。这些描述和表示是数据处理领域中的技术人员用来最有效地将他们的工作要旨传达给本领域中的其他技术人员的手段。在本申请中,规程、逻辑块、过程等被构思为导致期望结果的自相一致的顺序的步骤或指令。这些步骤是利用物理量的物理操纵的步骤。通常,尽管不是必要的,但是这些量采用能够在计算系统中存储、传送、组合、比较以及以其他方式操纵的电信号或磁信号的形式。已经证明主要出于一般用法的原因而将这些信号称为事务、位、值、元素、符号、字符、样本、像素等有时是方便的。
然而,应当牢记于心,所有这些术语和类似术语都将与适当的物理量相关联并且仅仅是应用于这些量的方便标签。除非另外具体陈述,否则如根据以下讨论清楚的,应当理解,贯穿本公开,利用诸如“访问”、“控制”、“标识”、“瞄准”、“打开”、“关闭”等的术语的讨论是指计算系统或类似电子计算装置或处理器(例如,图1的计算系统100)的动作和过程(例如,图6、图7、图9和图10的流程图)。计算系统或类似电子计算装置对计算系统存储器、寄存器或其他这样的信息存储、传输或显示装置内的表示为物理(电子)量的数据进行操纵和变换。诸如“剂量”或“能量”的术语总体上是指剂量或能量值;此类术语的使用根据周围讨论的背景将是清楚的。
就方法呈现并讨论以下详细描述的部分。尽管在本文的描述这种方法的操作的附图(例如、图6、图7、图9和图10)中公开步骤及其排序,但此类步骤和排序是示例性的。实施方案非常适于执行各种其他步骤或本文中的附图的流程图中所列举的步骤的变体以及以与本文所描绘和描述不同的顺序来执行。
本文所述的实施方案可在由一个或多个计算机或其他装置执行的驻留在某种形式的计算机可读存储介质(诸如程序模块)上的计算机可执行指令的一般背景下讨论。通过举例而非限制的方式,计算机可读存储介质可包括非暂时性计算机存储介质和通信介质。总体上,程序模块包括执行特定任务或实施特定抽象数据类型的例行程式、程序、对象、部件、数据结构等。在各种实施方案中,程序模块的功能性可根据需要来结合或分布。
计算机存储介质包括以任何信息存储方法或技术实现的易失性的和非易失性的、可移动的和不可移动的介质,诸如计算机可读指令、数据结构、程序模块或其他数据。计算机存储介质包括但不限于随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、快闪存储器或其他存储器技术、光盘ROM(CD-ROM)、数字通用光盘(DVD)或其他光学存储装置、磁盒、磁带、磁盘存储装置或其他磁性存储装置,或可用来存储期望信息且可被访问以检索所述信息的任何其他介质。
通信介质可具体体现计算机可执行指令、数据结构和程序模块,并且包括任何信息递送介质。通过举例而非限制的方式,通信介质包括有线介质(诸如有线网络或直接有线连接)和无线介质(诸如声学、射频(RF)、红外线以及其他无线介质)。上述内容中的任一项的组合也可包括在计算机可读介质的范围内。
图1示出可在其上实现本文描述的实施方案的计算系统100的实例的框图。在系统100的最基本配置中,系统100包括至少一个处理单元102和存储器104。这种最基本配置在图1中由虚线106示出。系统100还可具有另外的特征和/或功能性。例如,系统100还可包括另外的存储装置(可移动的和/或不可移动的),包括但不限于磁性或光学盘或带。这种另外的存储装置在图1中由可移动存储装置108和不可移动存储装置120示出。系统100还可包含一个或多个通信连接122,其允许装置与其他装置通信,例如在使用到一个或多个远程计算机的逻辑连接的联网环境中。
系统100还包括一个或多个输入装置124,诸如键盘、鼠标、笔、语音输入装置、触摸输入装置等。还包括一个或多个输出装置126,诸如显示装置、扬声器、打印机等。
在图1的实例中,存储器104包括计算机可读指令、数据结构、程序模块等。根据系统100的使用方式,系统100—通过执行适当的指令等—可用于实现计划系统,所述计划系统用于使用三维(3D)打印机形成固定装置;可用作实现在辐射治疗系统中的辐射治疗计划的控制系统;或可用于实现用于辐射治疗计划的系统。
图2是示出可在其上实现根据本发明的实施方案的辐射治疗系统200的选定部件的框图。在图2的实例中,系统200包括生成射束201和/或使射束201加速的加速度计和射束传送系统204。根据本发明的实施方案可生成并递送质子射束、电子射束、中子射束、光子射束、离子射束或原子核射束(例如,使用诸如碳、氦或锂的元素)。加速度计和射束传送系统204的操作和参数被控制以使得根据辐射治疗计划在患者的治疗期间动态地调制或控制射束的强度、能量、大小和/或形状。
最近的辐射生物学研究已经证明在单个短暂的时间段内将全部的相对高的治疗性辐射剂量递送到目标的效用。这种类型的指令在本文中总体上称为FLASH辐射疗法(FLASH RT)。迄今为止的证据表明当正常健康组织暴露于仅单次辐照达仅非常短暂的时间段时,FLASH RT有利地使所述组织免受损害。对于FLASH RT,加速度计和射束传送系统204可生成能够在短于一秒内递送至少四(4)戈瑞(Gy)并且可在短于一秒内递送至多20Gy或50Gy或更多的射束。
喷嘴206用于将射束朝向在治疗室中支撑在患者支撑装置208(例如,椅子、睡椅或桌子)上的患者内的各种位置(目标)瞄准。目标可以是器官、器官的一部分(例如,器官内的一定体积或区域)、肿瘤、患病组织或患者外形。
喷嘴206可安装在机架(图3)上或是其一部分,机架可相对于患者支撑装置208移动,患者支撑装置208也是可移动的。在实施方案中,加速度计和射束传送系统204也安装在机架上或是其一部分;在另一实施方案中,加速度计和射束传送系统与机架分离(但与其通信)。
图2的控制系统210接收并实现规定治疗计划。在实施方案中,控制系统210包括计算系统,其具有处理器、存储器、输入装置(例如,键盘)、可能还有显示器;图1的系统100是用于控制系统210的平台的实例。控制系统210可接收关于系统200的操作的数据。根据控制系统210接收的数据并且根据辐射治疗计划,控制系统210可控制加速度计和射束传送系统204、喷嘴206和患者支撑装置208的参数,包括诸如射束的能量、强度、大小和/或形状、喷嘴的方向、以及患者支撑装置(和患者)相对于喷嘴的位置的参数。
包括用于辐射疗法的距离补偿器的固定装置
图3示出根据本发明的实施方案中的用于治疗患者304的辐射治疗系统300的元件。系统300是例如图2的辐射治疗系统200的实现方式的实例。在实施方案中,机架302和喷嘴306可沿患者304的长度上下移动和/或在患者周围移动,并且机架和喷嘴可彼此独立地移动。在实施方案中,患者支撑装置308可相对于机架302和喷嘴306移动到不同的位置、围绕其纵向轴线旋转、围绕中心(法向)轴线旋转、和/或围绕横向轴线来回倾斜。尽管在图3的实例中患者304是仰卧的,但是本发明不限于此。例如,患者304可替代地坐在椅子上。
在根据本发明的实施方案中,在辐射疗法期间,固定装置320邻近患者支撑装置308上的患者304并抵靠患者304放置。图3的实例中所示的固定装置320的放置以及装置的形状和相对大小仅是实例。在实施方案中,固定装置320由患者304穿戴。固定装置320可被定制设计为拟合患者304的身体轮廓。总体上,固定装置320是患者特定的装置。也就是说,固定装置320是针对单个患者设计的并且由单个患者使用。
固定装置320有助于确立患者304在患者支撑装置308上的固定的限定位置,并且还有助于确立患者的体位(例如,姿势)。固定装置还有助于在辐射治疗环节进程期间维持患者处于所确立的位置和体位,并在随后的治疗环节中重新确立并维持患者的位置和体位。在根据本发明的实施方案中,固定装置320具有提供这些功能性的形状。此类形状在本领域是已知的。
常规地,固定装置被放置成使得它不妨碍射束的路径。相比之下,在根据本发明的实施方案中,固定装置320在射束路径中放置在喷嘴306与患者304体内的目标之间,使得射束在其到达目标的路上穿过固定装置。
因此,在实施方案中,固定装置320的另一目的是确保辐射射束从喷嘴306到患者304内部的目标的任何路径都将行进穿过基本上相同的有效物质厚度。也就是说,根据患者身体的形状、目标在患者体内的位置以及目标的形状,如果不针对这些变量进行补偿的话,射束可穿过不同量(深度)的组织。类似地,具有平行路径的两个或更多个射束可各自穿过不同量的组织。固定装置320的形状可被设计来针对这些类型的差异进行补偿。因此,对于射束(诸如质子射束、电子射束、中子射束、光子射束、离子射束和原子核射束),可使用穿过固定装置320的一个或多个射束跨目标的长度(深度)递送均匀(或几乎均匀)的剂量。
而且,对于质子射束和离子射束,固定装置320可被设计来将射束的布拉格峰定位在目标内部。具体地,可将布拉格峰定位在目标的远侧部分或边缘处,并且然后通过改变射束能量而将布拉格峰沿射束路径朝向目标的近侧边缘移动,以实现展宽布拉格峰(SOBP)。而且,如将要描述的(参见图5A),固定装置320的形状可被设计来实现SOBP。
图3的固定装置320可有利地与FLASH RT一起使用,尽管本发明不限于此。总体上,由于如上文所提及的与FLASH RT相关联的较高剂量率,因此期望使辐照目标外部的正常健康组织的时间的量最小化。实现这一点的手段是制定辐射治疗计划,在此计划中,射束在目标外部不重叠或尽可能少地重叠。实现这一点的另一种手段是在辐射治疗计划期间指定目标外部的正常健康组织的最大辐照时间和最小剂量率的限制。然而,仍然必须将规定剂量递送到目标中且跨目标均匀地递送。根据本发明的实施方案中的固定装置可将均匀剂量提供到目标内并且跨目标提供,并且因此可通过解决计划的这一方面或有助于解决计划的这一方面来促进使用FLASH RT的辐射治疗计划。
如上文所提及,固定装置可通过使用3D打印机进行3D打印来制造。图4是示出根据本发明的实施方案中的用于制造固定装置的过程400中的部件的框图。
在图4的实例中,使用图像系统402对患者(例如,患者304)成像,所述图像系统402使用例如X射线、磁共振成像(MRI)和计算机断层摄影(CT)。当使用例如CT或MRI成像时,将从3D体积获取一系列二维(2D)图像。每个2D图像都是3D体积的截面“切片”的图像。可将所得的2D截面切片集合进行组合以创建患者解剖结构(例如,内部器官)的3D模型或重建。3D模型将包含可称为感兴趣结构的感兴趣器官。那些感兴趣器官包括靶向用于辐射疗法的器官(目标)、以及在治疗期间会面临辐射暴露风险的其他器官。
3D模型的一个目的是制定辐射治疗计划。为了制定患者特定的辐射治疗计划,从3D模型提取信息以确定参数,诸如器官形状、器官体积、肿瘤形状、肿瘤在器官中的位置、以及其他若干感兴趣结构的位置或取向,因为它们与受影响的器官和任何肿瘤有关。辐射治疗计划可指定例如要使用多少个辐射射束以及每个射束将从哪个角度递送。
在根据本发明的实施方案中,来自图像系统402的图像被输入到计划系统404。在实施方案中,计划系统404包括计算系统,其具有处理器、存储器、输入装置(例如,键盘)和显示器。图1的系统100是用于计划系统404的平台的实例。
继续参考图4,计划系统404执行软件,所述软件能够产生用于针对患者304和为患者设计的治疗计划定制的一个或多个固定装置的打印计划。所述软件本身可将图像系统402的输出(例如,3D模型)转变为3D打印机406可使用的文件。可替代地,软件可由设计者用于基于图像系统402的输出并且还基于治疗计划产生此类文件。印刷计划可以是用于固定装置的设计,或者可以是可用于制造固定装置的模具的设计。计划系统404将文件输出到产生一个或多个固定装置和/或模具的3D打印机406。
固定装置320可由3D打印机406使用适合于这种装置的一系列不同材料(也就是说,使用具有必要放射特性的材料)来产生。如果3D打印机406无法使用此类材料,那么它可替代地产生可用于产生由合适材料制成的固定装置的模具。固定装置320可3D打印为单件,或者可3D打印为随后组装的多件。
可在将如此产生的固定装置320用于患者之前,作为质量保证计划的一部分检查和测试所述装置。如果固定装置320在某些方面不足,则可调整打印计划以在使用固定装置之前校正不足。
过程400的一些或全部可在现场(例如,在治疗中心)实现。因此,可在现场容易、快速、廉价且有效地产生患者特定的装置而无需外部制造商,从而避免了从制造商运送以及可能地运送回制造商。患者就诊的次数可减少,因为例如可在患者接受治疗时制造固定装置,和/或因为可在针对拟合性和/或功能进行测试之后或在执行辐射治疗时现场快速修改固定装置。另外,固定装置可循环使用并且不需要储存。
图5A示出根据本发明的实施方案中的可3D打印的固定装置502。固定装置502是图3的固定装置320的实例。固定装置502包括距离补偿器504和定位部件506。总体上固定装置502,并且特别地距离补偿器504和定位部件506,可由包括金属或塑料的任何合适的材料或材料组合制成。
如上文所讨论,固定装置502是被设计或配置来将患者保持在适当位置的患者特定的装置。固定装置502还可被设计或配置来针对不同射束可行进穿过的组织量的差异进行补偿,以跨患者体内的目标提供均匀剂量。此外,在实施方案中,固定装置502(具体地,距离补偿器504)被设计或配置来使递送给患者的剂量的分布成形。在实施方案中,治疗射束是质子射束或离子射束,并且距离补偿器504被配置来将射束的布拉格峰定位在患者体内的目标内部。在一个这样的实施方案中,距离补偿器504被配置来将布拉格峰定位在目标的远侧部分或边缘处。
距离补偿器504的形状可被设计成使得通过将射束引导穿过距离补偿器的不同部分,而可使质子射束或离子射束的布拉格峰在目标内移动。例如,如图5A的实例所示,距离补偿器504具有面向传入射束的不均匀表面。因此,距离补偿器504的厚度(其中厚度是在射束路径的方向上测量的)是不均匀的。因此,通过将射束瞄准距离补偿器504的一部分,再瞄准另一部分,依此类推,可使布拉格峰在目标中的位置沿射束路径在目标的远侧部分与近侧部分之间移动,从而产生SOBP。也就是说,通过将射束瞄准距离补偿器504的不同部分,由此影响射束中的粒子的能量,从而影响粒子穿透到目标中的距离并且移动布拉格峰在目标中的位置以产生SOBP,可在射束的路径中放置不同厚度的材料。SOBP还可通过使用加速度计和射束传送系统204(图2)改变入射射束的能量来实现。
继续参考图5A,定位部件506将固定装置502相对于患者保持在适当位置。也就是说,定位部件506将固定装置502保持在患者身上,其方式为使得:如果患者移动,则固定装置也移动,使得固定装置在患者身上的相同位置。
在实施方案中,定位部件506将固定装置502紧固到患者。例如,如图5B所示,定位部件506可由带子组成或包括带子,所述带子可围绕患者延伸(未示出)以抵靠患者将固定装置502(具体地,距离补偿器504)保持在适当位置。固定装置502的面向患者的表面可被轮廓化以匹配患者身体的轮廓。
在另一实施方案中,参考图5C,定位部件506附接到患者(未示出)所穿戴的物品508。例如,患者可穿戴包括紧固件(例如,卡扣件或
Figure BDA0002291360930000141
)的服装,所述紧固件与定位部件506的对应紧固件相配合,以将固定装置502(具体地,距离补偿器504)保持在适当位置。
在实施方案中,参考图5D,距离补偿器504和定位部件506被制造为单件。
图6是根据本发明的实施方案中的用于产生固定装置的计算机实现的操作的实例的流程图600,所述固定装置用于在辐射疗法期间限制患者在患者支撑装置上的移动。流程图600可实现为驻留在某种形式的计算机可读存储介质上的计算机可执行指令(例如,使用图1的计算系统100)。
在图6的框602中,从计算系统的存储器访问用于固定装置的打印计划。固定装置包括诸如上文结合图3和图5A至图5D所述的那些的特征。另外的信息参考图4提供。
在图6的框604中,使用打印计划控制3D打印机以制造固定装置。另外的信息参考图4提供。
图7是根据本发明的实施方案中的用于执行辐射治疗的计算机实现的操作的实例的流程图700。流程图700可实现为驻留在某种形式的计算机可读存储介质上的计算机可执行指令(例如,使用图1的计算系统100)。
在图7的框702中,从计算系统的存储器访问辐射治疗计划。辐射治疗计划规定将要由从辐射治疗系统的喷嘴发射的入射射束递送到患者体内的目标的剂量或剂量分布。
在根据本发明的实施方案中,使用剂量阈值曲线指定辐射治疗计划的限制。剂量阈值曲线根据剂量率或辐照时间提供正常(健康)组织保护剂量。剂量阈值曲线可以是组织相关的。比如,肺的剂量阈值曲线可不同于脑的剂量阈值曲线。一个或多个适当的剂量阈值曲线可用于确立辐射治疗计划的剂量限制。例如,可使用适当(例如,组织相关)的剂量阈值曲线来确定射束方向(机架角度)。
剂量限制可包括但不限于:目标中的每个子体积(体素)的辐照时间的限制(例如,对于目标组织的每个体素,短于x1秒的治疗时间);目标外部的每个子体积(体素)的辐照时间的限制(例如,对于正常组织的每个体素,短于x2秒的治疗时间;x1和x2可以相同或不同);目标中的每个子体积(体素)的剂量率的限制(例如,对于目标组织的每个体素,大于y1Gy/sec的剂量率);以及目标外部的每个子体积(体素)的剂量率的限制(例如,对于正常组织的每个体素,大于y2 Gy/sec的剂量率;y1和y2可以相同或不同)。总体上,这些限制意图使正常组织被辐照的时间量最小化。
在框704中,根据治疗计划控制喷嘴以将射束瞄准固定装置,所述固定装置类似于如图3和图5A至图5D所示的固定装置。
概括地说,根据本发明的实施方案提供改进的多功能的固定装置。除了使患者固定之外,所述装置还可用于使患者体内的目标的剂量分布成形。在实施方案中,固定装置包括距离补偿器。实际上,在实施方案中,距离补偿器从辐射治疗系统的喷嘴移动到固定装置。固定装置的多功能方面可改善辐射治疗并降低成本。固定装置可以是3D打印的,这也可以提供许多益处,如上文所解释。
定位在患者身上以用于辐射疗法的距离补偿器
图8A是根据本发明的实施方案中的用于在辐射疗法期间治疗患者804的系统800。系统800包括一个或多个距离补偿器(由距离补偿器802例示)和一个或多个定位部件(由定位部件806例示)。实际上,每个距离补偿器定位在患者804身上。定位部件806相对于患者804将距离补偿器802保持在适当位置,使得在辐射疗法期间距离补偿器位于从辐射治疗系统的喷嘴发射的射束的路径上。
每个距离补偿器使由射束递送给患者804的剂量的分布成形。剂量分布跨目标可以是相对均匀的或者可以是不均匀的(例如,分布可包括布拉格峰)。每个距离补偿器可在目标中产生不同的剂量分布。实际上,常规地位于例如辐射治疗系统的喷嘴中的距离补偿器移动到患者804身上的位置。结合图5A、图5B、图5C和图5D描述的距离补偿器是距离补偿器802的实例。如本文先前所述,一个或多个距离补偿器和一个或多个定位部件可以是固定装置的部分。如本文先前所述,距离补偿器和定位部件可3D打印。
在实施方案中,所有距离补偿器利用单个定位部件保持在患者804身上的适当位置。例如,定位部件可以是患者804穿戴的皮带,并且每个距离补偿器可紧固到皮带。在另一实施方案中,距离补偿器由相应定位部件单独地保持在适当位置,如结合图5A、图5B、图5C和图5D所述。
在操作中,将喷嘴瞄准距离补偿器中的第一个并打开射束,从而沿射束路径将分布的剂量递送到目标。也就是说,射束的路径穿过第一距离补偿器,所述第一距离补偿器根据第一距离补偿器的设计影响射束以在目标中产生特定的剂量分布。如上文所述,第一距离补偿器可具有面向射束的不均匀表面。在那种情况下,射束可跨距离补偿器的表面扫描以改变目标内的剂量分布的形状。可通过移动喷嘴或通过移动患者804或通过同时进行两者(患者通过移动图2的患者支撑装置208来移动)来将喷嘴瞄准第一距离补偿器。在打开射束达辐射治疗计划指定的时间段之后(参见例如图7的讨论),关闭射束。然后将喷嘴瞄准距离补偿器中的第二个(通过移动患者或喷嘴或两者),并且再次打开射束。因此,射束的路径此时穿过第二距离补偿器,所述第二距离补偿器根据第二距离补偿器的设计影响射束以在目标中产生特定的剂量分布。像第一距离补偿器一样,第二距离补偿器可具有面向传入射束的不均匀表面,并且射束可跨第二距离补偿器的表面扫描。传输穿过第二距离补偿器的射束的能量或强度可与传输穿过第一距离补偿器的射束的能量或强度不同。在辐射治疗计划指定的时间段之后,再次关闭射束。此过程可针对每个距离补偿器重复。以此方式,容易适应不同的射束几何。
图8B是根据本发明的实施方案中的射束几何的实例的透视图。在图8B的实例中,射束(由射束812例示)在同一平面内。射束源自喷嘴(未示出)。每个射束可在相对短暂的时间段内递送相对高的剂量。例如,每个射束可在短于一秒内递送至少4Gy,并且可在短于一秒内递送至多20Gy或50Gy或更多。在此实例中,射束的路径仅在目标814内重叠,并且在目标外部的周围组织中不重叠;然而,本发明不限于此。
图8B示出在射束812的路径中的距离补偿器802。图中所示的射束812的形状和距离补偿器802的形状仅用于说明目的。总体上,距离补偿器802位于患者(称为患者外形)的外部,即患者的皮肤上或患者所穿戴的衣物制品或类似物上。射束812被瞄准成使其穿过距离补偿器802。图中所示的其他射束可穿过其他距离补偿器(未示出)。
尽管图8B中示出所有射束,但是这并不意味着必须同时或在重叠时间段内递送所有射束,尽管它们可以这样。在任何一个时间递送的射束的数量取决于辐射治疗系统中的机架或喷嘴的数量以及治疗计划。
图8C示出根据本发明的实施方案中的射束几何的实例的透视图。在图8C的实例中,射束(由射束822例示)位于不同平面中。在此实例中,射束的路径仅在目标824内重叠,并且在目标外部的周围组织中不重叠;然而,本发明不限于此。尽管图中示出所有射束,但是不必同时或在重叠时间段内递送所有射束,如上文所提及。
图8C示出在射束822的路径中的距离补偿器802。图中所示的射束822的形状和距离补偿器802的形状仅用于说明目的。总体上,距离补偿器802位于患者(患者外形)的外部,如上文所述。射束822被瞄准成使其穿过距离补偿器802。图中所示的其他射束可穿过其他距离补偿器(未示出)。
因此,在根据本发明的实施方案中,将距离补偿器放置在患者804身上的位置处,使得图8B和图8C中所示的每个射束都穿过相应距离补偿器。总体上,可将患者的表面视为射束可穿过的多个分立小面。从这个角度来看,对于光子射束以外的射束,每个入射射束都与小面正交。在根据本发明的实施方案中,距离补偿器可位于每个小面上。
图9是根据本发明的实施方案中的用于辐射治疗计划的计算机实现的操作的实例的流程图900。流程图900可实现为驻留在某种形式的计算机可读存储介质上的计算机可执行指令(例如,使用图1的计算系统100)。
在图9的框902中,从计算系统的存储器访问辐射治疗计划的参数。参数包括例如射束的数量以及射束相对于患者在患者支撑装置上的位置的路径。
在框904中,标识距离补偿器在患者身上的位置。每个距离补偿器策略性地位于患者身上,使得每个距离补偿器位于射束路径中的至少一个上。每个距离补偿器使将由至少一个射束递送到患者的剂量的分布成形。
图10是根据本发明的实施方案中的用于辐射治疗的计算机实现的操作的实例的流程图1000。流程图1000可实现为驻留在某种形式的计算机可读存储介质上的计算机可执行指令(例如,使用图1的计算系统100以实现图2的控制系统210)。
在图10的框1002中,从计算系统的存储器访问辐射治疗计划。辐射治疗计划规定将由从辐射治疗系统的喷嘴发射的多个射束递送到患者体内目标的剂量的分布。
在框1004中,控制喷嘴以将射束瞄准定位在患者身上的不同位置处的距离补偿器。每个距离补偿器使将由相应射束递送给患者的剂量的分布成形。将喷嘴瞄准第一距离补偿器,然后打开第一射束并将其朝向第一距离补偿器发射。然后关闭第一射束,将喷嘴瞄准第二距离补偿器,再打开第二射束并将其朝向第二距离补偿器发射。此过程可针对多个射束中的每一个重复。
概括地说,根据本发明的实施方案中的距离补偿器可代替常规距离补偿器但也可结合常规距离补偿器用于使目标中的剂量分布成形。通过策略性地将距离补偿器定位在患者身上,可容易适应不同的射束几何。对于包括FLASH RT的辐射疗法,在射束几何改变时,不必等到距离补偿器被调整;相反,正确配置的距离补偿器已在适当位置。因此,可快速地执行包括FLASH RT的辐射疗法,从而有利于患者舒适度。根据本发明的实施方案中的距离补偿器还可用于在目标内部提供规定剂量,并且因此可通过使得更易于解决使用FLASH RT的辐射治疗计划的这一方面而促进计划。
尽管已经用特定于结构特征和/或方法动作的语言描述了主题,但是应当理解,所附权利要求中限定的主题不必局限于上文所述的特定特征或动作。相反,以上所述的特定特征和动作是作为实现权利要求的示例性形式而公开。

Claims (20)

1.一种用于在辐射疗法期间治疗患者的系统,所述系统包括:
多个距离补偿器,其中所述多个距离补偿器中的每个距离补偿器分别使由从辐射治疗系统的喷嘴发射的多个射束中的相应射束递送到所述患者的剂量的分布成形;以及
定位部件,所述定位部件耦接到所述多个距离补偿器中的距离补偿器,并且将所述距离补偿器相对于所述患者保持在适当位置,使得所述距离补偿器位于所述射束中的至少一个的路径上。
2.如权利要求1所述的系统,其中所述距离补偿器具有在所述射束的路径的方向上测量的不均匀厚度。
3.如权利要求1所述的系统,其中所述多个射束包括选自由质子射束和离子射束组成的组,并且其中所述每个距离补偿器被配置来将所述相应射束的布拉格峰定位在所述患者体内的目标内部。
4.如权利要求1所述的系统,其中所述距离补偿器是相对于所述射束限制所述患者在患者支撑装置上的移动的固定装置的一部分。
5.如权利要求4所述的系统,其中所述定位部件将所述固定装置紧固到所述患者。
6.如权利要求4所述的系统,其中所述定位部件将所述固定装置紧固到由所述患者穿戴的物品。
7.如权利要求1所述的系统,其中所述定位部件进一步耦接到所述多个距离补偿器中的每个距离补偿器,并且将所述每个距离补偿器相对于所述患者保持在适当位置,使得所述每个距离补偿器位于所述射束中的至少一个的路径上。
8.如权利要求1所述的系统,其中所述多个距离补偿器中的每个距离补偿器耦接到相应定位部件。
9.如权利要求1所述的系统,其中所述定位部件具有拟合所述患者的轮廓的形状。
10.如权利要求1所述的系统,其中所述距离补偿器和所述定位部件被制造为单件。
11.一种计算机实现的辐射治疗计划方法,所述方法包括:
从所述计算机的存储器访问辐射治疗计划的参数,所述参数包括射束的数量以及所述射束相对于患者在患者支撑装置上的位置的路径;以及
标识多个距离补偿器在所述患者身上的位置,其中所述多个距离补偿器中的每个距离补偿器位于所述患者身上,使得所述每个距离补偿器位于所述射束路径中的至少一个上并分别使将由所述射束中的至少一个递送到所述患者的剂量的分布成形。
12.如权利要求11所述的方法,其中所述每个距离补偿器具有在射束的路径的方向上测量的不均匀厚度。
13.如权利要求11所述的方法,其中所述射束包括选自由质子射束和离子射束组成的组,并且其中所述每个距离补偿器被配置来将所述至少一个射束的布拉格峰定位在所述患者体内的目标内部。
14.如权利要求11所述的方法,其中定位部件耦接到所述多个距离补偿器中的每个距离补偿器,并且将所述每个距离补偿器相对于所述患者保持在适当位置。
15.如权利要求14所述的方法,其中所述距离补偿器包括是相对于所述射束限制所述患者在患者支撑装置上的移动的固定装置的一部分的距离补偿器。
16.如权利要求15所述的方法,其还包括:
从所述计算机的存储器访问用于所述固定装置的打印计划;以及
使用所述打印计划控制三维打印机以制造所述固定装置。
17.一种计算机实现的辐射治疗方法,其包括:
从所述计算机的存储器访问辐射治疗计划,所述辐射治疗计划规定将由从辐射治疗系统的喷嘴发射的多个射束递送到患者体内的目标的剂量的分布;以及
控制所述喷嘴以将所述射束瞄准定位在所述患者身上的不同位置处的多个距离补偿器,其中所述多个距离补偿器中的每个距离补偿器分别使将由所述多个射束中的相应射束递送到所述患者的剂量的分布成形,其中所述控制包括:
将所述喷嘴瞄准所述多个距离补偿器中的第一距离补偿器,然后打开第一射束并将其朝向所述第一距离补偿器发射;以及
关闭所述第一射束,然后:将所述喷嘴瞄准所述多个距离补偿器中的第二距离补偿器,再打开第二射束并将其朝向所述第二距离补偿器发射。
18.如权利要求17所述的方法,其中所述每个距离补偿器具有在射束的路径的方向上测量的不均匀厚度。
19.如权利要求17所述的方法,其中所述射束包括选自由质子射束和离子射束组成的组,并且其中所述每个距离补偿器被配置来将所述相应射束的布拉格峰定位在所述目标内部。
20.如权利要求17所述的方法,其中定位部件耦接到所述多个距离补偿器,并且将所述距离补偿器中的每一个相对于所述患者保持在适当位置,使得所述距离补偿器中的每一个位于所述射束中的至少一个的路径上,并且其中所述距离补偿器包括是相对于所述射束限制所述患者在患者支撑装置上的移动的固定装置的一部分的距离补偿器。
CN201880035124.XA 2017-07-21 2018-07-17 用于辐射疗法的距离补偿器 Pending CN110691627A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/656,937 US11712579B2 (en) 2017-07-21 2017-07-21 Range compensators for radiation therapy
US15/656,937 2017-07-21
PCT/US2018/042389 WO2019018341A1 (en) 2017-07-21 2018-07-17 REAR SCALE COMPENSATORS FOR RADIOTHERAPY

Publications (1)

Publication Number Publication Date
CN110691627A true CN110691627A (zh) 2020-01-14

Family

ID=63104065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880035124.XA Pending CN110691627A (zh) 2017-07-21 2018-07-17 用于辐射疗法的距离补偿器

Country Status (4)

Country Link
US (1) US11712579B2 (zh)
EP (1) EP3655096A1 (zh)
CN (1) CN110691627A (zh)
WO (1) WO2019018341A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115697482A (zh) * 2020-08-21 2023-02-03 光线搜索实验室公司 放射疗法治疗中使用的静态设备和用于该设备的设计方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9855445B2 (en) * 2016-04-01 2018-01-02 Varian Medical Systems, Inc. Radiation therapy systems and methods for delivering doses to a target volume
US10549117B2 (en) 2017-07-21 2020-02-04 Varian Medical Systems, Inc Geometric aspects of radiation therapy planning and treatment
US10092774B1 (en) 2017-07-21 2018-10-09 Varian Medical Systems International, AG Dose aspects of radiation therapy planning and treatment
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US10183179B1 (en) 2017-07-21 2019-01-22 Varian Medical Systems, Inc. Triggered treatment systems and methods
CN111556776B (zh) 2017-11-16 2022-09-02 瓦里安医疗系统公司 用于放射疗法系统的增加的束输出和动态场成形
US10910188B2 (en) 2018-07-25 2021-02-02 Varian Medical Systems, Inc. Radiation anode target systems and methods
US10814144B2 (en) 2019-03-06 2020-10-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
JP7311620B2 (ja) 2019-03-08 2023-07-19 メビオン・メディカル・システムズ・インコーポレーテッド 粒子線治療システムのためのコリメータおよびエネルギーデグレーダ
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
WO2020249513A1 (en) * 2019-06-10 2020-12-17 Varian Medical Systems International Ag Material inserts for radiation therapy
US10918886B2 (en) 2019-06-10 2021-02-16 Varian Medical Systems, Inc. Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
CN111588995A (zh) * 2020-05-09 2020-08-28 广东普能生物科技有限公司 放射治疗定位组件定制系统、方法
WO2021259977A1 (en) * 2020-06-23 2021-12-30 Varian Medical Systems International Ag Correlation of dose and dose rate information to volume for radiation treatment planning
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11992703B2 (en) 2020-06-23 2024-05-28 Varian Medical Systems Particle Therapy Gmbh & Co. Kg Correlation of dose and dose rate information to volume for radiation treatment planning
EP3932481B1 (en) * 2020-06-30 2023-12-27 Ion Beam Applications Multimodal proton therapy treatment planning system
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy
US20220370833A1 (en) * 2021-05-11 2022-11-24 Celestial Oncology Inc. Coupled robotic radiation therapy system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030164A1 (en) * 2000-09-12 2002-03-14 Hitachi, Ltd. Charged particle beam irradiation equipment
US20100195793A1 (en) * 2009-01-29 2010-08-05 Nelms Benjamin E Radiation therapy using beam modifiers placed against a patient's skin
CN102438700A (zh) * 2009-03-17 2012-05-02 保罗·谢勒学院 一种用于在粒子束放射应用中评估放射模型数据的方法
US20120253495A1 (en) * 2011-03-31 2012-10-04 Axellis Ventures Ltd. Defining the volumetric dimensions and surface of a compensator
CN103505819A (zh) * 2013-09-29 2014-01-15 曲桂红 基于3d打印技术的肿瘤放射治疗调强补偿器制作方法
WO2015077881A1 (en) * 2013-11-27 2015-06-04 Dalhousie University System and method for manufacturing bolus for radiotherapy using a three-dimensional printer
CN204469038U (zh) * 2015-03-09 2015-07-15 泸州医学院附属医院 医疗非平面补偿器
WO2015153746A1 (en) * 2014-04-04 2015-10-08 University Of Iowa Research Foundation Close-proximity range shifting device for proton radiosurgery

Family Cites Families (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2386958A1 (fr) 1977-04-06 1978-11-03 Cgr Mev Dispositif compact d'irradiation utilisant un accelerateur lineaire de particules chargees
DE3785728D1 (de) 1986-11-25 1993-06-09 Siemens Ag Computertomograph.
US5153900A (en) 1990-09-05 1992-10-06 Photoelectron Corporation Miniaturized low power x-ray source
US5267294A (en) 1992-04-22 1993-11-30 Hitachi Medical Corporation Radiotherapy apparatus
US5651047A (en) 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US5550378A (en) 1993-04-05 1996-08-27 Cardiac Mariners, Incorporated X-ray detector
US5682412A (en) 1993-04-05 1997-10-28 Cardiac Mariners, Incorporated X-ray source
JP3675816B2 (ja) 1993-06-09 2005-07-27 ウイスコンシン アラムナイ リサーチ フオンデーシヨン 放射療法のための動的ビーム平滑化装置
JP2617283B2 (ja) 1995-05-26 1997-06-04 技術研究組合医療福祉機器研究所 放射線治療計画装置
US6260005B1 (en) 1996-03-05 2001-07-10 The Regents Of The University Of California Falcon: automated optimization method for arbitrary assessment criteria
US5757885A (en) 1997-04-18 1998-05-26 Siemens Medical Systems, Inc. Rotary target driven by cooling fluid flow for medical linac and intense beam linac
US6222544B1 (en) 1997-10-17 2001-04-24 Siemens Medical Systems, Inc. Graphical user interface for radiation therapy treatment apparatus
US6187037B1 (en) 1998-03-11 2001-02-13 Stanley Satz Metal stent containing radioactivatable isotope and method of making same
IT1299175B1 (it) 1998-05-11 2000-02-29 Enea Ente Nuove Tec Composizione contenente radioisotopi immobilizzati su particelle solide, utile in particolare per la brachiterapia clinica in patologie
US6198802B1 (en) 1998-10-06 2001-03-06 Cardiac Mariners, Inc. Scanning beam x-ray source and assembly
US6234671B1 (en) 1998-10-06 2001-05-22 Cardiac Mariners, Inc. X-ray system with scanning beam x-ray source below object table
JP2001085200A (ja) 1999-09-14 2001-03-30 Hitachi Ltd 加速器システム
US6580940B2 (en) 2000-02-02 2003-06-17 George Gutman X-ray system with implantable needle for treatment of cancer
IT1318066B1 (it) 2000-06-29 2003-07-21 Dana Italia Spa Dispositivo di misura e controllo delle condizioni di stabilita' di un veicolo, in particolare di un veicolo industriale.
US6504899B2 (en) 2000-09-25 2003-01-07 The Board Of Trustees Of The Leland Stanford Junior University Method for selecting beam orientations in intensity modulated radiation therapy
US6445766B1 (en) 2000-10-18 2002-09-03 Siemens Medical Solutions Usa, Inc. System and method for improved diagnostic imaging in a radiation treatment system
US6411675B1 (en) 2000-11-13 2002-06-25 Jorge Llacer Stochastic method for optimization of radiation therapy planning
EP2320430A3 (en) * 2000-12-08 2012-09-05 Loma Linda University Medical Center Proton beam therapy control system
DE10157523C1 (de) * 2001-11-23 2003-07-10 Deutsches Krebsforsch Kollimator und Programm zur Steuerung des Kollimators
US6888832B2 (en) 2002-01-11 2005-05-03 Thomson Licensing S.A. Method and system for notifying customer of voicemail using an ATM signaling channel from an ATM/DSL head-end network
JP3691020B2 (ja) * 2002-02-28 2005-08-31 株式会社日立製作所 医療用荷電粒子照射装置
EP1480716A4 (en) 2002-03-06 2006-02-08 Tomotherapy Inc METHOD FOR MODIFYING RADIOTHERAPIC TREATMENT ADMINISTRATION
US6993112B2 (en) 2002-03-12 2006-01-31 Deutsches Krebsforschungszentrum Stiftung Des Oeffentlichen Rechts Device for performing and verifying a therapeutic treatment and corresponding computer program and control method
IT1333559B (it) 2002-05-31 2006-05-04 Info & Tech Spa Macchina per radioterapia intraoperatoria.
US20090063110A1 (en) 2003-03-14 2009-03-05 Transpire,Inc. Brachytherapy dose computation system and method
US7778691B2 (en) 2003-06-13 2010-08-17 Wisconsin Alumni Research Foundation Apparatus and method using synchronized breathing to treat tissue subject to respiratory motion
KR20060126454A (ko) 2003-10-07 2006-12-07 노모스 코포레이션 순응형 방사선 치료법에 대한 플래닝 시스템, 방법 및 장치
CN101014383A (zh) 2003-12-02 2007-08-08 福克斯·彻斯癌症中心 调制用于放射治疗的激光-加速质子的方法
JP3643371B1 (ja) * 2003-12-10 2005-04-27 株式会社日立製作所 粒子線照射装置及び照射野形成装置の調整方法
ATE493868T1 (de) 2004-01-13 2011-01-15 Koninkl Philips Electronics Nv Röntgenröhren-kühlkragen
EP1584353A1 (en) 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
WO2005115544A1 (en) 2004-05-24 2005-12-08 University Of Virginia Patent Foundation System and method for temporally precise intensity modulated radiation therapy (imrt)
US7073508B2 (en) * 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
US7515681B2 (en) 2004-06-30 2009-04-07 Lexitek, Inc. High resolution proton beam monitor
US7453983B2 (en) 2005-01-20 2008-11-18 Carestream Health, Inc. Radiation therapy method with target detection
ITCO20050007A1 (it) 2005-02-02 2006-08-03 Fond Per Adroterapia Oncologia Sistema di accelerazione di ioni per adroterapia
US8306184B2 (en) 2005-05-31 2012-11-06 The University Of North Carolina At Chapel Hill X-ray pixel beam array systems and methods for electronically shaping radiation fields and modulation radiation field intensity patterns for radiotherapy
US7880154B2 (en) 2005-07-25 2011-02-01 Karl Otto Methods and apparatus for the planning and delivery of radiation treatments
ITVE20050037A1 (it) 2005-08-04 2007-02-05 Marco Sumini Apparecchiatura per trattamenti di radioterapia interstiziale ed intraoperatoria.
ES2383983T3 (es) 2005-10-17 2012-06-28 Alberta Health Services Sistema de radioterapia de haz externo e IRM integrado
ITCO20050028A1 (it) 2005-11-11 2007-05-12 Fond Per Adroterapia Oncologica Complesso di acceleratori di protoni in particolare per uso medicale
GB2436424A (en) 2006-02-28 2007-09-26 Elekta Ab A reference phantom for a CT scanner
US7616735B2 (en) 2006-03-28 2009-11-10 Case Western Reserve University Tomosurgery
JP4730167B2 (ja) 2006-03-29 2011-07-20 株式会社日立製作所 粒子線照射システム
US20080123813A1 (en) 2006-04-07 2008-05-29 Maurer Calvin R Automatic selection of multiple collimators
US8073104B2 (en) 2006-05-25 2011-12-06 William Beaumont Hospital Portal and real time imaging for treatment verification
US10279196B2 (en) 2006-09-28 2019-05-07 Accuray Incorporated Radiation treatment planning using four-dimensional imaging data
EP2106678B1 (en) 2006-12-28 2010-05-19 Fondazione per Adroterapia Oncologica - Tera Ion acceleration system for medical and/or other applications
EP1964591A1 (fr) * 2007-02-27 2008-09-03 Institut Curie Bolus pour radiothérapie, et procédé pour déterminer la forme d'un tel bolus
DE102008007245B4 (de) 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Kombiniertes Strahlentherapie- und Magnetresonanzgerät
US20080317204A1 (en) 2007-03-16 2008-12-25 Cyberheart, Inc. Radiation treatment planning and delivery for moving targets in the heart
US8014494B2 (en) 2009-10-20 2011-09-06 University Of Maryland, Baltimore Single-arc dose painting for precision radiation therapy
US7623623B2 (en) 2007-06-29 2009-11-24 Accuray Incorporated Non-collocated imaging and treatment in image-guided radiation treatment systems
DE102007036035A1 (de) 2007-08-01 2009-02-05 Siemens Ag Steuervorrichtung zur Steuerung eines Bestrahlungsvorgangs, Partikeltherapieanlage sowie Verfahren zur Bestrahlung eines Zielvolumens
DE102007054919B4 (de) 2007-08-24 2009-07-30 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Schnelle Regelung der Reichweite von hochenergetischen Ionenstrahlen für Präzisionsbestrahlungen von bewegten Zielvolumina
US7835492B1 (en) 2007-11-27 2010-11-16 Velayudhan Sahadevan Lethal and sublethal damage repair inhibiting image guided simultaneous all field divergent and pencil beam photon and electron radiation therapy and radiosurgery
EP2108401A1 (en) 2008-04-11 2009-10-14 Ion Beam Applications S.A. Organ motion compensating device and method
CA3126522A1 (en) * 2008-04-30 2009-11-05 Implantica Patent Ltd. Brain stimulation
EP2116277A1 (en) 2008-05-06 2009-11-11 Ion Beam Applications S.A. Device and method for particle therapy monitoring and verification
WO2009139907A1 (en) 2008-05-15 2009-11-19 Intelect Medical, Inc. Clinician programmer system and method for calculating volumes of activation
EP2294312B1 (en) 2008-06-24 2016-04-27 Alberta Health Services Radiation therapy system
WO2010018476A2 (en) 2008-08-14 2010-02-18 Koninklijke Philips Electronics N.V. Prospective adaptive radiation therapy planning
JP2012510877A (ja) 2008-12-04 2012-05-17 ザ クリーブランド クリニック ファウンデーション 脳内刺激のための標的体積を規定するシステムおよび方法
US20100178245A1 (en) 2009-01-13 2010-07-15 Arnsdorf Morton F Biocompatible Microbubbles to Deliver Radioactive Compounds to Tumors, Atherosclerotic Plaques, Joints and Other Targeted Sites
US7839973B2 (en) 2009-01-14 2010-11-23 Varian Medical Systems International Ag Treatment planning using modulability and visibility factors
US8600003B2 (en) 2009-01-16 2013-12-03 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
WO2010086776A1 (en) 2009-01-30 2010-08-05 Koninklijke Philips Electronics N.V. System for providing lung ventilation information
DE102009021024A1 (de) * 2009-05-13 2010-11-18 Siemens Aktiengesellschaft Verfahren zum Erstellen eines Therapieplans für eine Partikeltherapie sowie Filtervorrichtung für eine Partikeltherapieanlage
US8693629B2 (en) 2009-12-09 2014-04-08 The Johns Hopkins University Method and system for administering internal radionuclide therapy (IRT) and external radiation therapy (XRT)
US8175892B2 (en) * 2009-05-26 2012-05-08 Agile Planet Inc. System and method for radiation therapy imaging and treatment workflow scheduling and optimization
DE102009032275A1 (de) 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Beschleunigeranlage und Verfahren zur Einstellung einer Partikelenergie
US20110006224A1 (en) 2009-07-09 2011-01-13 Maltz Jonathan S Digital Tomosynthesis in Ion Beam Therapy Systems
CN110201317B (zh) 2009-07-15 2021-07-23 优瑞技术公司 放射治疗系统
WO2011024085A1 (en) 2009-08-31 2011-03-03 Koninklijke Philips Electronics, N.V. Interactive computer-aided editor for compensators used in radiotherapy treatment planning
US10007961B2 (en) 2009-09-09 2018-06-26 Wisconsin Alumni Research Foundation Treatment planning system for radiopharmaceuticals
US20120171745A1 (en) 2009-09-09 2012-07-05 Comet Corporation Method for Selectively Damaging and Killing Tumor Cells and Apparatus Therefor
WO2011053802A2 (en) 2009-10-30 2011-05-05 Tomotherapy Incorporated Non-voxel-based broad-beam (nvbb) algorithm for intensity modulated radiation therapy dose calculation and plan optimization
US8466428B2 (en) * 2009-11-03 2013-06-18 Mitsubishi Electric Corporation Particle beam irradiation apparatus and particle beam therapy system
WO2011091104A1 (en) 2010-01-25 2011-07-28 Wisconsin Alumni Research Foundation Method for biological modulation of radiation therapy
US9694205B2 (en) 2010-02-12 2017-07-04 Elekta Ab (Publ) Radiotherapy and imaging apparatus
EP2539020B1 (en) 2010-02-24 2017-03-22 Accuray Incorporated Gantry image guided radiotherapy system
CN102933258A (zh) 2010-03-01 2013-02-13 因特奥普医药公司 与含氧量低的细胞敏化剂联用的放疗
US8284898B2 (en) 2010-03-05 2012-10-09 Accuray, Inc. Interleaving multi-energy X-ray energy operation of a standing wave linear accelerator
JP5646312B2 (ja) * 2010-04-02 2014-12-24 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
WO2011130412A2 (en) 2010-04-13 2011-10-20 Varian Medical Systems, Inc. Radiation treatment systems
US8804901B2 (en) 2010-06-08 2014-08-12 Accuray Incorporated Imaging methods for image-guided radiation treatment
CN102939607B (zh) 2010-06-11 2016-05-18 皇家飞利浦电子股份有限公司 针对放射治疗处置规划的同时多模态逆向优化的系统、方法和装置
US8986186B2 (en) 2010-08-17 2015-03-24 Board Of Regents, The University Of Texas System Automated treatment planning for radiation therapy
US9258876B2 (en) 2010-10-01 2016-02-09 Accuray, Inc. Traveling wave linear accelerator based x-ray source using pulse width to modulate pulse-to-pulse dosage
GB2484529B (en) 2010-10-15 2012-09-19 Siemens Ag Beam deflection arrangement within a combined radiation therapy and magnetic resonance unit
GB201021841D0 (en) 2010-12-22 2011-02-02 Univ Bristol A system for upstream direct X-Ray detection
PT2661275T (pt) 2011-01-07 2019-04-24 Poseida Therapeutics Inc Composições e métodos para a entrega a tumores de agentes ligantes de elevada afinidade para o oxigénio
US8636636B2 (en) * 2011-01-28 2014-01-28 Siemens Medical Solutions Usa, Inc. Grid radiotherapy for static and dynamic treatment delivery
WO2012106687A1 (en) 2011-02-03 2012-08-09 Tria Beauty, Inc. Radiation-based dermatological devices and methods
US9636525B1 (en) 2011-02-15 2017-05-02 Velayudhan Sahadevan Method of image guided intraoperative simultaneous several ports microbeam radiation therapy with microfocus X-ray tubes
DE102011005739A1 (de) 2011-03-17 2012-09-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung eines Bestrahlungsplans
JP5637055B2 (ja) 2011-04-18 2014-12-10 株式会社日立製作所 粒子線治療計画装置および粒子線治療装置
CL2011000898A1 (es) 2011-04-20 2011-06-24 Univ La Frontera Dispositivo para generar un haz convergente de electrones y rayos-x que comprende uno o mas lentes magneticos y/o electricos que permiten focalizar un haz de electrones provenientes de una fuente, impactar el haz en un casquete anodico y generar un haz de rayos-x colimado convergente.
US9330879B2 (en) 2011-08-04 2016-05-03 John Lewellen Bremstrahlung target for intensity modulated X-ray radiation therapy and stereotactic X-ray therapy
EP2742448A1 (en) 2011-08-09 2014-06-18 Boston Scientific Neuromodulation Corporation Remote control for blind clinical trials of electrical stimulation
US8680487B2 (en) * 2011-10-06 2014-03-25 National Cancer Center Charged particle dose simulation device, charged particle beam irradiation device, charged particle dose simulation method, and charged particle beam irradiation method
WO2013065762A1 (ja) 2011-11-02 2013-05-10 富士フイルム株式会社 放射線照射装置、放射線照射方法、及びプログラム記憶媒体
WO2013081218A2 (ko) 2011-12-02 2013-06-06 Kim Jong Ki 브래그 피크 기반 입자 유도 방사선 치료요법
US8644571B1 (en) 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
JP2015505326A (ja) 2012-01-18 2015-02-19 ニューメディシンズ,インコーポレーテッド 放射線防護及び放射線誘発性毒性緩和のためのil−12
WO2013115607A2 (ko) 2012-02-02 2013-08-08 사회복지법인 삼성생명공익재단 방사선 세기 변조체 제조 방법 및 장치
US8948341B2 (en) 2012-02-12 2015-02-03 Christopher V. Beckman Radiation therapy techniques using targeted wave superposition, magnetic field direction and real-time sensory feedback
CN104246961B (zh) 2012-03-03 2017-05-17 小利兰·斯坦福大学托管委员会 多向非常高电子能量放射治疗系统
JP5338000B1 (ja) 2012-06-15 2013-11-06 株式会社アキュセラ リアルタイム3次元放射線治療装置
US10413755B1 (en) 2012-08-01 2019-09-17 Velayudhan Sahadevan Device and methods for adaptive resistance inhibiting proton and carbon ion microbeams and nanobeams radiosurgery
GB2521562B (en) 2012-08-30 2020-07-08 Univ Leland Stanford Junior Anti-tumor T cell immunity induced by high dose radiation
GB2507792B (en) 2012-11-12 2015-07-01 Siemens Plc Combined MRI and radiation therapy system
CN104797294B (zh) 2012-11-20 2017-06-13 三菱电机株式会社 治疗计划装置、粒子射线治疗装置以及带电粒子射束的扫描路径决定方法
CN104884126B (zh) 2012-12-17 2018-08-03 皇家飞利浦有限公司 实时自适应剂量计算辐射治疗
CN103903940B (zh) 2012-12-27 2017-09-26 清华大学 一种产生分布式x射线的设备和方法
US20140206926A1 (en) 2013-01-18 2014-07-24 Robert van der LAARSE Methods for optimizing and evaluating dose distributions in brachytherpay
JP2014161706A (ja) 2013-02-28 2014-09-08 Hitachi Ltd 粒子線治療システムおよび飛程調整装置
US9040945B1 (en) * 2013-03-12 2015-05-26 Precision Accelerators of Louisiana LLC Method of mechanically controlling the amount of energy to reach a patient undergoing intraoperative electron radiation therapy
DE102013004616B4 (de) 2013-03-15 2020-04-23 Forschungszentrum Jülich GmbH Verfahren zur minimalinvasiven Messung einer Strahlintensität
US20140275706A1 (en) 2013-03-15 2014-09-18 Case Western Reserve University Systems and methods for determining and delivering radiation treatment plans
US9233260B2 (en) 2013-03-29 2016-01-12 Microbeam Therapy, Llc. Magnetic confinement for microbeam radiation damage area
US10660588B2 (en) 2013-05-24 2020-05-26 Imatrex Inc. Tumor tracing device with multiple scan tubes
US9801594B2 (en) 2013-05-24 2017-10-31 Imatrex Inc. Ebeam tomosynthesis for radiation therapy tumor tracking
EP2808057B1 (en) 2013-05-31 2016-02-03 RaySearch Laboratories AB Method and system for robust radiotherapy treatment planning
AU2014276932B2 (en) 2013-06-04 2017-04-13 Fumedica Ag Cytotoxic substance for use in combination with radiotherapy in cancer treatment
US20140369476A1 (en) 2013-06-14 2014-12-18 Morpho Detection, Inc. Device for generating x-rays having a liquid metal anode
US20150011817A1 (en) 2013-07-03 2015-01-08 Yuxin Feng System and Method for Delivering an Ultra-High Dose of Radiation Therapy
US9776017B2 (en) * 2013-07-05 2017-10-03 University Of Iowa Research Foundation Method and system for dynamically-trimmed spot scanning for ion therapy
ITCO20130036A1 (it) 2013-08-22 2015-02-23 Fond Per Adroterapia Oncologi Ca Tera ¿sistema di acceleratori di ioni per il trattamento della fibrillazione atriale¿
WO2015102680A2 (en) 2013-09-11 2015-07-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies
WO2015048468A1 (en) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
JP6139361B2 (ja) 2013-09-30 2017-05-31 株式会社東芝 医用画像処理装置、治療システム及び医用画像処理方法
EP2853292B1 (en) 2013-09-30 2019-07-31 Ion Beam Applications S.A. Charged hadron beam delivery
US10088833B2 (en) * 2013-09-30 2018-10-02 Varian Medical Systems International Ag. Printing of objects for medical use
JP6208535B2 (ja) 2013-10-25 2017-10-04 株式会社日立製作所 放射線治療装置およびシステムおよび方法
FR3013225B1 (fr) 2013-11-20 2018-09-14 Pmb Dispositif d'irradiation a rayonnement ionisant, notamment pour la radiotherapie et/ou la radiobiologie
WO2015085252A1 (en) 2013-12-06 2015-06-11 Sonitrack Systems, Inc. Radiotherapy dose assessment and adaptation using online imaging
US20150202464A1 (en) 2014-01-23 2015-07-23 Mitsubis Multi-Criteria Optimization in Particle Beam Dose Optimization
CN104001270B (zh) 2014-05-07 2016-07-06 上海交通大学 超高能电子束或光子束放射治疗机器人系统
US9844358B2 (en) 2014-06-04 2017-12-19 Varian Medical Systems, Inc. Imaging-based self-adjusting radiation therapy systems, devices, and methods
WO2015200559A2 (en) * 2014-06-27 2015-12-30 Board Of Regents, The University Of Texas System Radiation therapy with segmented beams of protons and other ions
CN107001031B (zh) 2014-10-14 2019-11-15 芝加哥大学 一种金属有机框架、药物制剂及其在制备药物中的用途
RU2671513C1 (ru) 2014-10-27 2018-11-01 Электа, Инк. Визуализационное наведение для радиационной терапии
KR101747232B1 (ko) * 2014-12-16 2017-06-14 사회복지법인 삼성생명공익재단 방사선 세기 변조체 검증 방법 및 검증 장치
KR101689130B1 (ko) 2014-12-23 2016-12-23 재단법인 아산사회복지재단 자기장을 이용한 체내 점막조직 선량 제어 광자빔 방사선 치료장치
US10549115B2 (en) 2015-01-22 2020-02-04 Koninklijke Philips N.V. Volumetric modulated arc therapy (VMAT) with non-coplanar trajectories
US9878177B2 (en) 2015-01-28 2018-01-30 Elekta Ab (Publ) Three dimensional localization and tracking for adaptive radiation therapy
WO2016140955A1 (en) 2015-03-05 2016-09-09 The Regents Of The University Of California Radiotherapy utilizing the entire 4pi solid angle
WO2016162998A1 (ja) * 2015-04-09 2016-10-13 三菱電機株式会社 治療計画装置および粒子線治療装置
JP6844942B2 (ja) 2015-04-28 2021-03-17 株式会社東芝 粒子線治療システムおよび粒子線治療用管理システム
EP3108932B1 (en) 2015-06-26 2018-01-31 RaySearch Laboratories AB Method, computer program and system for optimizing radiotherapy treatment
US9884206B2 (en) 2015-07-23 2018-02-06 Loma Linda University Medical Center Systems and methods for intensity modulated radiation therapy
US10124194B2 (en) * 2015-08-05 2018-11-13 The Research Foundation for State University of New York Radiation therapy with orthovoltage X-ray minibeams
US10636609B1 (en) 2015-10-09 2020-04-28 Accuray Incorporated Bremsstrahlung target for radiation therapy system
KR101803346B1 (ko) 2015-10-16 2017-11-30 재단법인 아산사회복지재단 자기장을 이용한 종양표면선량 강화 방사선 치료장치
JP6523929B2 (ja) 2015-11-19 2019-06-05 株式会社東芝 粒子線加速システム、粒子線加速制御方法、及び粒子線治療装置
EP3181049B1 (en) 2015-12-18 2018-02-14 RaySearch Laboratories AB Radiotherapy method, computer program and computer system
EP3195901A1 (en) 2016-01-20 2017-07-26 Ion Beam Applications S.A. Method and device for determining an interest of applying a qa procedure to a treatment plan in radiation therapy
US10300303B2 (en) 2016-01-29 2019-05-28 Elekta Ltd. Therapy control using motion prediction based on cyclic motion model
US10022564B2 (en) 2016-02-05 2018-07-17 Varian Medical Systems International Ag Systems, methods, and devices for radiation beam alignment and radiation beam measurements using electronic portal imaging devices
WO2017156316A1 (en) 2016-03-09 2017-09-14 Reflexion Medical, Inc. Fluence map generation methods for radiotherapy
CN109195663B (zh) * 2016-03-10 2022-01-25 威廉.博蒙特医院 粒子弧线疗法
US9854662B2 (en) 2016-03-11 2017-12-26 Varex Imaging Corporation Hybrid linear accelerator with a broad range of regulated electron and X-ray beam parameters includes both standing wave and traveling wave linear sections for providing a multiple-energy high-efficiency electron beam or X-ray beam useful for security inspection, non-destructive testing, radiation therapy, and other applications
US9855445B2 (en) 2016-04-01 2018-01-02 Varian Medical Systems, Inc. Radiation therapy systems and methods for delivering doses to a target volume
EP3228357B1 (en) 2016-04-08 2021-03-31 RaySearch Laboratories AB Method, computer program product and computer system for radiotherapy treatment planning
CN109069863A (zh) 2016-04-13 2018-12-21 皇家飞利浦有限公司 辐射治疗交互式规划
US9789338B1 (en) * 2016-04-13 2017-10-17 Vision Rt Ltd. Patient monitoring system
US20170348547A1 (en) 2016-05-27 2017-12-07 W. Davis Lee Ion beam kinetic energy dissipater apparatus and method of use thereof
LU93102B1 (en) 2016-06-10 2018-01-22 Fyzikalni Ustav Av Cr V V I Device and method for high-dose pulse radiotherapy with real-time imaging
US20180154183A1 (en) 2016-06-22 2018-06-07 Velayudhan Sahadevan Normal Tissue Toxicity Reducing Microbeam-Broadbeam Radiotherapy, Skin's Radio-Response Immunotherapy and Mutated Molecular Apheresis Combined Cancer Treatments
BR112019000107A2 (pt) 2016-07-05 2019-04-09 The Johns Hopkins University composições e métodos com base em crispr / cas9 para o tratamento do câncer
US10342996B2 (en) 2016-08-29 2019-07-09 Accuray Incorporated Online angle selection in rotational imaging and tracking systems
BR112019004550A2 (pt) 2016-09-09 2019-05-28 Univ Texas aparelho e métodos para o controle magnético de um feixe de elétrons de radiação
US10272264B2 (en) 2016-09-19 2019-04-30 Varian Medical Systems International Ag Generating time-efficient treatment field trajectories for external-beam radiation treatments
US10307615B2 (en) 2016-09-19 2019-06-04 Varian Medical Systems International Ag Optimization of radiation treatment plans for optimal treatment time in external-beam radiation treatments
US10307614B2 (en) 2016-09-22 2019-06-04 Accuray Incorporated Systems and methods for selecting a radiation therapy treatment plan
US20190239978A1 (en) * 2016-09-26 2019-08-08 Radtec Medical Devices, Inc. Open bite registration device for use in making a customized intraoral device for radiation treatment
EP3305366A1 (en) 2016-10-07 2018-04-11 Ion Beam Applications S.A. Hadron therapy apparatus for adaptive treatment in non-supine position
EP3306334A1 (en) 2016-10-07 2018-04-11 Ion Beam Applications S.A. Apparatus and method for visualizing a hadron beam path traversing a target tissue by magnetic resonance imaging
EP3305200A1 (en) 2016-10-07 2018-04-11 Ion Beam Applications S.A. Medical apparatus comprising a hadron therapy device, a mri, and a prompt-gamma system
US10507338B2 (en) * 2016-10-31 2019-12-17 Canon Medical Systems Corporation Particle beam radiotherapy system
CN106730407A (zh) 2016-11-18 2017-05-31 上海艾普强粒子设备有限公司 一种用于粒子治疗的扫描照射方法、装置和治疗头
US10449389B2 (en) 2016-12-05 2019-10-22 Varian Medical Systems International Ag Dynamic target masker in radiation treatment of multiple targets
US9987502B1 (en) 2016-12-06 2018-06-05 International Business Machines Corporation Radiation therapy treatment planning using regression
EP3338858B1 (en) 2016-12-22 2019-06-26 RaySearch Laboratories AB System for attaining target dose conformity in ion beam treatment
US10485988B2 (en) 2016-12-30 2019-11-26 Varian Medical Systems International Ag Interactive dose manipulation using prioritized constraints
US10713801B2 (en) 2017-01-06 2020-07-14 Accuray Incorporated Image registration of treatment planning image, intrafraction 3D image, and intrafraction 2D x-ray image
US11027148B2 (en) 2017-01-27 2021-06-08 Raysearch Laboratories Ab System and method for planning a radiation therapy treatment
WO2018152302A1 (en) 2017-02-15 2018-08-23 University Of Maryland, Baltimore Techniques for spatially fractionated particle beam therapy
US20180235554A1 (en) * 2017-02-16 2018-08-23 Eric A Burgett Patient-Specific Restraining Device and Integrated Dosimetry System
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10682528B2 (en) 2017-03-03 2020-06-16 Varian Medical Systems International Ag Systems, methods, and devices for radiation beam asymmetry measurements using electronic portal imaging devices
US10661100B2 (en) 2017-03-08 2020-05-26 Mayo Foundation For Medical Education And Research Method for measuring field size factor for radiation treatment planning using proton pencil beam scanning
WO2018165423A1 (en) 2017-03-08 2018-09-13 University Of Maryland, Baltimore Techniques for particle beam therapy
CN110799243A (zh) 2017-03-24 2020-02-14 辐射光束技术有限责任公司 具有加速波导的紧凑型直线加速器
EP3384961B1 (en) 2017-04-05 2021-10-13 RaySearch Laboratories AB System and method for modelling of dose calculation in radiotherapy treatment planning
EP3391940A1 (en) 2017-04-21 2018-10-24 Koninklijke Philips N.V. Planning system for adaptive radiation therapy
KR101953350B1 (ko) 2017-06-23 2019-02-28 재단법인 아산사회복지재단 자기장과 산란체를 이용한 광자선의 선량상승영역 변조 장치, 이를 포함하는 광자선 기반의 방사선치료장치 및 자기장과 산란체를 이용한 광자선의 선량상승영역 변조 방법
EP3421087A1 (en) 2017-06-30 2019-01-02 RaySearch Laboratories AB Assigning ripple filter settings
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US10609806B2 (en) 2017-07-21 2020-03-31 Varian Medical Systems Particle Therapy Gmbh Energy modulation of a cyclotron beam
US10549117B2 (en) 2017-07-21 2020-02-04 Varian Medical Systems, Inc Geometric aspects of radiation therapy planning and treatment
US10183179B1 (en) 2017-07-21 2019-01-22 Varian Medical Systems, Inc. Triggered treatment systems and methods
US10245448B2 (en) 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US10092774B1 (en) 2017-07-21 2018-10-09 Varian Medical Systems International, AG Dose aspects of radiation therapy planning and treatment
CN107362464A (zh) 2017-08-13 2017-11-21 吴大可 精准立体定向放射外科治疗装置
EP3453427A1 (en) 2017-09-12 2019-03-13 RaySearch Laboratories AB Evaluation of arcs for a radiation treatment plan
US11850449B2 (en) 2017-09-14 2023-12-26 Australian Nuclear Science And Technology Organisation Irradiation method and system
GB201719076D0 (en) 2017-11-17 2018-01-03 Xerion Healthcare Ltd Particles for the treatment of cancer in combination with radiotherapy
WO2019103983A1 (en) 2017-11-21 2019-05-31 William Marsh Rice University Selective accretion of cytoprotectant in radiation-sensitive tissues and uses thereof
JP2019097969A (ja) 2017-12-05 2019-06-24 株式会社日立製作所 粒子線治療計画装置および粒子線治療システム
US11794038B2 (en) 2018-02-20 2023-10-24 The Trustees Of The University Of Pennsylvania Proton beam system and methods for irradiating a target
WO2019166702A1 (fr) 2018-02-28 2019-09-06 Hagalife Utilisation d'un procédé d'irradiation flash pour augmenter la longévité et/ou pour retarder les effets du vieillissement chez les mammifères
WO2019185378A1 (en) 2018-03-26 2019-10-03 Koninklijke Philips N.V. Decision support tool for adaptive radiotherapy in ct/linac console
JP7090451B2 (ja) 2018-03-29 2022-06-24 住友重機械工業株式会社 荷電粒子線治療装置
JP6974232B2 (ja) 2018-03-29 2021-12-01 株式会社日立製作所 粒子線治療計画装置、粒子線治療システムおよび線量分布演算プログラム
US10431418B1 (en) * 2018-04-05 2019-10-01 B Dot Medical Inc. Focusing magnet and charged particle irradiation apparatus
CN113260412A (zh) 2018-05-15 2021-08-13 霍洛比姆技术有限公司 利用具有时间相关驻波干涉和相干强度放大的全息能量传送(het)进行能量的精确传送
EP3586920A1 (en) 2018-06-29 2020-01-01 RaySearch Laboratories AB System and method for radiation treatment planning
CN112449602A (zh) 2018-07-19 2021-03-05 瓦里安医疗系统公司 超高剂量率辐射和治疗剂的使用方法
US10910188B2 (en) 2018-07-25 2021-02-02 Varian Medical Systems, Inc. Radiation anode target systems and methods
US10960232B2 (en) 2018-07-28 2021-03-30 Varian Medical Systems, Inc. Single-pass imaging and radiation treatment delivery via an extended rotation gantry
US10525285B1 (en) 2018-08-06 2020-01-07 Integrated Sensors, Llc Ionizing-radiation beam monitoring system
CN112770743A (zh) 2018-09-25 2021-05-07 美洛治疗有限公司 用于在与暴露于致命辐射相关症状的治疗中使用的咪唑基乙酰胺戊二酸
EP3886980A4 (en) 2018-11-28 2022-08-24 Provincial Health Services Authority SYNCHRONIZED MOTION ARC RADIOTHERAPY
CN113613673A (zh) 2019-01-28 2021-11-05 阿姆弗拉公司 用于治疗胰腺癌的药物组合物
US11786755B2 (en) 2019-02-07 2023-10-17 Canon Medical Systems Corporation Radiotherapy support apparatus, radiotherapy system, and radiotherapy support method
US10946220B2 (en) 2019-03-01 2021-03-16 Elekta, Inc. Method of providing rotational radiation therapy using particles
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
CN109966662B (zh) 2019-04-30 2020-11-24 四川省肿瘤医院 一种验证放射治疗剂量的系统
CN111481841A (zh) 2020-06-10 2020-08-04 中国工程物理研究院应用电子学研究所 一种闪光放射治疗装置
CN111481840A (zh) 2020-06-10 2020-08-04 中国工程物理研究院应用电子学研究所 一种小型化闪光放射治疗装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030164A1 (en) * 2000-09-12 2002-03-14 Hitachi, Ltd. Charged particle beam irradiation equipment
US20100195793A1 (en) * 2009-01-29 2010-08-05 Nelms Benjamin E Radiation therapy using beam modifiers placed against a patient's skin
CN102438700A (zh) * 2009-03-17 2012-05-02 保罗·谢勒学院 一种用于在粒子束放射应用中评估放射模型数据的方法
US20120253495A1 (en) * 2011-03-31 2012-10-04 Axellis Ventures Ltd. Defining the volumetric dimensions and surface of a compensator
CN103505819A (zh) * 2013-09-29 2014-01-15 曲桂红 基于3d打印技术的肿瘤放射治疗调强补偿器制作方法
WO2015077881A1 (en) * 2013-11-27 2015-06-04 Dalhousie University System and method for manufacturing bolus for radiotherapy using a three-dimensional printer
WO2015153746A1 (en) * 2014-04-04 2015-10-08 University Of Iowa Research Foundation Close-proximity range shifting device for proton radiosurgery
CN204469038U (zh) * 2015-03-09 2015-07-15 泸州医学院附属医院 医疗非平面补偿器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115697482A (zh) * 2020-08-21 2023-02-03 光线搜索实验室公司 放射疗法治疗中使用的静态设备和用于该设备的设计方法

Also Published As

Publication number Publication date
US11712579B2 (en) 2023-08-01
WO2019018341A1 (en) 2019-01-24
EP3655096A1 (en) 2020-05-27
US20190022407A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US11712579B2 (en) Range compensators for radiation therapy
US11590364B2 (en) Material inserts for radiation therapy
JP7245352B2 (ja) 粒子を用いた回転式の放射線治療を提供する方法
US20230293015A1 (en) Methods and apparatus for the planning and delivery of radiation treatments
AU2016211816B2 (en) Three dimensional localization and tracking for adaptive radiation therapy
JP5950575B2 (ja) 荷電粒子治療による患者の腫瘍の治療
US8009803B2 (en) Treatment plan optimization method for radiosurgery
US8519370B2 (en) Modifying radiation beam shapes
US8958528B2 (en) Real-time dose reconstruction using dynamic simulation and image guided adaptive radiotherapy
JP5107709B2 (ja) 放射線治療の処置計画の適合化
JP6588974B2 (ja) 逆方向治療計画用のシステム及びコンピュータプログラム製品
CN111107901A (zh) 辐射疗法计划和治疗的几何方面
Weber et al. Proton beam radiotherapy versus fractionated stereotactic radiotherapy for uveal melanomas: A comparative study
JP2018522651A (ja) 放射線治療中に品質指標を使用して標的を追跡するためのシステム及び方法
EP3813939B1 (en) System for determining arc dose for arc therapy
EP3229905B1 (en) A method to reduce local hot/cold spots in dmpo-based imrt planning
Fu et al. A cone beam CT-guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment
US20190168025A1 (en) Image-guided radiation therapy
JP5401391B2 (ja) 粒子線治療計画装置及び治療計画方法
EP3980117A1 (en) Material inserts for radiation therapy
Roed et al. The potential of polymer gel dosimeters for 3D MR-IGRT quality assurance
Bauman et al. Simplified intensity-modulated arc therapy for dose escalated prostate cancer radiotherapy
Kron et al. Radiotherapy for breast cancer: how can it benefit from advancing technology
Zheng Adaptive Radiotherapy for Lung Cancer Using Uniform Scanning Proton Beams
VERHEY Physical considerations in the use of intensity modulated radiotherapy to produce threedimensional conformal dose distributions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination