WO2013115607A2 - 방사선 세기 변조체 제조 방법 및 장치 - Google Patents

방사선 세기 변조체 제조 방법 및 장치 Download PDF

Info

Publication number
WO2013115607A2
WO2013115607A2 PCT/KR2013/000848 KR2013000848W WO2013115607A2 WO 2013115607 A2 WO2013115607 A2 WO 2013115607A2 KR 2013000848 W KR2013000848 W KR 2013000848W WO 2013115607 A2 WO2013115607 A2 WO 2013115607A2
Authority
WO
WIPO (PCT)
Prior art keywords
modulator
radiation
radiation intensity
manufactured
manufacturing
Prior art date
Application number
PCT/KR2013/000848
Other languages
English (en)
French (fr)
Inventor
주상규
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to US14/376,306 priority Critical patent/US9927805B2/en
Priority to EP13743590.5A priority patent/EP2810693B1/en
Publication of WO2013115607A2 publication Critical patent/WO2013115607A2/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/10Application or adaptation of safety means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1096Elements inserted into the radiation path placed on the patient, e.g. bags, bolus, compensators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method and apparatus for manufacturing a radiation intensity modulator, and in particular, in radiation therapy, a radiation intensity modulator can be manufactured to be processed into a desired shape on a 3D printer based on dose modulation information obtained through dose calculation of radiation. And a method and apparatus for manufacturing a radiation intensity modulator.
  • a radiation intensity modulator is a device that modulates the dose distribution of radiation by inserting it at the center of the radiation flux, adhering to, or inserting into the body surface of the patient.
  • Radiation intensity modulators are used for the purpose of modulating the intensity of radiation in radiotherapy to increase tumor dose and minimize disturbances of surrounding normal tissues, and are used for the treatment of electron beams, X-rays, protons, and particle beams, especially protons.
  • the radiation intensity modulator (bolus) is essential to obtain a dose distribution that matches the shape of the tumor.
  • the radiation intensity modulator is effective to irradiate desired radiation to a desired portion by controlling or shielding the intensity of a specific portion, so that the radiation intensity modulator is also used for the purpose of improving image quality by improving the quality of the radiographic image.
  • conventional radiation intensity modulation treatment has a method of shielding the radiation in whole or in part using a radiation aperture to obtain a desired intensity modulated radiation, and a method using a compensation made by cutting by milling or the like.
  • An object of the present invention is to plan the fabrication of the modulator by calculating the three-dimensional radiation dose distribution through the dose calculation by the radiotherapy planning apparatus or handwriting, and obtain the three-dimensional structural information of the modulator to be produced using the radiation intensity modulation information In addition, by verifying the type, position and size of the modulator to be manufactured to produce a modulator through a three-dimensional printer and to provide a radiation intensity modulator manufacturing method that can evaluate the manufacturing accuracy compared to the planned modulator information.
  • Another object of the present invention is to provide a radiation intensity modulator manufacturing apparatus for manufacturing a radiation intensity modulator using the radiation intensity modulator manufacturing method of the present invention.
  • the radiation intensity modulator manufacturing method of the present invention for achieving the above object comprises the steps of (a) planning a modulator to be produced based on the three-dimensional radiation dose distribution applied to the radiation treatment planning unit and outputting the radiation intensity modulation information; (b) a radiation intensity modulator design unit receiving the radiation intensity modulation information to generate a transform file for manufacturing a modulator and outputting three-dimensional structure information of the modulator to be manufactured; (c) the radiation intensity modulator manufacturing unit receiving the transform file for manufacturing the modulator to verify the type, position, and size of the modulator to be manufactured, and transmitting the verified data to a three-dimensional printer to produce a modulator; ; And (d) acquiring three-dimensional structure information of the manufactured modulator by the accuracy verification unit, and evaluating fabrication accuracy by comparing with the planned modulator information.
  • the step (b) is a step of calculating the thickness information of each pixel of the modulator to be produced proportional to the radiation intensity modulation amount by the radiation intensity modulator design ; Generating, by the radiation intensity modulator design unit, initial data capable of calculating a size of the modulator to be manufactured; Generating, by the radiation intensity modulator design unit, an initial modulator of the modulator to be manufactured based on the initial data; And calculating, by the radiation intensity modulator design unit, the three-dimensional structure information and three-dimensional coordinate information of the modulator to be manufactured based on the initial modulator.
  • the step (b) of the method of manufacturing a radiation intensity modulator of the present invention for achieving the above object is to create an outer support that supports the modulator to be manufactured while the modulator is being manufactured while surrounding the outer portion of the modulator to be manufactured. step; And generating an attachment portion for attaching and fixing the manufactured modulator to a treatment device.
  • the three-dimensional coordinate information of the method of manufacturing a radiation intensity modulator of the present invention for achieving the above object is a three-dimensional position coordinate on which the modulator to be produced is placed on the basis of the radiation beam center indication, and the three-dimensional position on the surface of the modulator to be manufactured. And an extension line of the center position coordinates and the center position coordinates among the coordinates.
  • the radiation intensity modulator manufacturing unit reads the conversion file for manufacturing the modulator to determine the type, position, and size of the modulator to be manufactured. Verifying and verifying the type of attachment; And manufacturing the modulator including the outer support by transmitting the verified data to the three-dimensional printer by the radiation intensity modulator manufacturing unit.
  • the step (c) of the method for manufacturing a radiation intensity modulator of the present invention for achieving the above object is characterized in that the attachment portion can be included in the calculated modulator structure to be manufactured together when fabricating the modulator.
  • the accuracy verification unit displays the modulator stored in the transform file for manufacturing the modulator to select a patient and a treatment device. Characterized by verifying the error.
  • the step (d) of the method of manufacturing a radiation intensity modulator of the present invention for achieving the above object comprises the steps of: obtaining an outer structure of the manufactured modulator and reconstructing it into a format comparable to the planned modulator; Calculating a thickness difference at each pixel of the modulator by superimposing a three-dimensional structure of the reconstructed modulator and the planned modulator on the basis of a radiation beam center indication; And evaluating the manufacturing accuracy by graphically representing the thickness difference numerically and graphically.
  • the outer structure of the radiation intensity modulator manufacturing method of the present invention for achieving the above object is characterized in that it is obtained using any one of a three-dimensional laser scanner, a video camera and a touch sensor.
  • the radiation is transmitted through the manufactured modulator by irradiating radiation after attaching the manufactured modulator to a treatment device. step; Measuring the obtained radiation distribution and comparing the radiation intensity difference at each pixel of a modulator by overlapping the radiation intensity modulation information based on a radiation beam center indication; And evaluating the manufacturing accuracy by graphically representing the difference in intensity with a numerical value and a graphic.
  • the radiation distribution of the radiation intensity modulator manufacturing method of the present invention for achieving the above object is characterized in that it is obtained using any one of a film, an electronic portal imaging device and a radiation distribution measuring device.
  • the size of the modulator to be manufactured in the method of manufacturing a radiation intensity modulator of the present invention for achieving the above object is a distance inverse square based on the position where the modulator to be manufactured is attached to the treatment device, the radiation source, and the distance between patients. It is characterized by determining by calculating a three-dimensional structure by applying the law).
  • the three-dimensional dose distribution of the radiation intensity modulator manufacturing method of the present invention for achieving the above object is characterized in that it is calculated by a radiotherapy planning apparatus or handwriting.
  • the size of the modulator to be manufactured in the method of manufacturing a radiation intensity modulator of the present invention for achieving the above object is determined by the radiation intensity according to the material of the modulator to be manufactured using a damping coefficient or a blocking ability according to the kind of the radiation used. It is characterized in that it can be re-determined by calculating the reduction.
  • the conversion file for manufacturing the modulator of the radiation intensity modulator manufacturing method of the present invention for achieving the above object is a kind of material used to calculate the size of the modulator to be produced, three-dimensional structure, position coordinates, corresponding patient identification information, And store any one or more of the device information and the irradiation port.
  • a radiation intensity modulator manufacturing apparatus comprising: a radiation treatment planning unit for calculating a modulated body to be manufactured by calculating an applied three-dimensional dose distribution and outputting radiation intensity modulation information; A radiation intensity modulator design unit receiving the radiation intensity modulation information to generate a transform file for manufacturing a modulator and outputting three-dimensional structure information of the modulator to be manufactured; A radiation intensity modulator manufacturing unit for receiving a transform file for manufacturing a modulator to verify a type, a position, and a size of the modulator to be manufactured, and to transmit the verified data to a three-dimensional printer to produce a modulator; And an accuracy verification unit for acquiring three-dimensional structure information of the manufactured modulator and evaluating fabrication accuracy by comparing with the planned modulator information.
  • the radiation intensity modulator design unit of the radiation intensity modulator manufacturing apparatus of the present invention for achieving the another object calculates the thickness information of each pixel of the modulator to be produced in proportion to the radiation intensity modulation amount, the modulator to be produced Generate initial data capable of calculating a size of the first data, generate initial modulators of the modulator to be manufactured based on the initial data, and generate the three-dimensional structure information of the modulator to be manufactured based on the initial modulator; It is characterized by calculating the three-dimensional coordinate information.
  • the radiation intensity modulator design unit of the radiation intensity modulator manufacturing apparatus of the present invention for achieving the above another object is to surround the outer periphery of the modulator to be manufactured and to provide an outer support for supporting the modulator to be manufactured while the modulator is manufactured. And an attachment portion for attaching and fixing the manufactured modulator to the treatment device.
  • the radiation intensity modulator manufacturing unit of the radiation intensity modulator manufacturing apparatus of the present invention for achieving the above another object reads the transform file for fabricating the modulator to determine the type, position and size of the modulator to be manufactured and the type of the attachment part. And verifying and transmitting the verified data to the three-dimensional printer to fabricate the modulator including the outer support.
  • the radiation intensity modulator manufacturing unit of the radiation intensity modulator manufacturing apparatus of the present invention for achieving the above another object may include the attachment portion in the calculated modulator structure to manufacture the modulator together.
  • the accuracy verification unit of the radiation intensity modulator manufacturing apparatus of the present invention for achieving the above another object is to verify the error of the patient and treatment device selection by displaying the modulator stored in the conversion file for the modulator fabrication during the radiation treatment It features.
  • the accuracy verification unit of the radiation intensity modulator manufacturing apparatus of the present invention for achieving the above another object is to obtain the outer structure of the produced modulator, reconstructed in a format comparable to the planned modulator, and The three-dimensional structure of the planned modulator is superimposed on the basis of the radiation beam center display to calculate the thickness difference at each pixel of the modulator, and the thickness difference is numerically and graphically evaluated to evaluate the fabrication accuracy.
  • the accuracy verification unit of the radiation intensity modulator manufacturing apparatus of the present invention for achieving the above another object is mounted on the treatment modulator and then irradiated with radiation to measure the radiation beam by measuring the distribution of the transmitted radiation
  • the difference between the radiation intensity at each pixel of the modulator is superimposed with the radiation intensity modulation information on the basis of the center mark, and the manufacturing accuracy is evaluated by graphically plotting the difference in intensity.
  • the conventional treatment method using the aperture Compared to this, the treatment time is significantly shortened and the intensity modulated beam can be irradiated accurately even in the treatment of moving organs.
  • a radiation intensity modulator using not only a tissue equivalent material but also a metal material effective for radiation shielding when performing 3D printing.
  • FIG. 1 is a block diagram of a radiation intensity modulator manufacturing apparatus for implementing a radiation intensity modulator manufacturing method according to the present invention.
  • FIG. 2 is a flowchart of a method of manufacturing a radiation intensity modulator according to the present invention.
  • FIG. 3 is a configuration diagram of an embodiment of the accuracy verification step of the radiation intensity modulator manufacturing method according to the present invention.
  • FIG. 4 is a perspective view of the fabricated modulator 340 and the attachment portion 345 shown in FIG. 3.
  • FIG. 5 is a configuration diagram of another embodiment of the accuracy verification step of the radiation intensity modulator manufacturing method according to the present invention.
  • FIG. 1 is a block diagram of a radiation intensity modulator manufacturing apparatus for implementing a method of manufacturing a radiation intensity modulator according to the present invention, the radiation treatment planning unit 100, radiation intensity modulator design unit 200, radiation intensity modulator The production unit 300, the accuracy verification unit 400, and the management unit 500 are provided.
  • the radiation treatment planning unit 100 calculates a three-dimensional radiation dose distribution by a radiation treatment planning apparatus or handwriting and outputs radiation intensity modulation information.
  • the radiation intensity modulator design unit 200 generates a three-dimensional modulator structure using an attenuation coefficient and a stopping power ratio, and uses a treatment source, a modulator attachment position, and a tumor position in a patient. Determine the modulator size.
  • the radiation intensity modulator manufacturing unit 300 reads the planned radiation intensity modulator structure information, verifies the size of the modulator to be manufactured and the type of attachment for attaching the treatment device using the identification information, mounts the material, and then prints the planned modulator. do.
  • the accuracy verification unit 400 obtains three-dimensional structural information such as thickness, size, and coordinate information of each manufactured modulator, evaluates manufacturing accuracy by comparing the planned modulator information, and compares patient identification and treatment device-related information. The patient selection error and the treatment device selection error are verified.
  • the management unit 500 manages a series of sequential processes of radiation therapy planning, radiation intensity modulator design, radiation intensity modulator fabrication and fabrication accuracy verification, displays the results, and transmits data using a network.
  • FIG. 2 is a flowchart of a method of manufacturing a radiation intensity modulator according to the present invention.
  • 3 is a block diagram of the accuracy verification unit 400 of the embodiment of the accuracy verification step of the radiation intensity modulator manufacturing method according to the present invention, the radiation intensity modulator manufacturing unit 300, the planned modulator 320, the actual The fabricated modulator 340, the attachment part 345, and the obtained three-dimensional structure information 360 are included.
  • FIG. 4 is a perspective view of the actual fabricated modulator 340 and the attachment portion 345 illustrated in FIG. 3, and the actual fabricated modulator 340 stores the thickness information 342 and the outer support 344 of each pixel. Include.
  • FIG. 5 is a configuration diagram of another embodiment of the accuracy verification step of the radiation intensity modulator manufacturing method according to the present invention, the patient treatment table 330, the patient 350, the actual manufactured modulator 340, the attachment portion ( 345, a treatment device 370.
  • the radiation treatment planning unit 100 calculates the 3D radiation dose distribution to obtain radiation intensity modulation information and plans a modulator (S100).
  • the radiation includes an electron beam, X-rays, protons, and particle beams, and the radiation dose calculation may be performed by a radiation treatment planning apparatus or by hand.
  • the radiation intensity modulator design unit 200 reads the radiation intensity modulation information calculated from the radiation treatment planning unit 100 and generates a converted file that can produce the planned modulator 320 in the three-dimensional printer (S110).
  • the radiation intensity modulator design unit 200 generates the attaching portion 345 and calculates the thickness information 342 of each pixel of the modulator to be produced, which is proportional to the amount of radiation intensity modulation on the plane of the attaching portion 345, and calculates in three dimensions.
  • the reconstruction generates initial data for calculating the size of the modulator (S120).
  • the outer supporter 344 having a circular or rectangular shape that can be attached to the outer surface of the actually manufactured modulator 340 is generated.
  • the outer supporter 344 supports the actual manufactured modulator 340 when the modulator is generated while enclosing the outside of the modulator without invading an area of the actually produced modulator 340.
  • the size of the modulator is determined by calculating a three-dimensional structure by applying a distance inverse square law based on the position where the modulator is attached to the treatment device 370, the radiation source, and the distance between patients.
  • the thickness and size may be recalculated.
  • the thickness of the modulator may be re-determined by recalculating the radiation reduction according to the material using a damping factor or a blocking ability according to the type of radiation used.
  • the degree of radiation loss per modulator thickness is measured in advance and the thickness is calculated in proportion to the desired intensity modulation amount. Therefore, if the user selects the material of the modulator that is easy to use by inputting the decay coefficient or the stopping power previously measured and input by the user in advance, the modulator is generated by recalculating the radiation reduction appropriately.
  • the attachment portion 345 may be included in the modulator design so that the attachment portion 345 is included in the modulator structure calculated and designed for the predetermined user treatment device 370, so that the attachment portion 345 may be manufactured together with the modulator structure.
  • the radiation intensity modulator design unit 200 generates an initial modulator for calculating the size of the modulator to be manufactured based on the initial data, and generates a three-dimensional structure of the modulator based on the generated initial modulator. As shown in FIG. 4, the three-dimensional position coordinates at which the modulator is placed based on the radiation beam center indication are calculated and plotted on the actually manufactured modulator 340 (S130).
  • the center position of the modulator and its extension line are marked on the surface of the actually manufactured modulator 340 based on the radiation beam center mark so that the user can easily know the insertion direction and the insertion position of the actually produced modulator 340.
  • the conversion file includes information on the type of the substance, information on the calculated three-dimensional structure of the modulator, position coordinates, corresponding patient recognition information, the treatment device 370, and the like based on the information on the weakness and the low potency of the substance used in the calculation.
  • An irradiation port or the like is included, which is printed at the user's choice on the surface of the modulator in the manufacture of the modulator.
  • the radiation intensity modulator manufacturing unit 300 reads the transmitted modulator manufacturing information and verifies whether the modulator to be manufactured is corrected using the patient identification information, and reads the modulator material information to mount the corresponding substance and check the position of the modulator to be manufactured. The size information is verified (S140).
  • the radiation intensity modulator manufacturing unit 300 verifies that the type of the attachment unit 345 is correct by using the information on the treatment device 370 to be used, transmits the verified data to the three-dimensional printing system, and prints using the corresponding material.
  • a modulator including an attachment part 345 attached to the manufactured modulator 340 is manufactured using S150.
  • the center marker of the modulator 340 actually manufactured based on the marker information and the radiation beam center indication by including patient information on the surface of the modulator 340 actually manufactured according to the modulator information planned in step S100. Print the mounting direction.
  • the accuracy verification unit 400 displays three-dimensional structure information, such as thickness, size, and coordinate information of each of the fabricated modulators 340, such as a three-dimensional laser scanner, a video camera, a touch sensor, and an X-ray. Acquisition using a detector or the like is performed, and the manufacturing accuracy is evaluated by comparing the information of the modulator 320 planned in step S100 (S160).
  • the accuracy verification unit 400 may be divided into a method of verifying the contour of the actual manufactured outer part of the modulator 340 and a method of verifying the amount of transmission measured after radiation transmission.
  • the method of verifying the contour of the actual manufactured modulator 340 is obtained by acquiring the outer structure of the actually manufactured modulator 340 using a 3D laser scanner, video camera photographing, touch sensor, and the like. 3D reconstruction in the same format comparable to
  • the three-dimensional structure of the planned modulator 320 and the actually manufactured modulator 340 is superimposed on the basis of the radiation beam center mark to calculate the thickness difference at each pixel of the modulator so that the thickness difference at each position can be confirmed.
  • the thickness difference may be expressed by using a conventional statistical technique including average or standard deviation of thickness error information in all pixels of the modulator.
  • the method for verifying the amount of transmission measured after the radiation transmission is performed by mounting an actually manufactured modulator 340 on the treatment device 370 and irradiating arbitrary radiation. To obtain the distribution of radiation transmitted through the modulator through a film, an electronic portal imaging device, or a radiation distribution measuring device.
  • the obtained radiation distribution is overlapped based on the radiation intensity modulation information obtained from the radiation treatment planning unit 100 and the radiation beam center indication, and the intensity error in each pixel of the modulator is compared.
  • the intensity error comparison follows the same method as the aforementioned statistical error evaluation and gamma analysis.
  • the accuracy verification unit 400 displays the modulator included in the planned modulator 320 file in three dimensions in the actual radiation treatment step using the modulator to check whether the modulator is the patient's modulator, and thereby incorrectly modulates the wrong modulator.
  • the likelihood of error occurrence due to the use of the sieve is reduced, and the patient selection error and the treatment device 370 related information are displayed to verify the patient selection error, the treatment device 370 selection error, etc. (S170).
  • the method and apparatus for manufacturing a radiation intensity modulator calculate a three-dimensional radiation dose distribution to plan the fabrication of a modulator, obtain three-dimensional structure information of a modulator to be manufactured using the radiation intensity modulation information, After verifying the type, position, and size of the modulator to be manufactured, the modulator is manufactured through a three-dimensional printer, and then compared with the planned modulator 320 information to evaluate the manufacturing accuracy. Prevents errors caused by scattering dose calculations in diaphragm gaps and diaphragm blades, significantly shortens treatment time compared to conventional diaphragm treatments, and accurately modulates beams of intensity modulation during treatment of moving organs. have.
  • the modulator through cutting compared to the manufacturing method of the modulator through cutting, it reduces the noise generated during the cutting process, prevents the generation of contaminated coolant, makes it possible to manufacture in a small space, and enables high-precision machining to make fine machining according to the drill size. It is possible to prevent the error caused by this impossible, and to manufacture a radiation intensity modulator using a metal material effective for radiation shielding as well as a tissue equivalent material when performing three-dimensional printing.

Description

방사선 세기 변조체 제조 방법 및 장치
본 발명은 방사선 세기 변조체 제조 방법 및 장치에 관한 것으로서, 특히 방사선 치료에 있어서 방사선의 선량 계산을 통해 얻은 선량 변조 정보를 바탕으로 3D 프린터에서 원하는 모양으로 가공할 수 있도록 방사선 세기 변조체를 제작할 수 있는 방사선 세기 변조체 제조 방법 및 장치에 관한 것이다.
일반적으로, 방사선 세기 변조체는 방사선 선속 중심에 삽입하거나 환자의 체표에 부착 또는 체내에 삽입하여 방사선의 선량 분포를 변조하는 기구이다.
방사선 세기 변조체는 방사선 치료에서 방사선의 강도를 변조하여 종양 선량을 높이고 주변 정상 조직의 장애를 최소화하고자 하는 목적으로 사용되며 전자선, X-선, 양성자, 입자선 치료에 모두 사용되는데, 특히, 양성자 및 입자선의 경우 종양의 모양에 맞는 선량 분포를 얻기 위해서는 방사선 세기 변조체(bolus)가 필수적이다.
또한, 방사선 세기 변조체는 특정부분의 강도를 조절하거나 차폐하여 원하는 부위에 원하는 방사선을 조사하는데 효과적이어서 방사선 영상 획득시 선질 개선을 통한 영상의 질 향상 목적에도 사용된다.
최근에 전세계적으로 양성자 및 입자선 치료 시설이 급격히 증가하고 있는 추세이며 국내에서도 세기변조 방사선치료의 보험 수가화로 간단한 절차를 통해 세기변조 치료가 가능한 기술이 절대적으로 필요하게 되었다.
그런데, 종래의 방사선 세기 변조 치료는 방사선 조리개를 사용하여 전체 또는 부분적으로 방사선을 차폐하여 원하는 세기 변조 방사선을 얻는 방법과 밀링 등으로 절삭하여 만든 보상체를 이용하는 방법이 있다.
전자의 경우 조리개의 오동작에 의한 오류 발생 가능성이 있고 조리개 틈이나 조리개 날개에서 발생하는 산란 선량 계산이 어려운 문제점이 있고, 치료시간이 길어지며 움직이는 장기의 치료시 불확실성을 높이는 단점을 안고 있다.
후자의 경우 상기 단점으로부터는 자유롭지만 절삭 과정에서 발생하는 심각한 소음, 오염된 냉각수 발생, 절삭기 운영을 위한 방대한 공간 필요, 고정밀 가공이 어려운 단점 등으로 인해 의료시설에서 이용하기 곤란한 문제점이 있었다.
본 발명의 목적은 방사선 치료 계획 장치나 수기에 의한 선량 계산을 통해 3차원 방사선량 분포를 계산하여 변조체의 제작을 계획하고, 방사선 세기 변조 정보를 이용하여 제작될 변조체의 삼차원 구조 정보를 획득하며, 제작될 변조체의 유형, 위치 및 크기를 검증하여 삼차원 프린터를 통해 변조체를 제작한 후 계획된 변조체 정보와 비교하여 제작 정확도를 평가할 수 있는 방사선 세기 변조체 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 본 발명의 방사선 세기 변조체 제조 방법을 이용하여 방사선 세기 변조체를 제조하는 방사선 세기 변조체 제조 장치를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법은 (a) 방사선 치료 계획부가 인가되는 3차원 방사선량 분포를 바탕으로 제작될 변조체를 계획하고 방사선 세기 변조 정보를 출력하는 단계; (b) 방사선 세기 변조체 디자인부가 상기 방사선 세기 변조 정보를 인가받아 변조체 제작용 변환 파일을 생성하고 상기 제작될 변조체의 삼차원 구조 정보를 출력하는 단계; (c) 방사선 세기 변조체 제작부가 상기 변조체 제작용 변환 파일을 인가받아 상기 제작될 변조체의 유형, 위치 및 크기를 검증하고, 상기 검증된 데이터를 삼차원 프린터에 전송하여 변조체를 제작하는 단계; 및 (d) 정확도 검증부가 상기 제작된 변조체의 삼차원 구조 정보를 획득하고, 상기 계획된 변조체 정보와 비교하여 제작 정확도를 평가하는 단계;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법은 상기 (b) 단계는 상기 방사선 세기 변조체 디자인부가 방사선 세기 변조량에 비례하는 상기 제작될 변조체 각 픽셀의 두께 정보를 계산하는 단계; 상기 방사선 세기 변조체 디자인부가 상기 제작될 변조체의 크기를 계산할 수 있는 초기 자료를 생성하는 단계; 상기 방사선 세기 변조체 디자인부가 상기 초기 자료를 기초로 하여 상기 제작될 변조체의 초기 변조체를 생성하는 단계; 및 방사선 세기 변조체 디자인부가 상기 초기 변조체를 기초로 하여 상기 제작될 변조체의 상기 삼차원 구조 정보 및 삼차원 좌표 정보를 계산하는 단계;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 (b) 단계는 상기 제작될 변조체의 외곽을 감싸면서 변조체가 제작되는 동안 상기 제작될 변조체를 지지하는 외곽 지지체를 생성하는 단계; 및 상기 제작된 변조체를 치료기에 부착하여 고정시키는 부착부를 생성하는 단계;를 더 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 삼차원 좌표 정보는 방사선 빔 중심 표시를 기준으로 상기 제작될 변조체가 놓이게 되는 삼차원 위치 좌표이고, 상기 제작될 변조체 표면에 상기 삼차원 위치 좌표 중 중심 위치 좌표와 상기 중심 위치 좌표의 연장선을 표시하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 (c) 단계는 상기 방사선 세기 변조체 제작부가 상기 변조체 제작용 변환 파일을 읽어 상기 제작될 변조체의 유형, 위치 및 크기를 검증하고, 상기 부착부의 유형을 검증하는 단계; 및 상기 방사선 세기 변조체 제작부가 상기 검증된 데이터를 상기 삼차원 프린터에 전송하여 상기 외곽 지지체를 포함한 상기 변조체를 제작하는 단계;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 (c) 단계는 상기 부착부를 상기 계산된 변조체 구조에 포함하여 상기 변조체 제작시 함께 제작될 수 있는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 (d) 단계는 방사선 치료 중인 경우, 상기 정확도 검증부가 상기 변조체 제작용 변환 파일에 저장된 변조체를 디스플레이하여 환자 및 치료기 선택의 오류를 검증하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 (d) 단계는 상기 제작된 변조체의 외곽 구조를 획득하여 상기 계획된 변조체와 비교 가능한 포맷으로 재구성하는 단계; 상기 재구성된 변조체와 상기 계획된 변조체의 삼차원 구조를 방사선 빔 중심 표시를 기준으로 중첩하여 변조체 각 픽셀에서의 두께 차이를 계산하는 단계; 및 상기 두께 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 단계;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 외곽 구조는 삼차원 레이저 스캐너, 비디오 카메라 및 터치 센서 중 어느 하나를 이용하여 획득되는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 (d) 단계는 상기 제작된 변조체를 치료기에 장착한 후 방사선을 조사하여 상기 제작된 변조체를 투과한 방사선 분포를 획득하는 단계; 상기 획득된 방사선 분포를 측정하여 방사선 빔 중심 표시를 기준으로 상기 방사선 세기 변조 정보와 중첩하여 변조체 각 픽셀에서의 방사선 강도 차이를 비교하는 단계; 및 상기 강도 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 단계;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 방사선 분포는 필름, 전자포탈 영상 장치 및 방사선 분포 측정 장치 중 어느 하나를 이용하여 획득되는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 제작될 변조체의 크기는 상기 제작될 변조체가 치료기에 부착되는 위치, 방사선원, 환자간 거리를 기반으로 거리 역자승 법칙(inverse square law)를 적용하여 삼차원 구조를 계산하여 결정되는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 3차원 방사선량 분포는 방사선 치료계획 장치나 수기에 의하여 계산되는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 제작될 변조체의 크기는 사용되는 상기 방사선의 종류에 따라 감약계수 또는 저지능을 이용하여 상기 제작될 변조체의 물질에 따른 방사선의 감약을 계산하여 재결정될 수 있는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 방법의 상기 변조체 제작용 변환 파일은 상기 제작될 변조체의 크기 계산에 사용되는 물질의 종류, 삼차원 구조, 위치 좌표, 해당 환자 식별 정보, 치료기 정보 및 조사 포트 중 어느 하나 이상을 저장하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치는 인가되는 3차원 방사선량 분포를 계산하여 제작될 변조체를 계획하고 방사선 세기 변조 정보를 출력하는 방사선 치료 계획부; 상기 방사선 세기 변조 정보를 인가받아 변조체 제작용 변환 파일을 생성하고 상기 제작될 변조체의 삼차원 구조 정보를 출력하는 방사선 세기 변조체 디자인부; 상기 변조체 제작용 변환 파일을 인가받아 상기 제작될 변조체의 유형, 위치 및 크기를 검증하고, 상기 검증된 데이터를 삼차원 프린터에 전송하여 변조체를 제작하는 방사선 세기 변조체 제작부; 및 상기 제작된 변조체의 삼차원 구조 정보를 획득하고, 상기 계획된 변조체 정보와 비교하여 제작 정확도를 평가하는 정확도 검증부;를 구비하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치의 상기 방사선 세기 변조체 디자인부는 방사선 세기 변조량에 비례하는 상기 제작될 변조체 각 픽셀의 두께 정보를 계산하고, 상기 제작될 변조체의 크기를 계산할 수 있는 초기 자료를 생성하며, 상기 초기 자료를 기초로 하여 상기 제작될 변조체의 초기 변조체를 생성하고 상기 초기 변조체를 기초로 하여 상기 제작될 변조체의 상기 삼차원 구조 정보 및 삼차원 좌표 정보를 계산하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치의 상기 방사선 세기 변조체 디자인부는 상기 제작될 변조체의 외곽을 감싸면서 변조체가 제작되는 동안 상기 제작될 변조체를 지지하는 외곽 지지체를 생성하고, 상기 제작된 변조체를 치료기에 부착하여 고정시키는 부착부를 생성하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치의 상기 방사선 세기 변조체 제작부는 상기 변조체 제작용 변환 파일을 읽어 상기 제작될 변조체의 유형, 위치 및 크기와 상기 부착부의 유형을 검증하며, 상기 검증된 데이터를 상기 삼차원 프린터에 전송하여 상기 외곽 지지체를 포함한 상기 변조체를 제작하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치의 상기 방사선 세기 변조체 제작부는 상기 부착부를 상기 계산된 변조체 구조에 포함하여 상기 변조체 제작시 함께 제작할 수 있는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치의 상기 정확도 검증부는 방사선 치료 중인 경우, 상기 변조체 제작용 변환 파일에 저장된 변조체를 디스플레이하여 환자 및 치료기 선택의 오류를 검증하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치의 상기 정확도 검증부는 상기 제작된 변조체의 외곽 구조를 획득하여 상기 계획된 변조체와 비교 가능한 포맷으로 재구성하고, 상기 재구성된 변조체와 상기 계획된 변조체의 삼차원 구조를 방사선 빔 중심 표시를 기준으로 중첩하여 변조체 각 픽셀에서의 두께 차이를 계산하며, 상기 두께 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 방사선 세기 변조체 제조 장치의 상기 정확도 검증부는 상기 제작된 변조체를 치료기에 장착한 후 방사선을 조사하여 투과시키고, 상기 투과된 방사선의 분포를 측정하여 방사선 빔 중심 표시를 기준으로 상기 방사선 세기 변조 정보와 중첩하여 변조체 각 픽셀에서의 방사선 강도 차이를 비교하며, 상기 강도 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 것을 특징으로 한다.
본 발명에 의할 경우, 방사선 조리개의 개폐 조절을 통한 세기 변조 방사선 치료시 조리개의 오동작에 의한 오류를 방지하고 조리개 틈이나 조리개 날개에서 발생하는 산란 선량 계산 오류를 방지하고, 종래의 조리개를 이용한 치료법에 비해 현저히 치료시간이 단축되며 움직이는 장기의 치료시에도 정확하게 세기 변조 빔을 조사 할 수 있다.
또한, 종래의 절삭을 통한 변조체 제작 방법에 비해 절삭 과정에서 발생하는 소음을 감소시키고, 오염된 냉각수 발생을 방지하며, 작은 공간에서가공이 가능하고, 정밀 가공이 가능하여 절삭시 드릴 크기에 의한 미세 가공의 불가능으로 인해 발생하는 오차를 방지한다.
또한, 삼차원 프린트 수행시 조직 등가 물질 뿐만 아니라 방사선 차폐에 효과적인 금속 재질을 이용하여 방사선 세기 변조체를 제작하는 것이 가능하다.
도 1은 본 발명에 따른 방사선 세기 변조체 제조 방법을 구현하기 위한 방사선 세기 변조체 제조 장치의 블록도이다.
도 2는 본 발명에 따른 방사선 세기 변조체 제조 방법의 순서도이다.
도 3은 본 발명에 따른 방사선 세기 변조체 제조 방법 중 정확도 검증 단계에 대한 일 실시예의 구성도이다.
도 4는 도 3에 도시된 실제 제작된 변조체(340) 및 부착부(345)의 사시도이다.
도 5는 본 발명에 따른 방사선 세기 변조체 제조 방법 중 정확도 검증 단계에 대한 다른 실시예의 구성도이다.
이하, 본 발명에 따른 방사선 세기 변조체 제조 방법 및 장치의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다.
도 1은 본 발명에 따른 방사선 세기 변조체 제조 방법을 구현하기 위한 방사선 세기 변조체 제조 장치의 블록도로서, 방사선 치료 계획부(100), 방사선 세기 변조체 디자인부(200), 방사선 세기 변조체 제작부(300), 정확도 검증부(400), 관리부(500)를 구비한다.
도 1을 참조하여 본 발명에 따른 방사선 세기 변조체 제조 방법을 구현하기 위한 방사선 세기 변조체 제조 장치의 각 블록의 기능을 설명하면 다음과 같다.
방사선 치료 계획부(100)는 방사선 치료계획 장치나 수기에 의하여 3차원 방사선량 분포를 계산하고 방사선 세기 변조 정보를 출력한다.
방사선 세기 변조체 디자인부(200)는 감약 계수(attenuation coefficient) 및 저지능(stopping power ratio)을 이용하여 3차원 변조체 구조를 생성하고, 치료기 선원, 변조체 부착 위치 및 환자 내 종양 위치를 이용하여 변조체 크기를 결정한다.
방사선 세기 변조체 제작부(300)는 계획된 방사선 세기 변조체 구조 정보를 읽어 식별 정보를 이용하여 제작될 변조체의 크기 및 치료기 부착용 부착부의 유형을 검증하고, 해당 물질을 장착한 후 계획된 변조체를 프린팅한다.
정확도 검증부(400)는 제작된 변조체의 두께, 크기, 각 두께에서의 좌표 정보와 같은 삼차원 구조 정보를 획득하여 계획된 변조체 정보와 비교하여 제작 정확도를 평가하고, 환자 식별 및 치료기 관련 정보를 이용하여 환자 선택 오류 및 치료기 선택 오류를 검증한다.
관리부(500)는 방사선 치료 계획, 방사선 세기 변조체 디자인, 방사선 세기 변조체 제작 및 제작 정확도 검증의 일련의 순차적 과정을 관리하고 결과를 표시하며 네트워크를 이용하여 자료를 전송한다.
도 2는 본 발명에 따른 방사선 세기 변조체 제조 방법의 순서도이다.
도 3은 본 발명에 따른 방사선 세기 변조체 제조 방법 중 정확도 검증 단계에 대한 일 실시예의 정확도 검증부(400)의 구성도로서, 방사선 세기 변조체 제작부(300), 계획된 변조체(320), 실제 제작된 변조체(340), 부착부(345), 획득된 삼차원 구조 정보(360)를 포함한다.
도 4는 도 3에 도시된 실제 제작된 변조체(340) 및 부착부(345)의 사시도로서, 실제 제작된 변조체(340)는 각 픽셀의 두께 정보(342) 및 외곽 지지체(344)를 포함한다.
도 5는 본 발명에 따른 방사선 세기 변조체 제조 방법 중 정확도 검증 단계에 대한 다른 실시예의 구성도로서, 환자 치료대(330), 환자(350), 실제 제작된 변조체(340), 부착부(345), 치료기(370)를 포함한다.
도 1 내지 도 5를 참조하여 본 발명에 따른 삼차원 프린터를 이용한 방사선 세기 변조체 제조 방법의 동작을 설명하면 다음과 같다.
방사선 치료 계획부(100)가 3차원 방사선량 분포를 계산하여 방사선 세기 변조 정보를 획득하고 변조체를 계획한다(S100). 이때, 방사선은 전자선, X-선, 양성자 및 입자선을 포함하고, 방사선량 계산은 방사선 치료계획 장치나 수기에 의하여 할 수 있다.
방사선 세기 변조체 디자인부(200)는 방사선 치료 계획부(100)로부터 계산된 방사선 세기 변조 정보를 읽어 계획된 변조체(320)를 삼차원 프린터에서 제작할 수 있는 변환 파일을 생성한다(S110).
방사선 세기 변조체 디자인부(200)는 부착부(345)를 생성하고 부착부(345)의 평면에 방사선 세기 변조량에 비례하는 제작될 변조체 각 픽셀의 두께 정보(342)를 계산하고 삼차원으로 재구성하여 변조체의 크기를 계산할 수 있는 초기 자료를 생성한다(S120).
또한, 실제 제작된 변조체(340)의 외곽에 부착되어지지할 수 있는 원형 또는 사각형 등의 형상을 가진 외곽 지지체(344)를 생성한다. 외곽 지지체(344)는 실제 제작된 변조체(340)의 영역을 침범하지 않으면서 변조체의 외곽을 감싸면서 변조체가 생성될 때 실제 제작된 변조체(340)를 지지하는 역할을 한다.
여기에서, 변조체의 크기는 변조체가 치료기(370)에 부착되는 위치, 방사선원, 환자간 거리를 기반으로 거리 역자승 법칙(inverse square law)를 적용하여 삼차원 구조를 계산하여 결정되고, 변조체의 재질에 따라 두께 및 크기가 재계산 될 수도 있는데, 사용 방사선의 종류에 따라 감약계수 또는 저지능을 이용하여 물질에 따른 방사선의 감약을 재계산하여 변조체의 두께가 재결정된다.
즉, 사전에 변조체 두께당 방사선 감약 정도를 측정하고 이를 원하는 세기 변조량에 비례하여 두께를 산출한다. 따라서 사전에 미리 사용자가 측정하여 입력한 감약 계수 또는 저지능을 라이브러리로 입력하여 사용자가 사용이 용이한 변조체의 재질을 선택하면 이에 적합하게 방사선의 감약을 재계산하여 변조체를 생성한다.
여기에서, 부착부(345)는 미리 정해진 사용자 치료기(370)에 맞게 고안하여 계산된 변조체 구조에 포함하여 변조체 제작시 함께 제작될 수 있도록 변조체 디자인에 포함시킬 수 있는데, 부착부(345)는 제작된 변조체(340)를 치료기(370)에 부착하기 위한 고정 수단을 말한다.
방사선 세기 변조체 디자인부(200)는 초기 자료를 기초로 하여 제작될 변조체의 크기 계산용 초기 변조체를 생성하고, 상기 생성된 초기 변조체를 기초로 하여 변조체의 삼차원 구조를 생성하한 후에, 도 4에 도시된 바와 같이 방사선 빔 중심 표시를 기준으로 변조체가 놓이게 되는 삼차원 위치 좌표를 계산하고 이를 실제 제작된 변조체(340) 위에 도식한다(S130).
또한, 방사선 빔 중심 표시를 기준으로 변조체의 중심 위치와 이의 연장선을 실제 제작된 변조체(340) 표면에 표식하여 사용자가 쉽게 실제 제작된 변조체(340)의 삽입 방향과 삽입 위치를 알 수 있도록 한다.
이때, 변환 파일에는 계산에 사용된 물질의 감약계수와 저지능 정보를 바탕으로 해당 물질의 종류에 대한 정보, 계산된 변조체의 삼차원 구조 정보, 위치 좌표, 해당 환자 인식정보, 치료기(370) 정보 및 조사 포트(port) 등이 포함되며 이는 변조체 제조시 변조체 표면에 사용자의 선택에 의해 프린트된다.
방사선 세기 변조체 제작부(300)는 전송된 변조체 제작 정보를 읽어 해당환자 식별 정보를 이용하여 제작될 변조체가 맞는지 검증하고, 변조체 물질 정보를 읽어 해당 물질을 장착하고 제작될 변조체의 위치와 크기 정보를 검증한다(S140).
방사선 세기 변조체 제작부(300)는 사용될 치료기(370) 정보를 활용하여 부착부(345)의 유형이 맞는지 검증하고, 검증된 자료를 삼차원 프린팅 시스템에 전송하며, 장착된 해당 물질을 이용하여 프린팅 기술을 활용해 제작된 변조체(340)에 부착되는 부착부(345)를 포함한 변조체를 제작한다(S150).
이때,단계(S100)에서 계획된 변조체 정보에 따라 실제 제작된 변조체(340) 표면에 환자 정보를 포함하여 표식 정보와 방사선 빔 중심 표시를 기준으로 실제 제작된 변조체(340)의 중심 표식과 장착 방향 등을 프린팅한다.
정확도 검증부(400)는 도 3에서 보는 바와 같이, 제작된 변조체(340)의 두께, 크기, 각 두께에서의 좌표 정보와 같은 삼차원 구조 정보를 삼차원 레이저 스캐너, 비디오 카메라, 터치 센서, X선 검출기 등을 이용하여 획득하고, 단계(S100)에서 계획된 변조체(320) 정보와 비교하여 제작 정확도를 평가한다(S160).
즉, 정확도 검증부(400)가 제작 정확도를 검증하는 방법에는 실제 제작된 변조체(340) 외곽의 윤곽을 검증하는 방법과 방사선 투과후 측정되는 투과량을 검증하는 방법으로 나눌수 있다.
실제 제작된 변조체(340) 외곽의 윤곽을 검증하는 방법은 삼차원 레이저 스캐너, 비디오 카메라 촬영, 터치 센서 등을 이용하여 실제 제작된 변조체(340)의 외곽 구조를 획득하고 이를 계획된 변조체(320)와 비교 가능한 동일한 포맷(format)으로 삼차원 재구성한다.
이후 계획된 변조체(320)와 실제 제작된 변조체(340)의 삼차원 구조를 방사선 빔 중심 표시를 기준으로 중첩하여 변조체 각 픽셀에서의 두께 차이를 계산하여 각 위치에서의 두께 차이를 확인할 수 있도록 수치와 그래픽으로 도식한다.
상기 두께 차이의 표현은 변조체 전체 픽셀에서의 두께 오차 정보를 평균 또는 표준 편차를 포함하는 통상적인 통계적 기법을 활용하여 할 수 있다.
또한, 화면 상의 입력창을 통해 입력된 기준 값을 바탕으로 이를 초과하는 두께 차이만 표식하는 기능을 포함하고 있어 사용자의 판단을 도울 수 있고, 입력 창을 통해 입력한 두께와 거리 오차를 기준으로 감마값을 계산하여 이를 초과하는 부분을 그래픽으로 표시하는 기능을 제공한다.방사선 투과후 측정되는 투과량을 검증하는 방법은 실제 제작된 변조체(340)를 치료기(370)에 장착한 후 임의의 방사선을 조사하여 필름 또는 전자포탈 영상 장치, 방사선 분포 측정 장치 등을 통해 변조체를 투과한 방사선 분포를 획득한다
그 후에 획득된 방사선 분포를 방사선 치료 계획부(100)로부터 획득한 방사선 세기 변조 정보와 방사선 빔 중심 표시를 기준으로 중첩하여 변조체 각 픽셀에서의 강도 오차를 비교한다.
상기 강도 오차 비교는 앞에서 언급한 통계적 오차 평가 및 감마 분석과 동일한 방법을 따른다.
정확도 검증부(400)는 도 5에서 보는 바와 같이, 변조체를 이용한 실제 방사선치료 단계에서, 계획된 변조체(320) 파일에 포함된 변조체를 삼차원으로 디스플레이하여 해당환자의 변조체인지 확인하여 잘못된 변조체 사용으로 인한 오류 발생 가능성을 줄이고, 환자 식별 및 치료기(370) 관련 정보를 디스플레이 하여 환자 선택 오류, 치료기(370) 선택 오류 등을 검증한다(S170).
이와 같이 본 발명에 따른 방사선 세기 변조체 제조 방법 및 장치는 3차원 방사선량 분포를 계산하여 변조체의 제작을 계획하고, 방사선 세기 변조 정보를 이용하여 제작될 변조체의 삼차원 구조 정보를 획득하며, 제작될 변조체의 유형, 위치 및 크기를 검증하여 삼차원 프린터를 통해 변조체를 제작한 후 계획된 변조체(320) 정보와 비교하여 제작 정확도를 평가함으로써 방사선 조리개를 이용한 세기 변조 방사선 치료시 조리개의 오동작에 의한 오류를 방지하고 조리개 틈이나 조리개 날개에서 발생하는 산란 선량 계산 오류를 방지하고, 종래의 조리개를 이용한 치료법에 비해 현저히 치료시간을 단축하며 움직이는 장기의 치료시에도 정확히 세기변조 빔을 조사할 수 있다.
또한, 절삭을 통한 변조체 제작 방법에 비해 절삭 과정에서 발생하는 소음을 감소시키고, 오염된 냉각수 발생을 방지하며, 작은 공간에서도 제작이 가능하며, 고정밀 가공이 가능하여 절삭시 드릴 크기에 의한 미세 가공이 불가능해 발생하는 오차를 방지하고, 삼차원 프린트 수행시 조직 등가 물질뿐만 아니라 방사선 차폐에 효과적인 금속 재질을 이용하여 방사선 세기 변조체를 제작하는 것이 가능하다.
상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당 업계에서 통상의 지식을 가진 자라면 이하의 특허 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (23)

  1. (a) 방사선 치료 계획부가 인가되는 3차원 방사선량 분포를 계산하여 제작될 변조체를 계획하고 방사선 세기 변조 정보를 출력하는 단계;
    (b) 방사선 세기 변조체 디자인부가 상기 방사선 세기 변조 정보를 인가받아 변조체 제작용 변환 파일을 생성하고 상기 제작될 변조체의 삼차원 구조 정보를 출력하는 단계;
    (c) 방사선 세기 변조체 제작부가 상기 변조체 제작용 변환 파일을 인가받아 상기 제작될 변조체의 유형, 위치 및 크기를 검증하고, 상기 검증된 데이터를 삼차원 프린터에 전송하여 변조체를 제작하는 단계; 및
    (d) 정확도 검증부가 상기 제작된 변조체의 삼차원 구조 정보를 획득하고, 상기 계획된 변조체 정보와 비교하여 제작 정확도를 평가하는 단계;
    를 포함하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  2. 제 1 항에 있어서,
    상기 (b) 단계는
    상기 방사선 세기 변조체 디자인부가 방사선 세기 변조량에 비례하는 상기 제작될 변조체 각 픽셀의 두께 정보를 계산하는 단계;
    상기 방사선 세기 변조체 디자인부가 상기 제작될 변조체의 크기를 계산할 수 있는 초기 자료를 생성하는 단계;
    상기 방사선 세기 변조체 디자인부가 상기 초기 자료를 기초로 하여 상기 제작될 변조체의 초기 변조체를 생성하는 단계; 및
    방사선 세기 변조체 디자인부가 상기 초기 변조체를 기초로 하여 상기 제작될 변조체의 상기 삼차원 구조 정보 및 삼차원 좌표 정보를 계산하는 단계;
    를 포함하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  3. 제 1 항에 있어서,
    상기 (b) 단계는
    상기 제작될 변조체의 외곽을 감싸면서 변조체가 제작되는 동안 상기 제작될 변조체를 지지하는 외곽 지지체를 생성하는 단계; 및
    상기 제작된 변조체를 치료기에 부착하여 고정시키는 부착부를 생성하는 단계;
    를 더 포함하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  4. 제 1 항에 있어서,
    상기 삼차원 좌표 정보는
    방사선 빔 중심 표시를 기준으로 상기 제작될 변조체가 놓이게 되는 삼차원 위치 좌표이고,
    상기 제작될 변조체 표면에 상기 삼차원 위치 좌표 중 중심 위치 좌표와 상기 중심 위치 좌표의 연장선을 표시하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  5. 제 3 항에 있어서,
    상기 (c) 단계는
    상기 방사선 세기 변조체 제작부가 상기 변조체 제작용 변환 파일을 읽어 상기 제작될 변조체의 유형, 위치 및 크기를 검증하고, 상기 부착부의 유형을 검증하는 단계; 및
    상기 방사선 세기 변조체 제작부가 상기 검증된 데이터를 상기 삼차원 프린터에 전송하여 상기 외곽 지지체를 포함한 상기 변조체를 제작하는 단계;
    를 포함하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  6. 제 3 항에 있어서,
    상기 (c) 단계는
    상기 부착부를 상기 계산된 변조체 구조에 포함하여 상기 변조체 제작시 함께 제작될 수 있는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  7. 제 1 항에 있어서,
    상기 (d) 단계는
    방사선 치료 중인 경우, 상기 정확도 검증부가 상기 변조체 제작용 변환 파일에 저장된 변조체를 디스플레이하여 환자 및 치료기 선택의 오류를 검증하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  8. 제 1 항에 있어서,
    상기 (d) 단계는
    상기 제작된 변조체의 외곽 구조를 획득하여 상기 계획된 변조체와 비교 가능한 포맷으로 재구성하는 단계;
    상기 재구성된 변조체와 상기 계획된 변조체의 삼차원 구조를 방사선 빔 중심 표시를 기준으로 중첩하여 변조체 각 픽셀에서의 두께 차이를 계산하는 단계; 및
    상기 두께 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 단계;
    를 포함하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  9. 제 8 항에 있어서,
    상기 외곽 구조는
    삼차원 레이저 스캐너, 비디오 카메라 및 터치 센서 중 어느 하나를 이용하여 획득되는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  10. 제 1 항에 있어서,
    상기 (d) 단계는
    상기 제작된 변조체를 치료기에 장착한 후 방사선을 조사하여 상기 제작된 변조체를 투과한 방사선 분포를 획득하는 단계;
    상기 획득된 방사선 분포를 측정하여 방사선 빔 중심 표시를 기준으로 상기 방사선 세기 변조 정보와 중첩하여 변조체 각 픽셀에서의 방사선 강도 차이를 비교하는 단계; 및
    상기 강도 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 단계;
    를 포함하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  11. 제 10 항에 있어서,
    상기 방사선 분포는
    필름, 전자포탈 영상 장치 및 방사선 분포 측정 장치 중 어느 하나를 이용하여 획득되는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  12. 제 1 항에 있어서,
    상기 제작될 변조체의 크기는
    상기 제작될 변조체가 치료기에 부착되는 위치, 방사선원, 환자간 거리를 기반으로 거리 역자승 법칙(inverse square law)를 적용하여 삼차원 구조를 계산하여 결정되는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  13. 제 1 항에 있어서,
    상기 3차원 방사선량 분포는
    방사선 치료계획 장치나 수기에 의하여 계산되는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  14. 제 1 항에 있어서,
    상기 제작될 변조체의 크기는
    사용되는 상기 방사선의 종류에 따라 감약계수 또는 저지능을 이용하여 상기 제작될 변조체의 물질에 따른 방사선의 감약을 계산하여 재결정될 수 있는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  15. 제 1 항에 있어서,
    상기 변조체 제작용 변환 파일은
    상기 제작될 변조체의 크기 계산에 사용되는 물질의 종류, 삼차원 구조, 위치 좌표, 해당 환자 식별 정보, 치료기 정보 및 조사 포트 중 어느 하나 이상을 저장하는 것을 특징으로 하는 방사선 세기 변조체 제조 방법.
  16. 인가되는 3차원 방사선량 분포를 계산하여 제작될 변조체를 계획하고 방사선 세기 변조 정보를 출력하는 방사선 치료 계획부;
    상기 방사선 세기 변조 정보를 인가받아 변조체 제작용 변환 파일을 생성하고 상기 제작될 변조체의 삼차원 구조 정보를 출력하는 방사선 세기 변조체 디자인부;
    상기 변조체 제작용 변환 파일을 인가받아 상기 제작될 변조체의 유형, 위치 및 크기를 검증하고, 상기 검증된 데이터를 삼차원 프린터에 전송하여 변조체를 제작하는 방사선 세기 변조체 제작부; 및
    상기 제작된 변조체의 삼차원 구조 정보를 획득하고, 상기 계획된 변조체 정보와 비교하여 제작 정확도를 평가하는 정확도 검증부;
    를 구비하는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
  17. 제 16 항에 있어서,
    상기 방사선 세기 변조체 디자인부는
    방사선 세기 변조량에 비례하는 상기 제작될 변조체 각 픽셀의 두께 정보를 계산하고,
    상기 제작될 변조체의 크기를 계산할 수 있는 초기 자료를 생성하며,
    상기 초기 자료를 기초로 하여 상기 제작될 변조체의 초기 변조체를 생성하고,
    상기 초기 변조체를 기초로 하여 상기 제작될 변조체의 상기 삼차원 구조 정보 및 삼차원 좌표 정보를 계산하는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
  18. 제 17 항에 있어서,
    상기 방사선 세기 변조체 디자인부는
    상기 제작될 변조체의 외곽을 감싸면서 변조체가 제작되는 동안 상기 제작될 변조체를 지지하는 외곽 지지체를 생성하고,
    상기 제작된 변조체를 치료기에 부착하여 고정시키는 부착부를 생성하는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
  19. 제 18 항에 있어서,
    상기 방사선 세기 변조체 제작부는
    상기 변조체 제작용 변환 파일을 읽어 상기 제작될 변조체의 유형, 위치 및 크기와 상기 부착부의 유형을 검증하고,
    상기 검증된 데이터를 상기 삼차원 프린터에 전송하여 상기 외곽 지지체를 포함한 상기 변조체를 제작하는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
  20. 제 18 항에 있어서,
    상기 방사선 세기 변조체 제작부는
    상기 부착부를 상기 계산된 변조체 구조에 포함하여 상기 변조체 제작시 함께 제작할 수 있는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
  21. 제 17 항에 있어서,
    상기 정확도 검증부는
    방사선 치료 중인 경우, 상기 변조체 제작용 변환 파일에 저장된 변조체를 디스플레이하여 환자 및 치료기 선택의 오류를 검증하는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
  22. 제 17 항에 있어서,
    상기 정확도 검증부는
    상기 제작된 변조체의 외곽 구조를 획득하여 상기 계획된 변조체와 비교 가능한 포맷으로 재구성하고,
    상기 재구성된 변조체와 상기 계획된 변조체의 삼차원 구조를 방사선 빔 중심 표시를 기준으로 중첩하여 변조체 각 픽셀에서의 두께 차이를 계산하며,
    상기 두께 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
  23. 제 17 항에 있어서,
    상기 정확도 검증부는
    상기 제작된 변조체를 치료기에 장착한 후 방사선을 조사하여 투과시키고,
    상기 투과된 방사선의 분포를 측정하여 방사선 빔 중심 표시를 기준으로 상기 방사선 세기 변조 정보와 중첩하여 변조체 각 픽셀에서의 방사선 강도 차이를 비교하며,
    상기 강도 차이를 수치와 그래픽으로 도식하여 상기 제작 정확도를 평가하는 것을 특징으로 하는 방사선 세기 변조체 제조 장치.
PCT/KR2013/000848 2012-02-02 2013-02-01 방사선 세기 변조체 제조 방법 및 장치 WO2013115607A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/376,306 US9927805B2 (en) 2012-02-02 2013-02-01 Method and apparatus for manufacturing radiation intensity bolus
EP13743590.5A EP2810693B1 (en) 2012-02-02 2013-02-01 Method and apparatus for manufacturing radiation intensity bolus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120010812 2012-02-02
KR10-2012-0010812 2012-02-02

Publications (1)

Publication Number Publication Date
WO2013115607A2 true WO2013115607A2 (ko) 2013-08-08

Family

ID=48905990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000848 WO2013115607A2 (ko) 2012-02-02 2013-02-01 방사선 세기 변조체 제조 방법 및 장치

Country Status (4)

Country Link
US (1) US9927805B2 (ko)
EP (1) EP2810693B1 (ko)
KR (1) KR101437268B1 (ko)
WO (1) WO2013115607A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103978155A (zh) * 2014-05-12 2014-08-13 湖南省肿瘤医院 放疗补偿器的制作方法及实施该方法的数控热熔机
WO2015077881A1 (en) * 2013-11-27 2015-06-04 Dalhousie University System and method for manufacturing bolus for radiotherapy using a three-dimensional printer
CN105148390A (zh) * 2015-07-30 2015-12-16 泸州医学院附属医院 施源器的设计方法
CN110769896A (zh) * 2017-02-22 2020-02-07 德克萨斯大学系统董事会 用于制造用于放射治疗的患者专属软填充物的方法、设备和系统
US11179577B2 (en) 2019-04-26 2021-11-23 Adaptiv Medical Technologies Inc. Systems and methods for hot spot reduction during design and manufacture of radiation therapy bolus

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537015B (zh) * 2013-10-17 2016-08-17 广州医科大学附属肿瘤医院 一种基于3d打印技术的调强补偿器制作方法
JP6351164B2 (ja) * 2014-06-12 2018-07-04 国立研究開発法人量子科学技術研究開発機構 ビーム照射対象確認装置、ビーム照射対象確認プログラム、および阻止能比算出プログラム
KR101747232B1 (ko) * 2014-12-16 2017-06-14 사회복지법인 삼성생명공익재단 방사선 세기 변조체 검증 방법 및 검증 장치
KR101747209B1 (ko) * 2014-12-16 2017-06-14 사회복지법인 삼성생명공익재단 방사선 세기 변조체 제조 방법 및 제조 장치
CN104971438A (zh) * 2015-07-24 2015-10-14 上海交通大学医学院附属第九人民医院 等效组织补偿物的制造方法和等效组织补偿物
CN105498099B (zh) * 2015-11-30 2018-09-11 北京大学第一医院 一种组织补偿物的制备方法及系统
WO2017158965A1 (ja) 2016-03-14 2017-09-21 株式会社リコー ボーラス及びその製造方法
KR101739690B1 (ko) 2016-04-22 2017-05-26 가톨릭대학교 산학협력단 전신 방사선 치료를 위한 보상체를 카메라를 이용하여 제조하는 방법 및 시스템
US9824895B1 (en) 2016-09-27 2017-11-21 Cypress Semiconductor Corporation Method of integration of ONO stack formation into thick gate oxide CMOS flow
JP6446635B2 (ja) * 2016-11-01 2019-01-09 静岡県 放射線治療用ボーラスの製造方法及び放射線治療用ボーラス
RU2721658C1 (ru) * 2016-11-14 2020-05-21 Нойборон Медтех Лтд. Устройство и способ экранирования излучения на основе медицинских изображений
CN108066901B (zh) * 2016-11-14 2024-04-12 南京中硼联康医疗科技有限公司 基于医学影像的辐射屏蔽装置及方法
JP6835553B2 (ja) 2016-12-02 2021-02-24 株式会社日立製作所 リッジフィルタおよびその製造方法
JP6809217B2 (ja) * 2016-12-27 2021-01-06 株式会社リコー ボーラスと保管用部材のセット、ボーラスと保管用部材の製造方法、及び保管用部材
CA3053220A1 (en) * 2017-02-09 2018-08-16 Oncobeta International Gmbh Model for applying radiation, method for producing the same, and use thereof
DE102017202312B4 (de) * 2017-02-14 2018-10-04 Siemens Healthcare Gmbh Verfahren zur Herstellung eines Röntgen-Streustrahlenrasters
US10183179B1 (en) 2017-07-21 2019-01-22 Varian Medical Systems, Inc. Triggered treatment systems and methods
US10609806B2 (en) 2017-07-21 2020-03-31 Varian Medical Systems Particle Therapy Gmbh Energy modulation of a cyclotron beam
US10245448B2 (en) 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
CN107693960A (zh) * 2017-10-31 2018-02-16 德阳市人民医院 二维放射治疗用物理补偿铅块制作方法
GB201801690D0 (en) * 2018-02-01 2018-03-21 Renishaw Plc Verification of additive manufacturing processes
AU2022281474A1 (en) * 2021-05-26 2023-09-14 GenesisCare Ventures Pty Ltd Bolus, bolus positioning system and method of manufacturing the same
US20230330439A1 (en) * 2022-04-15 2023-10-19 Varian Medical Systems, Inc. Particle beam modulation systems and methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102366A (ja) 2000-10-03 2002-04-09 Mitsubishi Electric Corp 放射線照射装置用コンペンセータの製造方法及び製造装置
CA2448736C (en) 2001-06-05 2010-08-10 Mikro Systems, Inc. Methods for manufacturing three-dimensional devices and devices created thereby
JP4403384B2 (ja) 2003-03-07 2010-01-27 リコープリンティングシステムズ株式会社 三次元積層造形方法
JP4255860B2 (ja) 2004-02-26 2009-04-15 株式会社日立製作所 放射線治療用ボーラスの製造方法及び製造装置
US20080027974A1 (en) 2006-07-24 2008-01-31 Collins Donald W Intensity modulated radiation therapy filtration apparatus, system and method
JP5238242B2 (ja) * 2007-12-21 2013-07-17 株式会社東芝 放射線治療用線量分布測定装置及び放射線治療用線量分布測定プログラム
EP2116278A1 (en) 2008-05-06 2009-11-11 Ion Beam Applications S.A. Device for 3D dose tracking in radiation therapy
US8121253B2 (en) * 2009-01-29 2012-02-21 .Decimal, Inc. Radiation therapy using beam modifiers placed against a patient's skin
RU2571374C2 (ru) 2009-08-31 2015-12-20 Конинклейке Филипс Электроникс, Н.В. Интерактивный компьютеризованный редактор для компенсаторов, используемых в планировании лучевой терапии
JP5124046B2 (ja) * 2010-11-16 2013-01-23 三菱電機株式会社 ボーラス、ボーラスの製造方法、粒子線治療装置、および治療計画装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2810693A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077881A1 (en) * 2013-11-27 2015-06-04 Dalhousie University System and method for manufacturing bolus for radiotherapy using a three-dimensional printer
US10350435B2 (en) 2013-11-27 2019-07-16 Dalhousie University System and method for manufacturing bolus for radiotherapy using a three-dimensional printer
CN103978155A (zh) * 2014-05-12 2014-08-13 湖南省肿瘤医院 放疗补偿器的制作方法及实施该方法的数控热熔机
CN105148390A (zh) * 2015-07-30 2015-12-16 泸州医学院附属医院 施源器的设计方法
CN110769896A (zh) * 2017-02-22 2020-02-07 德克萨斯大学系统董事会 用于制造用于放射治疗的患者专属软填充物的方法、设备和系统
CN110769896B (zh) * 2017-02-22 2021-10-08 德克萨斯大学系统董事会 用于制造用于放射治疗的患者专属软填充物的方法、设备和系统
US11179577B2 (en) 2019-04-26 2021-11-23 Adaptiv Medical Technologies Inc. Systems and methods for hot spot reduction during design and manufacture of radiation therapy bolus

Also Published As

Publication number Publication date
KR20130089610A (ko) 2013-08-12
US20150006098A1 (en) 2015-01-01
EP2810693A2 (en) 2014-12-10
EP2810693B1 (en) 2017-11-22
KR101437268B1 (ko) 2014-09-02
EP2810693A4 (en) 2015-07-15
US9927805B2 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2013115607A2 (ko) 방사선 세기 변조체 제조 방법 및 장치
US6853702B2 (en) Radiation therapy dosimetry quality control process
WO2014148794A1 (ko) 환자 맞춤형 팬텀을 제조하는 방법, 장치 및 시스템
Herman et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58
Valicenti et al. Is weekly port filming adequate for verifying patient position in modern radiation therapy?
WO2014068784A1 (ja) 三次元画像撮影システム及び粒子線治療装置
RU2607079C2 (ru) Способ и аппарат для измерений гарантии механического и дозиметрического качаства в реальном времени в лучевой терапии
EP0874536A1 (en) Apparatus and method for automatic monitoring and assessment of image quality in X-ray systems
WO2014185637A1 (ko) 환자 맞춤형 어플리케이터에 대한 인쇄 데이터를 생성하는 장치 및 방법, 환자 맞춤형 어플리케이터를 제조하는 시스템
WO2016099142A1 (ko) 방사선 세기 변조체 제조 방법 및 제조 장치
WO2012081743A1 (ko) 방사선치료계획 평가장치 및 평가방법
WO2014068785A1 (ja) 三次元画像撮影システム及び粒子線治療装置
WO2016010398A1 (ko) 방사선 치료기 및 방사선 치료기의 정도 관리 방법
Black et al. An investigation of clinical treatment field delivery verification using cherenkov imaging: IMRT positioning shifts and field matching
WO2016099143A1 (ko) 방사선 세기 변조체 검증 방법 및 검증 장치
Thwaites et al. Quality assurance of external beam radiotherapy
Rampado et al. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone‐beam CT
WO2021040213A1 (ko) 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템 및 방법
JP5379952B2 (ja) X線撮影装置およびx線撮影方法
Fonseca et al. Time-resolved QA and brachytherapy applicator commissioning: Towards the clinical implementation
EP4066888A1 (en) Method for detecting change in bodily structure of patient, device for detecting change in bodily structure of patient, and computer program
US11890490B2 (en) Quality assurance device with passive optical component and remote camera
McGee et al. The value of setup portal films as an estimate of a patient's position throughout fractionated tangential breast irradiation: An on-line study
WO2016064153A1 (ko) 방사선 치료기의 정도 관리 시스템 및 방법
Sephton et al. A diagnostic-quality electronic portal imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743590

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14376306

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013743590

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013743590

Country of ref document: EP