WO2016099142A1 - 방사선 세기 변조체 제조 방법 및 제조 장치 - Google Patents

방사선 세기 변조체 제조 방법 및 제조 장치 Download PDF

Info

Publication number
WO2016099142A1
WO2016099142A1 PCT/KR2015/013776 KR2015013776W WO2016099142A1 WO 2016099142 A1 WO2016099142 A1 WO 2016099142A1 KR 2015013776 W KR2015013776 W KR 2015013776W WO 2016099142 A1 WO2016099142 A1 WO 2016099142A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation intensity
modulator
intensity modulator
information
radiation
Prior art date
Application number
PCT/KR2015/013776
Other languages
English (en)
French (fr)
Inventor
주상규
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to US15/534,706 priority Critical patent/US10421234B2/en
Publication of WO2016099142A1 publication Critical patent/WO2016099142A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1002Intraluminal radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1038Treatment planning systems taking into account previously administered plans applied to the same patient, i.e. adaptive radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1096Elements inserted into the radiation path placed on the patient, e.g. bags, bolus, compensators

Definitions

  • the present invention relates to a method for manufacturing a radiation intensity modulator and a manufacturing apparatus thereof, and more particularly, to a method and apparatus for producing a radiation intensity modulator quickly and accurately using a three-dimensional printer.
  • a radiation intensity modulator is a device that modulates the dose distribution of radiation by inserting it in the center of the beam, or by attaching it to or in the body surface of the patient.
  • Radiation intensity modulators are used for the purpose of modulating the intensity of radiation in radiotherapy to increase tumor dose and minimize disturbances of surrounding normal tissues, and are used for the treatment of electron beams, X-rays, protons, and particle beams, especially protons. And in the case of particle beam, the radiation intensity modulator is essential to obtain a dose distribution that matches the shape of the tumor.
  • the radiation intensity modulator is effective to irradiate desired radiation to a desired portion by controlling or shielding the intensity of a specific portion, so that the radiation intensity modulator is also used for the purpose of improving image quality by improving the quality of the radiographic image.
  • conventional radiation intensity modulation treatments include a method of shielding radiation in whole or in part using a radiation aperture to obtain desired intensity modulated radiation, and a method of using a modulator made by cutting by milling or the like.
  • the present invention has been proposed to solve the above-mentioned conventional problems, and the present invention provides a method and apparatus for manufacturing a radiation intensity modulator capable of producing a radiation intensity modulator quickly and accurately using a three-dimensional printer. .
  • the present invention can reduce the error between the designed structure and the actual manufactured modulator by using a three-dimensional printer, and a method and apparatus for manufacturing a radiation intensity modulator free from contamination or space occupancy problems that may occur in the manufacturing process to provide.
  • a method of manufacturing a radiation intensity modulator includes obtaining dose modulation information or three-dimensional structure information represented by a density matrix provided by a treatment planning system, and radiation intensity provided by the treatment planning system. Acquiring design condition information of a modulator; generating a radiation intensity modulator structure based on design condition information of the radiation intensity modulator and dose modulation information or three-dimensional structure information expressed in the density matrix; Adjusting the generated radiation intensity modulator structure by comparing at least one of a condition and a treatment condition with design condition information of the radiation intensity modulator, and generating a radiation intensity modulator based on the adjusted radiation intensity modulator structure. Manufacturing step.
  • the obtained design condition information of the radiation intensity modulator includes at least one or more of the distance between the source and the modulator, the position of the beam central axis, the position where the modulator is actually placed, and the material information of the modulator.
  • the adjusting of the radiation intensity modulator structure may include comparing design material information obtained from the design condition information with fabrication material information obtained under actual fabrication conditions, and radiation of the design material and fabrication material. Maintaining the thickness of the generated radiation intensity modulator when the attenuation rates are the same, and when the radiation attenuation rates of the design material and the production material are different, the thickness of the generated radiation intensity modulator according to the difference in the radiation attenuation rates between the two materials. Adjusting the.
  • the step of adjusting the radiation intensity modulator structure comprises the distance information between the design source and the modulator obtained from the design condition information and the distance between the source and modulator under treatment obtained under the actual treatment condition. Comparing the information, when the distance information between the source and the modulator in the design and the distance information between the source and the modulator in the treatment are the same, maintaining the size of the generated radiation intensity modulator and the source in the design And adjusting the size of the generated radiation intensity modulator according to the difference between both distances when the distance information between the modulator and the distance information between the source and the modulator at the time of treatment is different.
  • the step of manufacturing the radiation intensity modulator to produce a radiation intensity modulator using a three-dimensional printer in one embodiment, the step of manufacturing the radiation intensity modulator to produce a radiation intensity modulator using a three-dimensional printer.
  • the manufacturing of the radiation intensity modulator may include converting information of the adjusted radiation intensity modulator structure into information that can be produced by a 3D printer, and information of the radiation intensity modulator structure in the conversion process. If part is lost, correcting the lost part.
  • An apparatus for manufacturing a radiation intensity modulator comprises a treatment planning system for designing a radiation intensity modulator according to a radiation treatment plan, and a radiation intensity modulator based on the radiation intensity modulator information designed by the treatment plan system.
  • a radiation intensity modulator modeling system for modeling and a three-dimensional printer for fabricating a radiation intensity modulator based on the radiation intensity modulator modeled in the radiation intensity modulator modeling system, wherein the radiation intensity modulator modeling system comprises: the treatment;
  • An input interface for obtaining dose modulation information or three-dimensional structure information represented by a density matrix provided by a planning system, and obtaining design condition information of a radiation intensity modulator, design condition information of the radiation intensity modulator, and Dose-modulated tablets expressed in density matrices
  • a modulator structure generation unit for generating a radiation intensity modulator structure based on three-dimensional structure information, and comparing the at least one or more of actual fabrication conditions and treatment conditions with design condition information of the radiation intensity modulator to generate the radiation intensity modulator.
  • the radiation intensity modulator manufacturing method and apparatus for manufacturing the same can quickly and accurately manufacture the radiation intensity modulator using a three-dimensional printer, and a problem or a large space in which contamination occurs during the manufacturing process There is a free advantage in such a problem as occupying.
  • the radiation intensity modulator manufactured by the method and apparatus for manufacturing the radiation intensity modulator according to the present invention are prone to errors caused by malfunction of the radiation aperture, and errors caused by scattering dose occurring in the gaps or wings of the radiation aperture. none. Therefore, when the treatment using the radiation intensity modulator manufactured according to the present invention, the treatment time can be significantly shortened compared to the conventional treatment using the aperture, and the radiation intensity modulated beam can be accurately irradiated on moving organs.
  • the method of manufacturing a radiation intensity modulator according to the present invention and its manufacturing apparatus do not generate environmental disturbances such as noise and contaminated coolant compared to the conventional method of manufacturing a modulator through cutting. It is possible to prevent the error caused by the inability to finely cut the cutting tool, it is possible to precisely manufacture the modulator.
  • the radiation intensity modulator manufacturing method and apparatus for manufacturing the same according to the present invention can manufacture a radiation intensity modulator using not only a tissue equivalent material but also a metal material effective for radiation shielding as a modulator fabrication material.
  • FIG. 1 is a block diagram showing the configuration of a radiation intensity modulator manufacturing system and verification system according to an embodiment of the present invention
  • FIG. 3 is a diagram illustrating dose modulation information and three-dimensional structure information expressed in a density matrix.
  • FIG. 4 is a diagram showing a structure of a radiation intensity modulator generated based on dose modulation information
  • FIG. 5 is a configuration diagram showing a configuration of a modulator structure adjusting unit according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a method of adjusting the size of a modulator illustratively.
  • FIG. 8 is a view showing a structure of a radiation intensity modulator of a file converted to be recognized by a three-dimensional printer
  • FIG. 10 is a flowchart illustrating a method and a method of fabricating a radiation intensity modulator according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method of adjusting a modulator structure according to an embodiment of the present invention.
  • FIG. 12 is a block diagram showing the configuration of a radiation intensity modulator verification system according to an embodiment of the present invention
  • FIG. 13 is a block diagram showing a configuration of a scanner according to an embodiment of the present invention
  • FIG. 14 is a view showing a scanner manufactured according to an embodiment of the present invention.
  • 15 illustrates a method of matching a verification target radiation intensity modulator with an original radiation intensity modulator and verifying the verification target radiation intensity modulator
  • FIG. 16 is a diagram illustrating experimentally verified results with different radiation intensity modulators to be verified.
  • 17 is a flowchart illustrating a method of verifying a radiation intensity modulator according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a radiation intensity modulator manufacturing system and verification system according to an embodiment of the present invention.
  • the radiation intensity modulator manufacturing system and verification system include a treatment planning system 110, a radiation intensity modulator modeling system 120, a three-dimensional printer 130, and a radiation intensity modulator verification system 140. Include.
  • the radiation intensity modulator modeling system 120 includes an input interface 150, a modulator structure generator 160, a modulator structure adjuster 170, and an output interface 180.
  • the medical staff may establish a radiotherapy plan for the patient based on medical images (CT, MRI images, etc.) and diagnostic information of the patient to be treated.
  • the treatment planning system 110 designs the radiation intensity modulator according to the medical image of the patient and the established treatment plan.
  • the radiation intensity modulator modeling system 120 models the radiation intensity modulator based on the radiation intensity modulator information designed in the treatment planning system 110.
  • the radiation intensity modulator modeling system 120 models the radiation intensity modulator to be actually manufactured based on at least one of the actual manufacturing conditions and the treatment conditions.
  • the input interface 150 obtains dose modulation information or three-dimensional structure information expressed in a density matrix from the radiation intensity modulator design information in the treatment planning system 110, and obtains design condition information of the radiation intensity modulator. Acquire.
  • the modulator structure generator 160 generates a radiation intensity modulator structure based on design condition information of the radiation intensity modulator and dose modulation information or three-dimensional structure information represented by the density matrix, and modulator structure adjuster 170. ) Adjusts the generated radiation intensity modulator structure by comparing at least one or more of actual fabrication conditions and treatment conditions with design condition information of the radiation intensity modulator.
  • the output interface 180 converts the information of the radiation intensity modulator structure adjusted by the modulator structure adjusting unit 170 into information that can be produced by the 3D printer 130.
  • the 3D printer 130 is manufactured by printing the radiation intensity modulator based on the radiation intensity modulator modeled by the radiation intensity modulator modeling system 120, and the radiation intensity modulator verification system 140 is a 3D printer ( 130) compares the radiation intensity modulator (i.e., the radiation intensity modulator to be verified) with the radiation intensity modulator design information received from the treatment planning system 110 (i.e., the original radiation intensity modulator). The accuracy of the radiation intensity modulator manufactured at 130 is verified.
  • the treatment planning system 110 determines a site to be subjected to radiation therapy and the radiation intensity irradiated to the corresponding site according to the medical image of the patient and the established treatment plan, and designs a radiation intensity modulator based on the treatment image.
  • FIG. 2 is a diagram illustrating types of radiation intensity modulators.
  • FIG. 2 (a) shows a radiation intensity modulator designed for radiation therapy using X-ray as a source
  • FIG. 2 (b) shows protons.
  • a radiation intensity modulator designed for radiation therapy with a source shows protons.
  • the treatment planning system 110 may design the radiation intensity modulator using some information obtained from the established treatment plan as a design condition.
  • the design conditions obtained in the treatment plan may include at least one of the distance between the source and the modulator, the position of the beam center axis, the position at which the modulator is placed relative to the beam center axis position, and the modulator fabrication material. have.
  • treatment planning system 110 may design a radiation intensity modulator in the form of a three-dimensional structure.
  • the treatment planning system 110 may design the radiation intensity modulator in the form of a density matrix indicating the dose modulation degree.
  • treatment planning system 110 may represent the radiation intensity modulator to be used to treat a patient by matrixing the degree of dose modulation at each point into a density value.
  • FIG. 3 is a diagram illustrating dose modulation information and three-dimensional structure information represented by a density matrix, in which FIG. 3 (a) shows a radiation intensity modulator designed in the form of a three-dimensional structure, and FIG. 3 (b) shows a dose modulation.
  • the treatment planning system 110 transmits the designed radiation intensity modulator information to the radiation intensity modulator modeling system 120.
  • the treatment planning system 110 encodes dose modulation information or three-dimensional structure information expressed in a density matrix together with design condition information according to the Digital Imaging and Communication in Medicine for Radiation Therapy (DICOM-RT) standard format. And transmit to the radiation intensity modulator modeling system 120.
  • DICOM-RT Digital Imaging and Communication in Medicine for Radiation Therapy
  • the input interface 150 of the radiation intensity modulator modeling system 120 obtains dose modulation information or three-dimensional structure information represented by a density matrix in the received file. .
  • the input interface 150 obtains design condition information of the radiation intensity modulator stored in the header of the file.
  • the modulator structure generator 160 generates a radiation intensity modulator structure based on design condition information of the radiation intensity modulator and dose modulation information or three-dimensional structure information represented by the density matrix.
  • FIG. 4 is a diagram illustrating a radiation intensity modulator structure generated based on dose modulation information.
  • the modulator structure generator 160 may determine a radiation intensity modulator having a depth corresponding to the dose modulation value based on the dose modulation value at each point in the matrix. You can create a structure.
  • the modulator structure adjusting unit 170 compares at least one or more of actual manufacturing conditions and treatment conditions with design condition information to generate the radiation intensity modulator structure generated by the modulator structure generator 160. Adjust it. Actual manufacturing conditions and treatment conditions may be input by the user to reflect the production situation and the treatment situation.
  • FIG. 5 is a block diagram showing a configuration of a modulator structure adjusting unit according to an embodiment of the present invention.
  • the modulator structure adjusting unit 170 includes a modulator thickness adjusting unit 510, a modulator size adjusting unit 520, and a modulator structure modeling unit 530.
  • the modulator thickness adjusting unit 510 adjusts the thickness of the radiation intensity modulator by comparing the design material information obtained from the design condition information with the fabrication material information obtained under the actual fabrication conditions. As a result of comparison, when the design and fabrication material have the same radiation attenuation rate, the modulator thickness adjuster 510 maintains the thickness of the radiation intensity modulator generated by the modulator structure generator 160. For example, based on the physical information (density, electron density, stopping power, etc.) of the design material and the fabrication material, the thickness of the radiation intensity modulator may be maintained as long as the radiation attenuation rates of the two materials are the same.
  • the modulator thickness adjusting unit 510 adjusts the thickness of the radiation intensity modulator generated by the modulator structure generator 160 according to the difference in the radiation attenuation rate between the two materials. do. For example, if the radiation attenuation per thickness of the design material was 10% (i.e. 10% / cm (thickness)) but the radiation attenuation per thickness of the actual material was 5% (i.e. 5% / cm), then the modulator thickness The adjusting unit 510 may double the thickness of the radiation intensity modulator generated by the modulator structure generator 160.
  • the modulator size adjusting unit 520 compares the distance information between the source and modulator at the time of design obtained from the design condition information with the distance information between the source and modulator at the time of treatment obtained at the actual treatment condition. Adjust it.
  • FIG. 6 is a diagram illustrating a method of adjusting the size of a modulator in the modulator size adjusting unit.
  • the modulator size adjusting unit 520 maintains the size of the radiation intensity modulator.
  • the modulator size adjusting unit 520 adjusts the size of the radiation intensity modulator according to the difference between the two distances. For example, if the distance between the source and the modulator is twice as far as the distance between the source and the modulator in the design based on the actual modulator insertion position, the modulator sizing unit 520 adjusts the size of the radiation intensity modulator. Can be adjusted twice.
  • the modulator structure modeling unit 530 models the radiation intensity modulator so that the radiation intensity modulator whose thickness and size are adjusted in the modulator size adjusting unit 520 can be used in actual treatment.
  • 7 shows a radiation intensity modulator modeled for use in actual treatment.
  • the modulator structure modeling unit 530 may model by adding a support wall (side wall) to the radiation intensity modulator so that the 3D printer 130 can print the modulator.
  • the modulator structure modeling unit 530 may model the modulator by adding a support wall to the radiation intensity modulator along the outermost surface.
  • the modulator structure modeling unit 530 may model by adding a mounting unit for mounting a radiation intensity modulator on a radiation therapy device (not shown). For example, when the treatment device to be used for the actual treatment is determined, the modulator structure modeling unit 530 may model the radiation intensity modulator by adding a mounting part having a predetermined shape according to the type of the treatment device.
  • the radiation intensity modulator of the type used by attaching to the body surface of the patient may be cut and attached to the body surface of the patient.
  • the modulator structure modeling unit 530 may model the radiation intensity modulator by adding a cut surface so that the manufactured radiation intensity modulator can be easily cut.
  • the modulator structure modeling unit 530 may model the patient identification information by adding the radiation intensity modulator.
  • the modulator structure modeling unit 530 may be configured to print patient identification information (eg, at least one or more of a patient ID, identification number, and name) on one side or an attachment portion of the radiation intensity modulator. Can be.
  • the medical staff may use the patient identification information printed on the radiation intensity modulator in actual treatment to identify the patient for which the radiation intensity modulator is to be used.
  • the modulator structure modeling unit 530 may model the radiation intensity modulator by adding a mounting position line based on the beam center point.
  • the medical staff can mount the modulator in the correct position based on the mounting position line printed on the modulator.
  • the output interface 180 converts the information of the radiation intensity modulator structure adjusted by the modulator structure adjusting unit 170 into information that can be produced by the 3D printer 130.
  • 8 is a diagram illustrating a structure of a radiation intensity modulator of a file converted to be recognizable by a 3D printer.
  • the output interface 180 converts the information of the radiation intensity modulator structure into a file that the 3D print 130 can recognize, such as an STL file and a CAD file.
  • the information of the radiation intensity modulator structure may be partially lost in the process of converting the information into the recognizable file by the 3D printer 130.
  • the output interface 180 may correct a portion where information is lost in the radiation intensity modulator structure.
  • the output interface 180 may correct a portion lost through interpolation. That is, the output interface 180 may estimate values of points where information is lost by interpolating values of points where information is not lost.
  • the output interface 180 may determine the order in which the radiation intensity modulators are manufactured in the file in consideration of the complexity of the radiation intensity modulator structure or the total manufacturing time. For example, the output interface 180 may order the radiation intensity modulators to be printed starting from the left and toward the right, or may be ordered to be printed starting from the upper and downward. Alternatively, the output interface 180 may determine the printing order starting from a part to the final part, or may arrange the output interface 180 to be manufactured in a standing form.
  • the output interface 180 is connected to the radiation intensity modulator, patient or therapist, such as three-dimensional structural information, position coordinates, material information, patient identification information, treatment instrument information, or irradiation port of the radiation intensity modulator. Include information about the file in the file to prevent errors during production.
  • the 3D printer 130 prints and manufactures the radiation intensity modulator based on the file provided by the output interface 180 of the radiation intensity modulator modeling system 120.
  • FIG. 9 is a view showing the produced radiation intensity modulator.
  • FIG. 9A shows a radiation intensity modulator manufactured from a three-dimensional structure form
  • FIG. 9B shows a radiation intensity modulator manufactured from a density matrix form indicating a dose modulation degree.
  • FIG. 10 is a flowchart illustrating a method for manufacturing and verifying a radiation intensity modulator according to an embodiment of the present invention.
  • the treatment planning system 110 designs a radiation intensity modulator.
  • the treatment planning system may design the radiation intensity modulator in the form of a density matrix or three-dimensional structure that indicates the degree of dose modulation.
  • the input interface 150 of the radiation intensity modulator modeling system 120 receives radiation intensity modulator design information from the treatment planning system 110 (step S1010).
  • treatment planning system 110 may encode and transmit radiation intensity modulator design information in accordance with the DICOM-RT standard format.
  • the input interface 150 obtains dose modulation information or three-dimensional structure information represented by design condition information and density matrix from the radiation intensity modulator design information provided by the treatment planning system 110, and the modulator structure generator 160. Generates a radiation intensity modulator based on this (step S1020).
  • the modulator structure adjusting unit 170 adjusts the generated radiation intensity modulator structure by comparing the design condition information with at least one of actual manufacturing conditions and treatment conditions (step S1030).
  • FIG. 11 is a flowchart illustrating a method of adjusting a modulator structure according to an embodiment of the present invention.
  • the modulator structure adjusting unit 170 adjusts the thickness of the radiation intensity modulator based on the material information (step S1110). For example, the modulator structure adjusting unit 170 compares the design material information obtained from the design condition information with the fabrication material information obtained under the actual fabrication conditions, and generates radiation when the radiation attenuation rates of the design material and the fabrication material are the same. If the thickness of the intensity modulator is maintained, and the radiation attenuation rate of the design material and the fabrication material is different, the thickness of the generated radiation intensity modulator is adjusted according to the radiation attenuation difference between the two materials.
  • the modulator structure adjusting unit 170 adjusts the size of the radiation intensity modulator based on the distance information between the source and the modulator (step S1120). For example, the modulator structure adjusting unit 170 compares the distance information between the source and the modulator in the design obtained from the design condition information and the distance information between the source and the modulator in the treatment obtained in the actual treatment condition. If the distance information is the same, the size of the generated radiation intensity modulator is maintained, and if both distance information is different, the size of the generated radiation intensity modulator is adjusted according to the difference between both distances.
  • the modulator structure adjusting unit 170 models the radiation intensity modulator by adding a support wall (side wall) to the radiation intensity modulator so that the three-dimensional printer 130 can print the modulator (step S1130).
  • the output interface 180 of the radiation intensity modulator modeling system 120 transmits the adjusted radiation intensity modulator structure information to the three-dimensional printer 130. (Step S1040). In one embodiment, the output interface 180 converts the information of the adjusted radiation intensity modulator structure into information that can be produced by the three-dimensional printer 130 and transmits it.
  • the 3D printer 130 produces a radiation intensity modulator based on the received radiation intensity modulator structure information (step S1050). Once the radiation intensity modulator is manufactured, the radiation intensity modulator produced by the radiation intensity modulator verification system 140 is verified prior to use in the actual treatment (step S1060).
  • FIG. 12 is a block diagram showing the configuration of a radiation intensity modulator verification system according to an embodiment of the present invention.
  • the radiation intensity modulator verification system is largely comprised of a scanner 1210 and a verification system 1220.
  • the scanner 1210 includes a projector 1211, a first image capturing apparatus 1213, a second image capturing apparatus 1215, a position adjusting unit 1217, and a first control unit 1218
  • the verification system 1220 includes: And a data receiver 1221, an original modulator structure information receiver 1222, a modulator structure reconstructor 1223, a modulator matcher 1224, a modulator verifier 1225, and a second controller 1226.
  • the scanner 1210 acquires an image of the radiation intensity modulator 1219 by scanning the radiation intensity modulator 1219 (hereinafter, referred to as a verification target radiation intensity modulator) manufactured by the radiation intensity modulator manufacturing system, and obtained the image. Based on the 3D structure information of the radiation intensity modulator 1219 is generated.
  • the verification system 1220 verifies the verification target radiation intensity modulator based on the 3D structure information of the verification target radiation intensity modulator and the original radiation intensity modulator information received by the scanner 1210.
  • FIG. 13 is a block diagram showing the configuration of a scanner according to an embodiment of the present invention
  • Figure 14 is a view showing a scanner manufactured according to an embodiment of the present invention.
  • the projector 1211 projects at least one or more pattern images onto the radiation intensity modulator to be verified.
  • the projector 1211 sequentially projects at least one or more pattern images with different gaps between the patterns, so that all areas of the radiation intensity modulator to be verified can be imaged.
  • the projector 1211 sequentially projects the pattern image 1 1310, the pattern image 2 1320, and the pattern image 3 1330 having different gaps between the patterns, thereby projecting a specific pattern image.
  • the part that was not captured at the time can be photographed by another pattern image.
  • the scanner can also scan areas of high depth gradient in the radiation intensity modulator.
  • the projector 1211 may project a patterned image using a blue LED as a light source.
  • the first image capturing apparatus 1213 and the second image capturing apparatus 1215 photograph the verification target radiation intensity modulator on which the pattern image is projected.
  • the first image capturing apparatus 1213 and the second image capturing apparatus 1215 may correspond to a stereo camera photographing an object on the same line.
  • the first image capturing apparatus 1213 and the second image capturing apparatus 1215 transmit the photographed image to the first control unit 1218.
  • the position adjusting unit 1217 adjusts the photographing position of the radiation target modulator 1219 to be verified.
  • the position adjuster 1217 may be a turntable position adjuster.
  • the position adjusting unit 1217 may adjust the photographing position of the verification target radiation intensity modulator 1219 positioned on the turntable by rotating, moving back, front, left, or right of the turntable. .
  • the position adjuster 1217 rotates the turntable 360 ° ( ⁇ 180 °) about the vertical axis and tilts 90 ° ( ⁇ 45 °) about the horizontal axis to verify the radiation to be verified.
  • the imaging position of the intensity modulator 1219 can be adjusted.
  • the position adjusting unit 1217 may adjust the photographing position of the radiation target modulator 1219 to be verified according to a predetermined pattern, and if there is an area not reconstructed in the verification system 120, the region is photographed.
  • the imaging position of the verification target radiation intensity modulator 1219 may be automatically adjusted.
  • the position adjusting unit 1217 may manually adjust the photographing position by the user.
  • the position adjuster 1217 may adjust the photographing position by rotating the turntable, moving back, front, left, or right so that a specific area is photographed well by manual adjustment by a user.
  • the first controller 1218 calculates a three-dimensional structure of the radiation target modulator to be verified based on the images of the radiation target modulator to be photographed by the first and second imaging apparatuses 1213 and 1215. do.
  • the first controller 1218 may calculate the three-dimensional structure of the radiation intensity modulator to be verified in the form of a depth matrix of the radiation intensity modulator to be verified based on the captured stereo image.
  • the first controller 1218 may obtain a depth value at a specific point of the radiation intensity modulator to be verified by using a phase-shifting optical triangulation method.
  • the detailed method for obtaining the depth value is as follows.
  • the distance L between the first image capturing apparatus 1213 and the second image capturing apparatus 1215 may be represented by Equation 1 below.
  • the vertical distance Z (that is, the depth of the corresponding point) from the horizontal lines of the first imaging device 1213 and the second imaging device 1215 to a specific point of the radiation intensity modulator 1219 to be verified is as follows. It can be calculated by the equation (2).
  • is the angle between the horizontal line of the first image capturing apparatus 1213 and the second image capturing apparatus 1215 and a connection line connecting a specific point of the first image capturing apparatus 1213 and the radiation intensity modulator 1219.
  • is a connection line connecting a horizontal line of the first image capturing apparatus 1213 and the second image capturing apparatus 1215 and a specific point of the second image capturing apparatus 1215 and the radiation intensity modulator 1219. Indicates the angle between.
  • the first control unit 1218 determines the ⁇ value and ⁇ at a specific point. The value can be calculated to obtain a depth value at a specific point of the radiation intensity modulator to be verified.
  • the first control unit 1218 obtains the depth values of all points of the radiation intensity modulator to be verified in the above manner, and matches the point coordinates (x, y) and the depth values (z) with Cartesian coordinates. Can be matrixed. That is, the first controller 1218 may reconstruct the three-dimensional structure of the radiation intensity modulator to be verified in the form of a depth matrix on Cartesian coordinates.
  • the first control unit 1218 converts the calculated 3D structural information (or data) of the radiation target modulator to be verified into a file and transmits the converted 3D structure information to the verification system 1220.
  • the first controller 1218 may convert 3D structural information of the radiation intensity modulator to be verified into a CAD file such as an STL file and transmit the same.
  • the type of file to be converted is not limited to this, and a file type suitable for processing and analyzing an image is sufficient.
  • the first control unit 1218 included in the scanner 1210 calculates the three-dimensional structure of the radiation intensity modulator to be verified based on the image of the radiation intensity modulator to be verified has been described.
  • the scanner 1210 transmits the captured image of the verification target radiation intensity modulator to the verification system 1220, and after the verification system 1220 calculates a three-dimensional structure of the verification target radiation intensity modulator, modulates the radiation intensity. It can also be used for sieve matching.
  • the three-dimensional structure of the radiation intensity modulator to be verified is calculated based on the images of the radiation intensity modulator to be verified photographed by the first image taking device 1213 and the second image taking device 1215.
  • FIG. 15 is a diagram illustrating a method of matching a verification target radiation intensity modulator with an original radiation intensity modulator and verifying the verification target radiation intensity modulator.
  • a method of verifying a radiation target modulator to be verified in the verification system 1220 will be described in detail with reference to FIGS. 12 and 15.
  • the verification system 1220 verifies the verification target radiation intensity modulator based on the 3D structure information of the verification target radiation intensity modulator and the original radiation intensity modulator information received by the scanner 1210.
  • the receiver 1221 receives 3D structural information of the radiation intensity modulator to be verified from the scanner 1210.
  • the receiver 1221 may receive a file including the 3D structure information of the radiation intensity modulator to be verified from the first controller 1218.
  • the modulator structure reconstructor 1223 reconstructs the radiation intensity modulator by analyzing three-dimensional structure information of the radiation target modulator to be verified received through the receiver 1221.
  • the modulator structure reconstructor 1223 may reconstruct the verification target radiation intensity modulator in the form of a thickness matrix by analyzing the file received through the receiver 1221 (FIG. 15E).
  • the thickness matrix of the radiation intensity modulator to be verified may be calculated using the depth matrix of the radiation intensity modulator to be verified and the bottom depth value of the modulator.
  • the original modulator structure information receiver 1222 receives the structure information of the original radiation intensity modulator.
  • the original modulator structure information receiver 1222 may receive the structure information of the original radiation intensity modulator in the treatment planning system 110.
  • the original modulator structure information receiver 1222 receives original modulator structure information from the radiation intensity modulator modeling system 120. can do.
  • treatment planning system 110 or radiation intensity modulator modeling system 120 may encode and transmit original modulator structure information according to the DICOM-RT standard format.
  • the original modulator structure information receiver 1222 may generate a thickness matrix of the original radiation intensity modulator from the received original modulator structure information. (FIG. 15C)
  • the modulator matching unit 1224 matches the verification target radiation intensity modulator reconstructed by the modulator structure reconstructor 1223 and the original radiation intensity modulator received by the original modulator structure information receiver 1222 based on the thickness information. do.
  • the modulator matching unit 1224 obtains a thickness matrix of each radiation intensity modulator from the three-dimensional structure information of the radiation intensity modulator to be verified and the structure information of the original radiation intensity modulator, and modulates each radiation intensity modulator.
  • the difference between the thickness matrices of both modulators is matched to minimum while varying the corresponding point (overlapping point) between the two radiation intensity modulators relative to the center point of the sieve, the beam center point, or one of the known specific reference points.
  • the modulator matching unit 1224 sets the center of the points recognized by the radiation intensity modulator to be verified as a beam isocenter, and uses the beam center point of the original radiation intensity modulator as a matching criterion. Can be.
  • the modulator matching portion 1224 is located at the edge of the radiation intensity modulator and used to attach metal rings for mounting in the gantry of the radiation treatment device. And the center of these holes can be set as the beam center point.
  • the modulator matching unit 1224 modulates both of the modulation using the thickness matrix extracted from the received original radiation intensity modulator structure information and the thickness matrix of the radiation target modulator to be verified reconstructed by the modulator structure reconstructor 1223. Match so that the difference between the thickness matrices of the sieves is minimal.
  • the modulator matching unit 1224 calculates a maximum correlation coefficient (CC) between the radiation intensity modulator to be verified and the original radiation intensity modulator based on the thickness, so that the calculated maximum correlation coefficient is close to one.
  • CC maximum correlation coefficient
  • the equation for calculating the maximum correlation coefficient is as shown in Equation 3 below.
  • PRC represents the thickness value of the original radiation intensity modulator
  • MRC represents the thickness value of the reconstructed radiation intensity modulator
  • m and n are integers (rows, columns of the matrix). Represents the average of the PRC values in the matrix, Represents the average of the MRC values in the matrix.
  • the modulator matching unit 1224 shifts the position of the thickness matrix of the radiation intensity modulator to be verified and the thickness matrix of the original radiation intensity modulator with respect to a reference point (center point, beam center point, or a specific known reference point) between both matrices.
  • the maximum correlation coefficient at each location is calculated while varying the corresponding points (overlapping points).
  • the modulator matching unit 1224 may calculate and compare the maximum correlation coefficient at each position, and then match both matrices to a position where the calculated maximum correlation coefficient value is closest to one.
  • the modulator verifier 1225 verifies the verification target radiation intensity modulator based on the thickness difference between the matched modulators. In one embodiment, the modulator verifier 1225 verifies the radiation target modulator to be verified by evaluating whether the reference is passed through Depth Difference (DD) analysis or Composite Analysis (CA) analysis.
  • DD Depth Difference
  • CA Composite Analysis
  • the modulator verifier 1225 evaluates at each point whether a thickness difference between the matched modulators passes a predetermined criterion. Verify the radiation intensity modulator to be verified.
  • DD Depth Difference
  • the modulator verification unit 1225 when the verification method is set by Composite Analysis (CA) analysis, the modulator verification unit 1225 performs CA analysis at each point to evaluate whether the reference has been passed for each point, and the radiation target intensity to be verified. Verify the modulator.
  • the modulator verifier 1225 may perform CA analysis at each point through Equation 4 below.
  • CA represents an evaluation value. If the CA value is less than 1, the point is evaluated as having passed the criterion. If the CA value is greater than 1, the point is evaluated as having not passed the criterion.
  • DD and Difference represent the thickness difference, and DTA and Distance represent the distance to agreement.
  • DD Tolerance and DTA Tolerance are predetermined values for the thickness difference and the distance between points, respectively.
  • 15 (f) to (h) show verification results when DD Tolerance and DTA Tolerance are 1 mm, 2 mm, and 3 mm, respectively.
  • the points marked on the figures represent points that do not pass the criteria.
  • FIG. 16 is a diagram illustrating experimentally verified results by differently verifying radiation intensity modulators.
  • FIG. 16 the points indicated in FIG. 16 represent points that do not pass the criteria.
  • the modulator verifier 1225 may verify the radiation target modulator to be verified based on a number of pass / number of total points. For example, when the reference pass rate with respect to the entire area does not exceed a predetermined threshold, the corresponding radiation intensity modulator to be verified may be verified as defective.
  • the modulator verifier 1225 may verify the radiation intensity modulator to be verified based on the reference pass rate of the region designated as the critical region. For example, when the number of pass / number of total points of designated area does not exceed a predetermined value based on an area input from the user as a critical area, the modulator verifier 1225 does not exceed a predetermined value.
  • the verification target radiation intensity modulator can be verified as defective.
  • the modulator verifier 1225 may determine a reference point (eg, a center point, a beam center point, or a known specific point) of both radiation intensity modulators after matching the radiation intensity modulator to be verified with the original radiation intensity modulator.
  • the distance difference between the reference points may be measured to evaluate whether there is a systematic shift due to the radiation intensity modulator manufacturing apparatus.
  • the modulator verifier 1225 calculates an error distance and a direction based on a distance difference and a direction between the reference points of the two radiation intensity modulators to correct the error of the radiation intensity modulator manufacturing apparatus. Can be provided.
  • the modulator matching unit 1224 evaluates whether there is a systematic shift by the radiation intensity modulator manufacturing apparatus.
  • the error distance and the direction may be calculated to provide information for error correction of the radiation intensity modulator manufacturing apparatus.
  • the second control unit 1226 processes each of the data receiving unit 1221, the original modulator structure information receiving unit 1222, the modulator structure reconstructing unit 1223, the modulator matching unit 1224, and the modulator verifying unit 1225. Control process to perform the verification process.
  • 17 is a flowchart illustrating a method of verifying a radiation intensity modulator according to an embodiment of the present invention.
  • the scanner 1210 is calibrated before proceeding with the verification procedure using the radiation intensity modulator verification system 140 (step S1702). For example, an object of known structure may be scanned through the scanner 1210, and the scanner 1210 may be calibrated by comparing the scanned result with the object.
  • the scanner 1210 scans a radiation intensity modulator 1219 (hereinafter, referred to as a verification target radiation intensity modulator) manufactured by the radiation intensity modulator manufacturing system to obtain an image of the verification target radiation intensity modulator 1219 (step) S1704) generates three-dimensional structure information of the radiation target modulator 1219 to be verified based on the obtained image. That is, the scanner 1210 may reconstruct the three-dimensional structure of the radiation intensity modulator 1219 to be verified with depth information.
  • the method of calculating the depth of each point of the radiation target modulator 1219 to be verified is as described with reference to Equations 1 and 2 above.
  • the verification system 1220 receives the original radiation intensity modulator structure information from the treatment planning system 110 or the radiation intensity modulator modeling system 120 (step S1712), and the thickness information of the original radiation intensity modulator from the received information. Is extracted (step S1714). The verification system 1220 may reconstruct the thickness information extracted into the structure of the original radiation intensity modulator (step S1716).
  • the verification system 1220 generates a thickness matrix of the modulator to be verified and a thickness matrix of the original modulator based on the three-dimensional structure information of the radiation intensity modulator 1219 to be verified and the thickness information of the original radiation intensity modulator ( Step S1720).
  • the verification system 1220 matches so that the difference between the thickness matrixes of both radiation intensity modulators is minimized based on the thickness information (step S1730).
  • the method of matching both radiation intensity modulators is as described with reference to Equation 3 above.
  • the verification system 1220 evaluates at each point whether the thickness difference between the matched both radiation intensity modulators passes the reference (step S1740).
  • the verification target radiation intensity modulator is verified (step S1750).
  • the verification system 1220 verifies the radiation intensity modulator to be verified by evaluating whether the reference is passed through Depth Difference (DD) analysis or Composite Analysis (CA) analysis.
  • the analysis method can be set by the user.
  • DD Depth Difference
  • CA Composite Analysis
  • the verification system 1220 evaluates at each point whether a thickness difference between the matched modulators passes a predetermined criterion to be verified. Verify the radiation intensity modulator.
  • the verification system 1220 when the verification method is set to Composite Analysis (CA) analysis, the verification system 1220 performs CA analysis at each point to evaluate whether the criteria have been passed for each point and to verify the radiation intensity modulator to be verified. Verify.
  • CA Composite Analysis
  • the verification system 1220 may verify the radiation intensity modulator to be verified based on a number of pass / number of total points or a reference pass rate of an area designated as an important area.
  • FIGS. 1 through 17 may also be implemented in the form of a recording medium that includes instructions executable by a computer, such as an application or module executed by a computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
  • a module may mean hardware capable of performing functions and operations according to each name described in the specification, and may also mean computer program code capable of performing specific functions and operations. It may also mean an electronic recording medium, eg, a processor, on which computer program code capable of performing specific functions and operations is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명은 방사선 세기 변조체 제조 방법 및 그 제조 장치에 관한 것으로, 본 발명에 따른 방사선 세기 변조체 제작 방법은 치료 계획 시스템에서 제공된 밀도 매트릭스(density matrix)로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득하는 단계, 상기 치료 계획 시스템에서 제공된 방사선 세기 변조체의 설계 조건 정보를 획득하는 단계, 상기 방사선 세기 변조체의 설계 조건 정보와 상기 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 기초로 방사선 세기 변조체 구조를 생성하는 단계, 실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 상기 방사선 세기 변조체의 설계 조건 정보를 비교하여 상기 생성된 방사선 세기 변조체 구조를 조정하는 단계 및 상기 조정된 방사선 세기 변조체 구조를 기초로 방사선 세기 변조체를 제작하는 단계를 포함한다.

Description

방사선 세기 변조체 제조 방법 및 제조 장치
본 발명은 방사선 세기 변조체 제조 방법 및 그 제조 장치에 관한 것으로, 더욱 상세하게는 3차원 프린터를 이용하여 빠르고 정확하게 방사선 세기 변조체를 제조할 수 있는 방법 및 그 장치에 관한 것이다.
일반적으로, 방사선 세기 변조체는 선속 중심에 삽입하거나 환자의 체표에 부착 또는 체내에 삽입하여 방사선의 선량 분포를 변조하는 기구이다.
방사선 세기 변조체는 방사선 치료에서 방사선의 강도를 변조하여 종양 선량을 높이고 주변 정상 조직의 장애를 최소화하고자 하는 목적으로 사용되며 전자선, X-선, 양성자, 입자선 치료에 모두 사용되는데, 특히, 양성자 및 입자선의 경우 종양의 모양에 맞는 선량 분포를 얻기 위해서는 방사선 세기 변조체가 필수적이다.
또한, 방사선 세기 변조체는 특정부분의 강도를 조절하거나 차폐하여 원하는 부위에 원하는 방사선을 조사하는데 효과적이어서 방사선 영상 획득시 선질 개선을 통한 영상의 질 향상 목적에도 사용된다.
최근에 전세계적으로 양성자 및 입자선 치료 시설이 급격히 증가하고 있는 추세이며 국내에서도 세기변조 방사선치료의 보험 수가화로 간단한 절차를 통해 세기변조 치료가 가능한 기술이 절대적으로 필요하게 되었다.
그런데, 종래의 방사선 세기 변조 치료는 방사선 조리개를 사용하여 전체 또는 부분적으로 방사선을 차폐하여 원하는 세기 변조 방사선을 얻는 방법과 밀링 등으로 절삭하여 만든 변조체를 이용하는 방법이 있다.
전자의 경우 조리개의 오동작에 의한 오류 발생 가능성이 있고 조리개 틈이나 조리개 날개에서 발생하는 산란 선량 계산이 어려운 문제점이 있고, 치료시간이 길어지며 움직이는 장기의 치료시 불확실성을 높이는 단점을 안고 있다.
후자의 경우 상기 단점으로부터는 자유롭지만 절삭 과정에서 발생하는 심각한 소음, 오염된 냉각수 발생, 절삭기 운영을 위한 방대한 공간 필요, 고정밀 가공이 어려운 단점 등으로 인해 의료시설에서 이용하기 곤란한 문제점이 있었다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 제안된 것으로, 본 발명은 3차원 프린터를 이용하여 빠르고 정확하게 방사선 세기 변조체를 제조할 수 있는 방사선 세기 변조체 제조 방법 및 그 제조 장치를 제공한다. 또한 본 발명은 3차원 프린터를 이용함으로써 설계된 구조와 실제 제조된 변조체 사이에 오차를 줄일 수 있으며, 제작과정에서 발생할 수 있는 오염이나 공간 점유 문제에서 자유로운 방사선 세기 변조체 제조 방법 및 그 제조 장치를 제공한다.
본 발명의 일 실시예에 따른 방사선 세기 변조체 제작 방법은 치료 계획 시스템에서 제공된 밀도 매트릭스(density matrix)로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득하는 단계, 상기 치료 계획 시스템에서 제공된 방사선 세기 변조체의 설계 조건 정보를 획득하는 단계, 상기 방사선 세기 변조체의 설계 조건 정보와 상기 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 기초로 방사선 세기 변조체 구조를 생성하는 단계, 실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 상기 방사선 세기 변조체의 설계 조건 정보를 비교하여 상기 생성된 방사선 세기 변조체 구조를 조정하는 단계 및 상기 조정된 방사선 세기 변조체 구조를 기초로 방사선 세기 변조체를 제작하는 단계를 포함한다.
일 실시예에 있어서, 상기 획득된 방사선 세기 변조체의 설계 조건 정보는 선원과 변조체 사이의 거리, 빔 중심축의 위치, 변조체가 실제 놓이는 위치 및 변조체의 물질 정보 중 적어도 하나 이상을 포함한다.
일 실시예에 있어서, 상기 방사선 세기 변조체 구조를 조정하는 단계는 상기 설계 조건 정보에서 획득된 설계 물질 정보와 실제 제작 조건에서 획득된 제작 물질 정보를 비교하는 단계, 상기 설계 물질과 제작 물질의 방사선 감쇄율이 동일한 경우, 상기 생성된 방사선 세기 변조체의 두께를 유지하는 단계 및 상기 설계 물질과 제작 물질의 방사선 감쇄율이 상이한 경우, 양 물질 사이의 방사선 감쇄율 차이에 따라 상기 생성된 방사선 세기 변조체의 두께를 조정하는 단계를 포함한다.
일 실시예에 있어서, 상기 방사선 세기 변조체 구조를 조정하는 단계는 상기 설계 조건 정보에서 획득된 설계시 선원과 변조체 사이의 거리 정보와 실제 치료 조건에서 획득된 치료시 선원과 변조체 사이의 거리 정보를 비교하는 단계, 상기 설계시 선원과 변조체 사이의 거리 정보와 치료시 선원과 변조체 사이의 거리 정보가 동일한 경우, 상기 생성된 방사선 세기 변조체의 크기를 유지하는 단계 및 상기 설계시 선원과 변조체 사이의 거리 정보와 치료시 선원과 변조체 사이의 거리 정보가 상이한 경우, 양 거리 사이의 차이에 따라 상기 생성된 방사선 세기 변조체의 크기를 조정하는 단계를 포함한다.
일 실시예에 있어서, 상기 방사선 세기 변조체를 제작하는 단계는 3차원 프린터를 이용하여 방사선 세기 변조체를 제작한다.
일 실시예에 있어서, 상기 방사선 세기 변조체를 제작하는 단계는 상기 조정된 방사선 세기 변조체 구조의 정보를 3차원 프린터에서 제작 가능한 정보로 변환하는 단계 및 상기 변환 과정에서 방사선 세기 변조체 구조의 정보가 일부 손실된 경우, 손실된 부분을 보정하는 단계를 포함한다.
본 발명의 일 실시예에 따른 방사선 세기 변조체 제작 장치는 방사선 치료 계획에 따라 방사선 세기 변조체를 설계하는 치료 계획 시스템, 상기 치료 계획 시스템에서 설계된 방사선 세기 변조체 정보를 기초로 방사선 세기 변조체를 모델링하는 방사선 세기 변조체 모델링 시스템 및 상기 방사선 세기 변조체 모델링 시스템에서 모델링된 방사선 세기 변조체를 기초로 방사선 세기 변조체를 제작하는 3차원 프린터를 포함하되, 상기 방사선 세기 변조체 모델링 시스템은 상기 치료 계획 시스템에서 제공된 밀도 매트릭스(density matrix)로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득하고, 방사선 세기 변조체의 설계 조건 정보를 획득하는 입력 인터페이스, 상기 방사선 세기 변조체의 설계 조건 정보와 상기 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 기초로 방사선 세기 변조체 구조를 생성하는 변조체 구조 생성부 및 실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 상기 방사선 세기 변조체의 설계 조건 정보를 비교하여 상기 생성된 방사선 세기 변조체 구조를 조정하는 변조체 구조 조정부를 포함한다.
이상에서 설명한 바와 같이, 본 발명에 따른 방사선 세기 변조체 제조 방법 및 그 제조 장치는 3차원 프린터를 이용하여 빠르고 정확하게 방사선 세기 변조체를 제조할 수 있으며, 제작과정에서 오염이 발생하는 문제나 큰 공간을 점유하는 문제 등에서 자유로운 장점이 있다.
본 발명에 따른 방사선 세기 변조체 제조 방법 및 그 제조 장치에 의해 제조된 방사선 세기 변조체는 방사선 조리개의 오동작에 의한 오류, 방사선 조리개 틈이나 날개에서 발생하는 산란 선량에 의한 오류 문제 등이 발생할 가능성이 없다. 따라서, 본 발명에 따라 제조된 방사선 세기 변조체를 이용하여 치료하는 경우, 종래의 조리개를 이용한 치료법에 비해 치료시간을 현저히 단축할 수 있고 움직이는 장기에 대해서도 정확하게 방사선 세기 변조 빔을 조사할 수 있다.
또한, 본 발명에 따른 방사선 세기 변조체 제조 방법 및 그 제조 장치는 종래의 절삭을 통한 변조체 제작 방법에 비해 소음 및 오염된 냉각수 등 환경 저해 요소가 발생하지 않고, 작은 공간에서 변조체의 제작이 가능하며, 절삭 도구의 미세 가공 불가능으로 인해 발생하는 오차를 원천적으로 방지하여 변조체의 정밀 제작이 가능하다.
또한, 본 발명에 따른 방사선 세기 변조체 제조 방법 및 그 제조 장치는 조직 등가 물질뿐만 아니라 방사선 차폐에 효과적인 금속 재질을 변조체 제작 물질로 사용하여 방사선 세기 변조체를 제작하는 것이 가능하다.
도 1은 본 발명의 일 실시예에 따른 방사선 세기 변조체 제작 시스템 및 검증 시스템의 구성을 나타내는 구성도
도 2는 방사선 세기 변조체의 종류를 나타내는 도면
도 3은 밀도 매트릭스(density matrix)로 표현된 선량 변조 정보와 3차원 구조체 정보를 나타내는 도면
도 4는 선량 변조 정보를 기초로 생성된 방사선 세기 변조체 구조를 나타내는 도면
도 5는 본 발명의 일 실시예에 따른 변조체 구조 조정부의 구성을 나타내는 구성도
도 6은 변조체의 크기를 조정하는 방법을 예시적으로 나타내는 도면
도 7은 실제 치료에서 사용 가능하도록 모델링된 방사선 세기 변조체를 나타내는 도면
도 8은 3차원 프린터에서 인식 가능하도록 변환된 파일의 방사선 세기 변조체 구조를 나타내는 도면
도 9는 제작된 방사선 세기 변조체를 나타내는 도면
도 10은 본 발명의 일 실시예에 따른 방사선 세기 변조체 제작 방법 및 검증 방법을 나타내는 흐름도
도 11은 본 발명의 일 실시예에 따른 변조체 구조를 조정하는 방법을 나타내는 흐름도
도 12는 본 발명의 일 실시예에 따른 방사선 세기 변조체 검증 시스템의 구성을 나타내는 구성도
도 13은 본 발명의 일 실시예에 따른 스캐너의 구성을 나타내는 구성도
도 14는 본 발명의 일 실시예에 따라 제작된 스캐너를 나타내는 도면
도 15는 검증 대상 방사선 세기 변조체와 원본 방사선 세기 변조체를 매칭하고 검증 대상 방사선 세기 변조체를 검증하는 방법을 나타내는 도면
도 16은 검증 대상 방사선 세기 변조체를 달리하여 실험적으로 검증한 결과를 나타내는 도면
도 17은 본 발명의 일 실시예에 따른 방사선 세기 변조체의 검증 방법을 나타내는 흐름도
이하, 본 발명에 따른 방사선 세기 변조체 검증 방법 및 검증 장치를 실시하기 위한 구체적인 내용을 설명하면 다음과 같다.
도 1은 본 발명의 일 실시예에 따른 방사선 세기 변조체 제작 시스템 및 검증 시스템의 구성을 나타내는 구성도이다.
도 1을 참조하면, 방사선 세기 변조체 제작 시스템 및 검증 시스템은 치료계획 시스템(110), 방사선 세기 변조체 모델링 시스템(120), 3차원 프린터(130) 및 방사선 세기 변조체 검증 시스템(140)을 포함한다. 방사선 세기 변조체 모델링 시스템(120)은 입력 인터페이스(150), 변조체 구조 생성부(160), 변조체 구조 조정부(170) 및 출력 인터페이스(180)를 포함한다.
의료진은 치료 대상 환자의 의료 영상(CT, MRI 영상 등)과 진단 정보를 기초로 환자에 대한 방사선 치료 계획을 수립할 수 있다. 치료계획 시스템(110)은 환자의 의료 영상과 수립된 치료 계획에 따라 방사선 세기 변조체를 설계한다.
방사선 세기 변조체 모델링 시스템(120)은 치료 계획 시스템(110)에서 설계된 방사선 세기 변조체 정보를 기초로 방사선 세기 변조체를 모델링한다. 방사선 세기 변조체 모델링 시스템(120)은 실제 제작 조건과 치료 조건 중 적어도 하나 이상을 기초로 실제 제작할 방사선 세기 변조체를 모델링한다. 입력 인터페이스(150)는 치료 계획 시스템(110)에서 방사선 세기 변조체 설계 정보로부터 밀도 매트릭스(density matrix)로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득하고, 방사선 세기 변조체의 설계 조건 정보를 획득한다.
변조체 구조 생성부(160)는 방사선 세기 변조체의 설계 조건 정보와 상기 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 기초로 방사선 세기 변조체 구조를 생성하고, 변조체 구조 조정부(170)는 실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 상기 방사선 세기 변조체의 설계 조건 정보를 비교하여 상기 생성된 방사선 세기 변조체 구조를 조정한다. 출력 인터페이스(180)는 변조체 구조 조정부(170)에서 조정된 방사선 세기 변조체 구조의 정보를 3차원 프린터(130)에서 제작 가능한 정보로 변환한다.
3차원 프린터(130)는 방사선 세기 변조체 모델링 시스템(120)에서 모델링된 방사선 세기 변조체를 기초로 방사선 세기 변조체를 프린팅하여 제작하고, 방사선 세기 변조체 검증 시스템(140)은 3차원 프린터(130)에서 제작된 방사선 세기 변조체(즉, 검증대상 방사선 세기 변조체)와 치료계획 시스템(110)에서 수신된 방사선 세기 변조체 설계 정보(즉, 원본 방사선 세기 변조체)를 비교하여 3차원 프린터(130)에서 제작된 방사선 세기 변조체의 정확도를 검증한다.
이하에서는 도 1의 방사선 세기 변조체 제작 시스템을 이용하여 방사선 세기 변조체를 제작하는 과정을 상세하게 설명한다.
치료계획 시스템(110)은 환자의 의료 영상과 수립된 치료 계획에 따라 방사선 치료를 시행할 부위 및 해당 부위에 조사되는 방사선 세기 등을 정하고, 이를 기초로 방사선 세기 변조체를 설계한다.
도 2는 방사선 세기 변조체의 종류를 예시적으로 나타내는 도면으로서, 도 2의 (a)는 X선을 선원으로 하는 방사선 치료를 위해 설계된 방사선 세기 변조체를 나타내며, 도 2의 (b)는 양성자를 선원으로 하는 방사선 치료를 위해 설계된 방사선 세기 변조체를 나타낸다.
치료계획 시스템(110)은 수립된 치료 계획에서 획득된 일부 정보를 설계 조건으로 하여 방사선 세기 변조체를 설계할 수 있다. 예를 들어, 치료 계획에서 획득된 설계 조건은 선원과 변조체 사이의 거리, 빔 중심 축의 위치, 빔 중심 축 위치를 기준으로 변조체가 놓이는 위치 및 변조체 제작 물질 중 적어도 어느 하나 이상을 포함할 수 있다.
일 실시예에서, 치료계획 시스템(110)은 3차원 구조체의 형태로 방사선 세기 변조체를 설계할 수 있다. 또는, 치료계획 시스템(110)은 선량 변조 정도를 나타내는 밀도 매트릭스(density matrix) 형태로 방사선 세기 변조체를 설계할 수 있다. 예를 들어, 치료계획 시스템(110)은 각 지점에서의 선량 변조 정도를 밀도 값으로 매트릭스화하여 환자 치료에 사용될 방사선 세기 변조체를 표현할 수 있다.
도 3은 밀도 매트릭스로 표현된 선량 변조 정보와 3차원 구조체 정보를 나타내는 도면으로서, 도 3의 (a)는 3차원 구조체 형태로 설계된 방사선 세기 변조체를 나타내며, 도 3의 (b)는 선량 변조 정도를 나타내는 밀도 매트릭스 형태로 설계된 방사선 세기 변조체를 나타낸다.
방사선 세기 변조체 설계가 완료되면 치료계획 시스템(110)은 설계된 방사선 세기 변조체 정보를 방사선 세기 변조체 모델링 시스템(120)으로 전송한다. 예를 들어, 치료계획 시스템(110)은 설계 조건 정보와 함께 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 DICOM-RT(Digital Imaging and Communication in Medicine for Radiation Therapy) 표준 포맷에 따라 인코딩하여 방사선 세기 변조체 모델링 시스템(120)으로 전송할 수 있다.
DICOM-RT 표준 포맷에 따라 인코딩된 파일이 수신되면, 방사선 세기 변조체 모델링 시스템(120)의 입력 인터페이스(150)는 수신된 파일에서 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득한다. 또한, 입력 인터페이스(150)는 파일의 헤더에 저장된 방사선 세기 변조체의 설계 조건 정보를 획득한다.
변조체 구조 생성부(160)는 방사선 세기 변조체의 설계 조건 정보와 상기 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 기초로 방사선 세기 변조체 구조를 생성한다.
도 4는 선량 변조 정보를 기초로 생성된 방사선 세기 변조체 구조를 나타내는 도면이다.
예를 들어, 밀도 매트릭스로 표현된 선량 변조 정보가 수신된 경우, 변조체 구조 생성부(160)는 매트릭스 내 각 지점에서의 선량 변조 값을 기초로 선량 변조 값에 대응되는 깊이의 방사선 세기 변조체 구조를 생성할 수 있다.
방사선 세기 변조체 구조가 생성되면, 변조체 구조 조정부(170)는 실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 설계 조건 정보를 비교하여 변조체 구조 생성부(160)에서 생성된 방사선 세기 변조체 구조를 조정한다. 실제 제작 조건 및 치료 조건은 제작 상황과 치료 상황을 반영하여 사용자에 의해 입력될 수 있다.
도 5는 본 발명의 일 실시예에 따른 변조체 구조 조정부의 구성을 나타내는 구성도이다.
도 5를 참조하면, 변조체 구조 조정부(170)는 변조체 두께 조정부(510), 변조체 크기 조정부(520) 및 변조체 구조 모델링부(530)를 포함한다.
변조체 두께 조정부(510)는 설계 조건 정보에서 획득된 설계 물질 정보와 실제 제작 조건에서 획득된 제작 물질 정보를 비교하여 방사선 세기 변조체의 두께를 조정한다. 비교 결과 설계 물질과 제작 물질의 방사선 감쇄율이 동일한 경우 변조체 두께 조정부(510)는 변조체 구조 생성부(160)에서 생성된 방사선 세기 변조체의 두께를 그대로 유지한다. 예를 들어, 설계 물질과 제작 물질의 물리적 정보(밀도, 전자 밀도, Stopping Power 등)을 기초로 양 물질의 방사선 감쇄율이 동일한 경우 방사선 세기 변조체의 두께를 그대로 유지할 수 있다.
비교 결과 설계 물질과 제작 물질의 방사선 감쇄율이 다른 경우, 변조체 두께 조정부(510)는 양 물질 사이의 방사선 감쇄율 차이에 따라 변조체 구조 생성부(160)에서 생성된 방사선 세기 변조체의 두께를 조정한다. 예를 들어, 설계 물질의 두께당 방사선 감쇄율이 10%(즉, 10%/cm(두께))였으나 실제 제작 물질의 두께당 방사선 감쇄율이 5%(즉, 5%/cm)인 경우 변조체 두께 조정부(510)는 변조체 구조 생성부(160)에서 생성된 방사선 세기 변조체의 두께를 2배로 조정할 수 있다.
변조체 크기 조정부(520)는 설계 조건 정보에서 획득된 설계시 선원과 변조체 사이의 거리 정보와 실제 치료 조건에서 획득된 치료시 선원과 변조체 사이의 거리 정보를 비교하여 방사선 세기 변조체의 크기를 조정한다.
도 6은 변조체 크기 조정부에서 변조체의 크기를 조정하는 방법을 예시적으로 나타내는 도면이다.
거리 정보를 비교한 결과, 설계시 선원과 변조체 사이의 거리와 치료시 선원과 변조체 사이의 거리가 동일한 경우, 변조체 크기 조정부(520)는 방사선 세기 변조체의 크기를 그대로 유지한다. 비교 결과 설계시 선원과 변조체 사이의 거리와 치료시 선원과 변조체 사이의 거리가 상이한 경우, 변조체 크기 조정부(520)는 양 거리 사이의 차이에 따라 방사선 세기 변조체의 크기를 조정한다. 예를 들어, 실제 변조체 삽입 위치를 기초로 선원과 변조체 사이의 거리가 설계시 선원과 변조체 사이의 거리보다 2배 먼 경우, 변조체 크기 조정부(520)는 방사선 세기 변조체의 크기를 2배로 조정할 수 있다.
변조체 구조 모델링부(530)는 변조체 크기 조정부(520)에서 두께와 크기가 조정된 방사선 세기 변조체를 실제 치료에서 사용 가능하도록 방사선 세기 변조체를 모델링한다. 도 7은 실제 치료에서 사용 가능하도록 모델링된 방사선 세기 변조체를 나타내는 도면이다.
일 실시예에서, 변조체 구조 모델링부(530)는 3차원 프린터(130)가 변조체를 프린트할 수 있도록 방사선 세기 변조체에 지지 벽(측면 벽)을 추가하여 모델링할 수 있다. 예를 들어, 변조체 구조 모델링부(530)는 최외곽 면을 따라 방사선 세기 변조체에 지지 벽을 추가하여 변조체를 모델링할 수 있다.
또한, 변조체 구조 모델링부(530)는 방사선 치료기(미도시)에 방사선 세기 변조체가 장착될 수 있도록 하는 장착부를 추가하여 모델링할 수 있다. 예를 들어, 실제 치료시 사용될 치료기가 정해진 경우, 변조체 구조 모델링부(530)는 해당 치료기의 종류에 따라 기 정해진 형태의 장착부를 추가하여 방사선 세기 변조체를 모델링할 수 있다.
다른 실시예에서, 환자의 체표에 부착하여 사용하는 형태의 방사선 세기 변조체의 경우, 제작된 방사선 세기 변조체를 절단하여 환자의 체표에 부착할 수 있다. 이러한 경우, 제작된 방사선 세기 변조체가 용이하게 절단될 수 있도록 변조체 구조 모델링부(530)는 절단면을 추가하여 방사선 세기 변조체를 모델링할 수 있다.
일 실시예에서, 변조체 구조 모델링부(530)는 방사선 세기 변조체에 환자 식별 정보를 추가하여 모델링할 수 있다. 예를 들어, 변조체 구조 모델링부(530)는 방사선 세기 변조체의 일 측면 또는 부착부 등에 환자 식별 정보(예를 들어, 환자 아이디, 식별 번호, 성명 중 적어도 하나 이상)가 함께 프린트되도록 모델링할 수 있다. 의료진은 실제 치료시 방사선 세기 변조체에 프린트된 환자 식별 정보를 이용하여 해당 방사선 세기 변조체가 사용될 환자를 확인할 수 있다.
일 실시예에서, 변조체 구조 모델링부(530)는 빔 중심점을 기준으로 한 장착 위치선을 추가하여 방사선 세기 변조체를 모델링할 수 있다. 제작된 방사선 세기 변조체가 치료기 또는 환자 체표에 장착될 때, 의료진은 변조체에 프린트된 장착 위치선을 기초로 정확한 위치에 변조체를 장착할 수 있다.
출력 인터페이스(180)는 변조체 구조 조정부(170)에서 조정된 방사선 세기 변조체 구조의 정보를 3차원 프린터(130)에서 제작 가능한 정보로 변환한다. 도 8은 3차원 프린터에서 인식 가능하도록 변환된 파일의 방사선 세기 변조체 구조를 나타내는 도면이다.
예를 들어, 출력 인터페이스(180)는 방사선 세기 변조체 구조의 정보를 STL파일, CAD파일 등과 같이 3차원 프린트(130)가 인식 가능한 파일로 정보를 변환한다.
일 실시예에서, 3차원 프린트(130)가 인식 가능한 파일로 정보를 변환 과정에서 방사선 세기 변조체 구조의 정보가 일부 손실될 수 있다. 이러한 경우, 출력 인터페이스(180)는 방사선 세기 변조체 구조에서 정보가 손실된 부분을 보정할 수 있다. 예를 들어, 출력 인터페이스(180)는 보간(interpolation)을 통해 손실된 부분을 보정할 수 있다. 즉, 출력 인터페이스(180)는 정보가 손실되지 않은 지점의 값들을 보간하여 정보가 손실된 지점의 값을 추정할 수 있다.
일 실시예에서, 출력 인터페이스(180)는 방사선 세기 변조체 구조의 복잡도 또는 총 제작 시간 등을 고려하여 방사선 세기 변조체가 제작되는 순서를 정하여 파일에 포함시킬 수 있다. 예를 들어, 출력 인터페이스(180)는 좌측에서부터 시작하여 우측 방향으로 방사선 세기 변조체가 프린팅되도록 순서를 정하거나, 상측에서부터 시작하여 하측 방향으로 프린팅되도록 순서를 정할 수 있다. 또는, 출력 인터페이스(180)는 일부분에서부터 시작하여 최종부분까지 프린팅 순서를 정할 수도 있고, 세워진 형태로 제작되도록 순서를 정할 수도 있다.
일 실시예에서, 출력 인터페이스(180)는 방사선 세기 변조체의 3차원 구조 정보, 위치 좌표, 물질 정보, 환자 식별 정보, 치료기 정보 또는 조사 포트(port) 등과 같이 방사선 세기 변조체, 환자 또는 치료기에 대한 정보 등을 파일에 포함시켜 제작시 오류를 방지할 수 있도록 한다.
3차원 프린터(130)는 방사선 세기 변조체 모델링 시스템(120)의 출력 인터페이스(180)에서 제공된 파일을 기초로 방사선 세기 변조체를 프린팅하여 제작한다.
도 9는 제작된 방사선 세기 변조체를 나타내는 도면이다. 도 9의 (a)는 3차원 구조체 형태로부터 제작된 방사선 세기 변조체를 나타내며, 도 9의 (b)는 선량 변조 정도를 나타내는 밀도 매트릭스 형태로부터 제작된 방사선 세기 변조체를 나타낸다.
도 10은 본 발명의 일 실시예에 따른 방사선 세기 변조체 제작 방법 및 검증 방법을 나타내는 흐름도이다.
도 10을 참조하면, 일 실시예에 따른 방사선 세기 변조체 제작 방법은 치료 계획 시스템(110)은 방사선 세기 변조체를 설계한다. 일 실시예에서, 치료 계획 시스템은 선량 변조 정도를 나타내는 밀도 매트릭스 또는 3차원 구조체 형태로 방사선 세기 변조체를 설계할 수 있다. 방사선 세기 변조체 모델링 시스템(120)의 입력 인터페이스(150)는 치료 계획 시스템(110)으로부터 방사선 세기 변조체 설계 정보를 수신한다(단계 S1010). 일 실시예에서, 치료 계획 시스템(110)은 DICOM-RT 표준 포맷에 따라 방사선 세기 변조체 설계 정보를 인코딩하여 전송할 수 있다.
입력 인터페이스(150)는 치료 계획 시스템(110)에서 제공된 방사선 세기 변조체 설계 정보에서 설계 조건 정보와 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득하고, 변조체 구조 생성부(160)는 이를 기초로 방사선 세기 변조체를 생성한다(단계 S1020).
방사선 세기 변조체 구조가 생성되면 변조체 구조 조정부(170)는 실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 설계 조건 정보를 비교하여, 생성된 방사선 세기 변조체 구조를 조정한다(단계 S1030).
도 11은 본 발명의 일 실시예에 따른 변조체 구조를 조정하는 방법을 나타내는 흐름도이다.
도 11을 참조하면, 변조체 구조 조정부(170)는 물질 정보를 기초로 방사선 세기 변조체의 두께를 조정한다(단계 S1110). 예를 들어, 변조체 구조 조정부(170)는 설계 조건 정보에서 획득된 설계 물질 정보와 실제 제작 조건에서 획득된 제작 물질 정보를 비교하여, 설계 물질과 제작 물질의 방사선 감쇄율이 동일한 경우, 생성된 방사선 세기 변조체의 두께를 유지하고, 설계 물질과 제작 물질의 방사선 감쇄율이 상이한 경우, 양 물질 사이의 방사선 감쇄율 차이에 따라 생성된 방사선 세기 변조체의 두께를 조정한다.
변조체 구조 조정부(170)는 선원과 변조체 사이의 거리 정보를 기초로 방사선 세기 변조체의 크기를 조정한다(단계 S1120). 예를 들어, 변조체 구조 조정부(170)는 설계 조건 정보에서 획득된 설계시 선원과 변조체 사이의 거리 정보와 실제 치료 조건에서 획득된 치료시 선원과 변조체 사이의 거리 정보를 비교하여, 양 거리 정보가 동일한 경우, 생성된 방사선 세기 변조체의 크기를 유지하고, 양 거리 정보가 상이한 경우, 양 거리 사이의 차이에 따라 생성된 방사선 세기 변조체의 크기를 조정한다.
변조체 구조 조정부(170)는 3차원 프린터(130)가 변조체를 프린트할 수 있도록 방사선 세기 변조체에 지지 벽(측면 벽)을 추가하여 방사선 세기 변조체를 모델링한다(단계 S1130).
다시 도 10을 참조하면, 방사선세기 변조체 구조가 조정되면, 방사선 세기 변조체 모델링 시스템(120)의 출력 인터페이스(180)는 조정된 방사선 세기 변조체 구조 정보를 3차원 프린터(130)로 전송한다(단계 S1040). 일 실시예에서, 출력 인터페이스(180)는 조정된 방사선 세기 변조체 구조의 정보를 3차원 프린터(130)에서 제작 가능한 정보로 변환하여 전송한다.
3차원 프린터(130)는 수신된 방사선 세기 변조체 구조 정보를 기초로 방사선 세기 변조체를 제작한다(단계 S1050). 방사선 세기 변조체가 제작되면, 실제 치료에 사용하기에 앞서 방사선 세기 변조체 검증 시스템(140)을 통해 제작된 방사선 세기 변조체를 검증한다(단계 S1060).
도 12는 본 발명의 일 실시예에 따른 방사선 세기 변조체 검증 시스템의 구성을 나타내는 구성도이다.
도 12를 참조하면, 방사선 세기 변조체 검증 시스템은 크게 스캐너(1210)와 검증 시스템(1220)으로 구성된다. 스캐너(1210)는 프로젝터(1211), 제1 영상촬영장치(1213), 제2 영상촬영장치(1215), 위치 조정부(1217) 및 제1 제어부(1218)를 포함하며, 검증 시스템(1220)은 데이터 수신부(1221), 원본 변조체 구조 정보 수신부(1222), 변조체 구조 재구성부(1223), 변조체 매칭부(1224), 변조체 검증부(1225) 및 제2 제어부(1226)를 포함한다.
스캐너(1210)는 방사선 세기 변조체 제작 시스템에서 제작된 방사선 세기 변조체(1219)(이하, 검증 대상 방사선 세기 변조체)를 스캔하여 방사선 세기 변조체(1219)의 영상을 획득하고, 획득된 영상을 기초로 방사선 세기 변조체(1219)의 3차원 구조 정보를 생성한다. 검증 시스템(1220)은 스캐너(1210)에서 수신된 검증 대상 방사선 세기 변조체의 3차원 구조 정보와 원본 방사선 세기 변조체 정보를 기초로 검증 대상 방사선 세기 변조체를 검증한다.
도 13은 본 발명의 일 실시예에 따른 스캐너의 구성을 나타내는 구성도이고, 도 14는 본 발명의 일 실시예에 따라 제작된 스캐너를 나타내는 도면이다.
이하에서는 도 12 내지 도 14를 참조하여 스캐너의 동작에 대해 자세히 설명한다.
프로젝터(1211)는 적어도 하나 이상의 패턴 이미지를 검증 대상 방사선 세기 변조체에 투사한다. 일 실시예에서, 프로젝터(1211)는 패턴 사이의 갭(gap)이 다른 적어도 하나 이상의 패턴 이미지를 순차적으로 투사함으로써, 검증 대상 방사선 세기 변조체의 모든 영역이 촬영될 수 있도록 한다. 예를 들어, 프로젝터(1211)는 패턴 사이의 갭(gap)이 다른 패턴 이미지1(1310), 패턴 이미지2(1320), 패턴 이미지3(1330)을 순차적으로 투사하여, 특정 패턴 이미지가 투사되었을 때 촬영되지 않던 부분이 다른 패턴 이미지에 의해 촬영될 수 있도록 한다. 패턴 사이의 갭이 다른 적어도 하나 이상의 패턴 이미지를 순차적으로 투사함으로써, 스캐너는 방사선 세기 변조체에서 깊이 그래디언트(depth-gradient)가 높은 영역도 스캔할 수 있다. 일 실시예에서, 프로젝터(1211)는 청색 LED를 광원으로 하여 패턴 이미지를 투사할 수 있다.
제1 영상촬영장치(1213)와 제2 영상촬영장치(1215)는 패턴 이미지가 투사된 검증 대상 방사선 세기 변조체를 촬영한다. 예를 들어, 제1 영상촬영장치(1213)와 제2 영상촬영장치(1215)는 동일선상에서 객체를 촬영하는 스테레오 카메라에 해당할 수 있다. 제1 영상촬영장치(1213)와 제2 영상촬영장치(1215)는 촬영된 영상을 제1 제어부(1218)로 전송한다.
위치 조정부(1217)는 검증 대상 방사선 세기 변조체(1219)의 촬영 위치를 조정한다. 일 실시예에서, 위치 조정부(1217)는 턴테이블 형태의 위치 조정장치가 사용될 수 있다. 예를 들어, 위치 조정부(1217)은 턴테이블이 회전(rotation)하거나, 전후좌우로 이동하거나 또는 틸팅(tilting)함으로써, 턴테이블 상에 위치한 검증 대상 방사선 세기 변조체(1219)의 촬영 위치를 조정할 수 있다. 예를 들어, 위치 조정부(1217)는 턴테이블을 수직축(vertical axis)을 기준으로 360°(±180°) 회전하고, 수평축(horizontal axis)을 기준으로 90°(±45°) 틸팅하여 검증 대상 방사선 세기 변조체(1219)의 촬영 위치를 조정할 수 있다.
일 실시예에서, 위치 조정부(1217)는 정해진 패턴에 따라 검증 대상 방사선 세기 변조체(1219)의 촬영 위치를 조정할 수도 있고, 검증 시스템(120)에서 재구성되지 않은 영역이 있는 경우, 해당 영역이 촬영될 수 있도록 검증 대상 방사선 세기 변조체(1219)의 촬영 위치를 자동으로 조정할 수도 있다. 또는, 위치 조정부(1217)는 사용자에 의해 촬영 위치가 수동으로 조정될 수도 있다. 예를 들어, 위치 조정부(1217)는 사용자의 수동 조정에 의해 특정 영역이 잘 촬영되도록 턴테이블이 회전하거나, 전후좌우로 이동하거나 또는 틸팅함으로써, 촬영 위치가 조정될 수 있다.
제1 제어부(1218)는 제1 영상촬영장치(1213)와 제2 영상촬영장치(1215)에서 촬영된 검증 대상 방사선 세기 변조체의 영상을 기초로 검증 대상 방사선 세기 변조체의 3차원 구조를 산출한다. 예를 들어, 제1 제어부(1218)는 촬영된 스테레오 영상을 기초로 검증 대상 방사선 세기 변조체를 깊이 매트릭스 형태로 검증 대상 방사선 세기 변조체의 3차원 구조를 산출할 수 있다.
일 실시예에서, 제1 제어부(1218)는 위상 천이 광삼각법(Phase-shifting Optical Triangulation method)을 이용하여 검증 대상 방사선 세기 변조체의 특정 지점에서의 깊이 값을 구할 수 있다. 깊이 값을 구하는 상세한 방법은 하기와 같다.
도 13을 참조하면, 제1 영상 촬영장치(1213)와 제2 영상 촬영장치(1215) 사이의 거리(L)은 하기 수학식 1으로 표현될 수 있다.
Figure PCTKR2015013776-appb-M000001
제1 영상 촬영장치(1213)와 제2 영상 촬영장치(1215)의 수평 라인으로부터 검증 대상 방사선 세기 변조체(1219)의 특정 지점까지의 수직 거리(Z)(즉, 해당 지점의 깊이)는 하기 수학식 2에 의해 계산될 수 있다.
Figure PCTKR2015013776-appb-M000002
α는 제1 영상 촬영장치(1213)와 제2 영상 촬영장치(1215)의 수평 라인 및 제1 영상 촬영장치(1213)와 방사선 세기 변조체(1219)의 특정 지점을 연결한 연결 라인 사이의 각도를 나타내며, β는 제1 영상 촬영장치(1213)와 제2 영상 촬영장치(1215)의 수평 라인 및 제2 영상 촬영장치(1215)와 방사선 세기 변조체(1219)의 특정 지점을 연결한 연결 라인 사이의 각도를 나타낸다.
제1 영상 촬영장치(1213)와 제2 영상 촬영장치(1215) 사이의 거리(L)는 스캐너 스펙에 의해 미리 설정되어 있는 값이므로, 제1 제어부(1218)는 특정 지점에서의 α값과 β값을 산출하여 검증 대상 방사선 세기 변조체의 특정 지점에서의 깊이 값을 구할 수 있다.
제1 제어부(1218)는 상기와 같이 방법으로 검증 대상 방사선 세기 변조체의 전 지점에 대한 깊이 값을 구하고, 지점 좌표(x, y)와 깊이 값(z)을 데카르트 좌표(Cartesian coordinates)로 매칭하여 매트릭스화할 수 있다. 즉, 제1 제어부(1218)는 검증 대상 방사선 세기 변조체의 3차원 구조를 데카르트 좌표 상의 깊이 매트릭스 형태로 재구성할 수 있다.
제1 제어부(1218)는 산출된 검증 대상 방사선 세기 변조체의 3차원 구조 정보(또는, 데이터)를 파일로 변환하여 검증 시스템(1220)에 전송한다. 예를 들어, 제1 제어부(1218)는 검증 대상 방사선 세기 변조체의 3차원 구조 정보를 STL 파일 등과 같은 CAD 파일로 변환하여 전송할 수 있다. 변환되는 파일의 종류는 이에 한정하지 않으며, 이미지를 처리하고 분석하는 데 적합한 파일 형태면 충분하다.
상기에서는 스캐너(1210)에 포함된 제1 제어부(1218)가 검증 대상 방사선 세기 변조체의 영상을 기초로 검증 대상 방사선 세기 변조체의 3차원 구조를 산출하는 실시예를 설명하였으나, 다른 실시예에서는, 스캐너(1210)는 촬영된 검증 대상 방사선 세기 변조체의 영상을 검증 시스템(1220)에 전송하고, 검증 시스템(1220)이 검증 대상 방사선 세기 변조체의 3차원 구조를 산출한 후 이를 방사선 세기 변조체 매칭에 사용할 수도 있다.
제1 영상촬영장치(1213)와 제2 영상촬영장치(1215)에서 촬영된 검증 대상 방사선 세기 변조체의 영상을 기초로 검증 대상 방사선 세기 변조체의 3차원 구조를 산출한다.
도 15는 검증 대상 방사선 세기 변조체와 원본 방사선 세기 변조체를 매칭하고 검증 대상 방사선 세기 변조체를 검증하는 방법을 나타내는 도면이다. 이하에서는, 도 12와 도 15를 참조하여 검증 시스템(1220)에서 검증 대상 방사선 세기 변조체를 검증하는 방법을 상세히 설명하기로 한다.
검증 시스템(1220)은 스캐너(1210)에서 수신된 검증 대상 방사선 세기 변조체의 3차원 구조 정보와 원본 방사선 세기 변조체 정보를 기초로 검증 대상 방사선 세기 변조체를 검증한다.
수신부(1221)는 검증 대상 방사선 세기 변조체의 3차원 구조 정보를 스캐너(1210)로부터 수신한다. 예를 들어, 수신부(1221)는 검증 대상 방사선 세기 변조체의 3차원 구조 정보를 포함하는 파일을 제1 제어부(1218)로부터 수신할 수 있다.
변조체 구조 재구성부(1223)는 수신부(1221)를 통해 수신된 검증 대상 방사선 세기 변조체의 3차원 구조 정보를 분석하여 방사선 세기 변조체를 재구성한다. 예를 들어, 변조체 구조 재구성부(1223)는 수신부(1221)를 통해 수신된 파일을 분석하여 두께 매트릭스 형태로 검증 대상 방사선 세기 변조체를 재구성할 수 있다.(도 15의 (e)) 일 실시예에서, 검증 대상 방사선 세기 변조체의 두께 매트릭스는 검증 대상 방사선 세기 변조체의 깊이 매트릭스와 해당 변조체의 바닥 깊이 값을 이용하여 산출될 수 있다.
원본 변조체 구조 정보 수신부(1222)는 원본 방사선 세기 변조체의 구조 정보를 수신한다. 예를 들어, 원본 변조체 구조 정보 수신부(1222)는 치료계획 시스템(110)에서 원본 방사선 세기 변조체의 구조 정보를 수신할 수 있다. 또는, 방사선 세기 변조체 모델링 시스템(120)에서 방사선 세기 변조체의 구조가 조정될 수 있으므로, 원본 변조체 구조 정보 수신부(1222)는 방사선 세기 변조체 모델링 시스템(120)으로부터 원본 변조체 구조 정보를 수신할 수 있다. 일 실시예에서, 치료계획 시스템(110) 또는 방사선 세기 변조체 모델링 시스템(120)은 원본 변조체 구조 정보를 DICOM-RT 표준 포맷에 따라 인코딩하여 전송할 수 있다.
일 실시예에서, 원본 변조체 구조 정보 수신부(1222)는 수신된 원본 변조체 구조 정보로부터 원본 방사선 세기 변조체의 두께 매트릭스를 생성할 수 있다. (도 15의 (c))
변조체 매칭부(1224)는 변조체 구조 재구성부(1223)에서 재구성된 검증 대상 방사선 세기 변조체와 원본 변조체 구조 정보 수신부(1222)에서 수신된 원본 방사선 세기 변조체를 두께 정보를 기초로 매칭한다.
일 실시예에서, 변조체 매칭부(1224)는 검증 대상 방사선 세기 변조체의 3차원 구조 정보와 원본 방사선 세기 변조체의 구조 정보로부터 각 방사선 세기 변조체의 두께 매트릭스를 획득하고, 각 방사선 세기 변조체의 중심점, 빔 중심점 또는 알려진 특정 기준점 가운데 하나를 기준으로 양 방사선 세기 변조체 사이에 대응되는 지점(겹치는 지점)을 변동시키면서 양 변조체의 두께 매트릭스 사이의 차이가 최소가 되도록 매칭한다. 예를 들어, 변조체 매칭부(1224)는 검증 대상 방사선 세기 변조체에서 인식된 지점들의 중심을 빔 중심점(beam isocenter)으로 설정하고, 이를 원본 방사선 세기 변조체의 빔 중심점과 함께 매칭 기준으로 사용할 수 있다. 일 실시예에서, 변조체 매칭부(1224)는 방사선 세기 변조체 외곽(edge)에 위치하여 방사선 치료 장치의 갠드리(gantry)에 마운트하기 위해 메탈링을 부착하는데 사용되는 복수의 홀(hole)들을 인식하고, 이들 홀들의 중심을 빔 중심점으로 설정할 수 있다.
이때, 변조체 매칭부(1224)는 수신된 원본 방사선 세기 변조체 구조 정보에서 추출된 두께 매트릭스와 변조체 구조 재구성부(1223)에서 재구성된 검증 대상 방사선 세기 변조체의 두께 매트릭스를 이용하여 양 변조체의 두께 매트릭스 사이의 차이가 최소가 되도록 매칭한다.
변조체 매칭부(1224)는 두께를 기준으로 검증 대상 방사선 세기 변조체와 원본 방사선 세기 변조체 사이의 최대 연관 계수(Maximum Correlation Coefficient, CC)를 계산하고, 계산된 최대 연관 계수가 1에 가깝도록 변조체를 매칭함으로써, 양 변조체의 두께 매트릭스 사이의 차이가 최소가 되도록 매칭할 수 있다. 최대 연관 계수를 계산하는 식은 하기 수학식 3과 같다.
Figure PCTKR2015013776-appb-M000003
PRC는 원본 방사선 세기 변조체의 두께 값을 나타내고, MRC는 재구성된 방사선 세기 변조체의 두께 값을 나타내며, m과 n은 정수(매트릭스의 행, 열)이다.
Figure PCTKR2015013776-appb-I000001
는 매트릭스 내 PRC 값 평균을 나타내며,
Figure PCTKR2015013776-appb-I000002
는 매트릭스 내 MRC값 평균을 나타낸다.
변조체 매칭부(1224)는 기준 점(중심점, 빔 중심점 또는 알려진 특정 기준점)을 중심으로 검증 대상 방사선 세기 변조체의 두께 매트릭스와 원본 방사선 세기 변조체의 두께 매트릭스의 위치를 이동시켜 양 매트릭스 사이에 대응되는 지점(겹치는 지점)을 변동시키면서 각 위치에서의 최대 연관 계수를 계산한다. 변조체 매칭부(1224)는 각 위치에서의 최대 연관 계수를 계산하여 비교한 후 산출된 최대 연관 계수 값이 1에 가장 가까운 위치로 양 매트릭스를 매칭할 수 있다.
변조체 검증부(1225)는 매칭된 양 변조체 사이의 두께 차이를 기초로 검증 대상 방사선 세기 변조체를 검증한다. 일 실시예에서, 변조체 검증부(1225)는 DD(Depth Difference) 분석 또는 CA(Composite Analysis) 분석을 통해 기준을 통과하는 지 여부를 평가함으로써 검증 대상 방사선 세기 변조체를 검증한다. 분석 방법은 사용자에 의해 설정될 수 있다.
일 실시예에서, DD(Depth Difference) 분석으로 검증 방법이 설정된 경우, 변조체 검증부(1225)는 매칭된 양 변조체 사이에 두께 차이가 기 설정된 기준을 통과하는 지 여부를 각 지점에서 평가하여 검증 대상 방사선 세기 변조체를 검증한다.
다른 실시예에서, CA(Composite Analysis) 분석으로 검증 방법이 설정된 경우, 변조체 검증부(1225)는 각 지점에서 CA 분석을 수행하여 각 지점에 대해 기준을 통과하였는지 여부를 평가하고 검증 대상 방사선 세기 변조체를 검증한다. 변조체 검증부(1225)는 하기 수학식 4를 통해 각 지점에서 CA 분석을 수행할 수 있다.
Figure PCTKR2015013776-appb-M000004
CA는 평가 값을 나타낸다. CA 값이 1보다 작으면 해당 지점은 기준을 통과한 것으로 평가하고, CA 값이 1보다 크면 해당 지점은 기준을 통과하지 못한 것으로 평가한다. DD 및 Difference는 두께 차이(Depth Difference)를 나타내며 DTA 및 Distance는 지점 사이 거리(Distance to Agreement)를 나타낸다.
DDTolerance와 DTATolerance는 각각 두께 차이와 지점 사이 거리 허용 한계값으로 기 정해진 값이다. 도 15의 (f) 내지 (h)는 DDTolerance와 DTATolerance가 각각 1mm, 2mm, 3mm인 경우의 검증 결과를 나타낸다. 도면 상에 표시된 지점은 기준을 통과하지 못한 지점을 나타낸다.
도 16은 검증 대상 방사선 세기 변조체를 달리하여 실험적으로 검증한 결과를 나타내는 도면이다. 마찬가지로, 도 16 에서 표시된 지점은 기준을 통과하지 못한 지점을 나타낸다.
일 실시예에서, 변조체 검증부(1225)는 전체 영역 대비 기준 통과율(Number of pass/Number of total points)을 기초로 검증 대상 방사선 세기 변조체를 검증할 수 있다. 예를 들어, 전체 영역 대비 기준 통과율이 정해진 수치(Threshold)를 넘지 않는 경우, 해당 검증 대상 방사선 세기 변조체는 불량으로 검증할 수 있다.
일 실시예에서, 변조체 검증부(1225)는 중요 영역으로 지정된 영역의 기준 통과율을 기초로 검증 대상 방사선 세기 변조체를 검증할 수 있다. 예를 들어, 변조체 검증부(1225)는 사용자로부터 중요 영역으로 입력받은 영역을 기초로, 전체 중요 영역 대비 기준 통과율(Number of pass/Number of total points of designated area)이 정해진 수치를 넘지 않는 경우, 해당 검증 대상 방사선 세기 변조체는 불량으로 검증할 수 있다.
일 실시예에 있어서, 변조체 검증부(1225)는 검증 대상 방사선 세기 변조체와 원본 방사선 세기 변조체가 매칭된 후, 양 방사선 세기 변조체의 기준 점(예를 들어, 중심점, 빔 중심점 또는 알려진 특정 기준점) 사이의 거리 차이를 측정하여 방사선 세기 변조체 제작 장치에 의한 오차(systematic shift)가 있는 지 여부를 평가할 수 있다.
일 실시예에 있어서, 변조체 검증부(1225)는 양 방사선 세기 변조체의 기준 점 사이의 거리 차이와 방향을 기초로 오차 거리와 방향을 계산하여 방사선 세기 변조체 제작 장치의 오차 보정을 위한 정보를 제공할 수 있다.
다른 실시예에서, 변조체 매칭부(1224)가 검증 대상 방사선 세기 변조체와 원본 방사선 세기 변조체를 매칭한 후, 방사선 세기 변조체 제작 장치에 의한 오차(systematic shift)가 있는 지 여부를 평가하고, 오차 거리와 방향을 계산하여 방사선 세기 변조체 제작 장치의 오차 보정을 위한 정보를 제공할 수도 있다.
제2 제어부(1226)는 데이터 수신부(1221), 원본 변조체 구조 정보 수신부(1222), 변조체 구조 재구성부(1223), 변조체 매칭부(1224) 및 변조체 검증부(1225)의 각 프로세스를 제어하여 검증과정을 수행한다.
도 17은 본 발명의 일 실시예에 따른 방사선 세기 변조체의 검증 방법을 나타내는 흐름도이다.
도 17을 참조하면, 방사선 세기 변조체 검증 시스템(140)을 이용하여 검증 절차를 진행하기에 앞서 스캐너(1210)를 교정(Calibration)한다(단계 S1702). 예를 들어, 구조가 이미 알려진 객체를 스캐너(1210)를 통해 스캔하고, 스캔된 결과와 객체를 비교하여 스캐너(1210)를 교정할 수 있다.
스캐너(1210)는 방사선 세기 변조체 제작 시스템에서 제작된 방사선 세기 변조체(1219)(이하, 검증 대상 방사선 세기 변조체)를 스캔하여 검증 대상 방사선 세기 변조체(1219)의 영상을 획득하고(단계 S1704), 획득된 영상을 기초로 검증 대상 방사선 세기 변조체(1219)의 3차원 구조 정보를 생성한다. 즉, 스캐너(1210)는 검증 대상 방사선 세기 변조체(1219)의 3차원 구조를 깊이 정보로 재구성할 수 있다. 검증 대상 방사선 세기 변조체(1219)의 각 지점의 깊이를 산출하는 방법은 상기 수학식 1과 2를 통해 설명한 바와 같다.
검증 시스템(1220)은 치료계획 시스템(110) 또는 방사선 세기 변조체 모델링 시스템(120)으로부터 원본 방사선 세기 변조체 구조 정보를 수신하고(단계 S1712), 수신된 정보로부터 원본 방사선 세기 변조체의 두께 정보를 추출한다(단계 S1714). 검증 시스템(1220)은 원본 방사선 세기 변조체의 구조로 추출된 두께 정보를 재구성할 수 있다(단계 S1716).
검증 시스템(1220)은 검증 대상 방사선 세기 변조체(1219)의 3차원 구조 정보와 원본 방사선 세기 변조체의 두께 정보를 기초로 검증 대상 변조체의 두께 매트릭스와 원본 변조체의 두께 매트릭스를 생성한다(단계 S1720).
양 방사선 세기 변조체의 두께 매트릭스가 생성되면 검증 시스템(1220)은 두께 정보를 기초로 양 방사선 세기 변조체의 두께 매트릭스 사이의 차이가 최소가 되도록 매칭한다(단계 S1730). 양 방사선 세기 변조체를 매칭하는 방법은 상기 수학식 3을 통해 설명한 바와 같다.
양 방사선 세기 변조체를 매칭한 후, 검증 시스템(1220)은 매칭된 양 방사선 세기 변조체 사이의 두께 차이가 기준을 통과하는 지 여부를 각 지점에서 평가하고(단계 S1740). 검증 대상 방사선 세기 변조체를 검증한다(단계 S1750). 예를 들어, 검증 시스템(1220)은 DD(Depth Difference) 분석 또는 CA(Composite Analysis) 분석을 통해 기준을 통과하는 지 여부를 평가함으로써 검증 대상 방사선 세기 변조체를 검증한다. 분석 방법은 사용자에 의해 설정될 수 있다. 일 실시예에서, DD(Depth Difference) 분석으로 검증 방법이 설정된 경우, 검증 시스템(1220)은 매칭된 양 변조체 사이에 두께 차이가 기 설정된 기준을 통과하는 지 여부를 각 지점에서 평가하여 검증 대상 방사선 세기 변조체를 검증한다. 다른 실시예에서, CA(Composite Analysis) 분석으로 검증 방법이 설정된 경우, 검증 시스템(1220)은 각 지점에서 CA 분석을 수행하여 각 지점에 대해 기준을 통과하였는지 여부를 평가하고 검증 대상 방사선 세기 변조체를 검증한다. CA 분석을 통해 매칭된 변조체 사이의 두께 차이가 기준을 통과하는 지 여부를 평가하는 방법은 수학식 4를 통해 설명한 바와 같다.
검증 시스템(1220)은 전체 영역 대비 기준 통과율(Number of pass/Number of total points) 또는 중요 영역으로 지정된 영역의 기준 통과율을 기초로 검증 대상 방사선 세기 변조체를 검증할 수 있다.
도 1 내지 도 17을 통해 설명된 시스템 및 방법은, 컴퓨터에 의해 실행되는 애플리케이션이나 모듈과 같은 컴퓨터에 의해 실행가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다.
컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.
모듈(module)이라 함은 명세서에서 설명되는 각각의 명칭에 따른 기능과 동작을 수행할 수 있는 하드웨어를 의미할 수도 있고, 또한 특정한 기능과 동작을 수행할 수 있는 컴퓨터 프로그램 코드를 의미할 수도 있고, 또한 특정한 기능과 동작을 수행시킬 수 있는 컴퓨터 프로그램 코드가 탑재된 전자적 기록 매체, 예컨대 프로세서를 의미할 수 있다.
이상 본 발명의 실시예로 설명하였으나 본 발명의 기술적 사상이 상기 실시예로 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양한 의료 정보 등록 방법 및 그 시스템으로 구현할 수 있다.

Claims (11)

  1. 치료 계획 시스템에서 제공된 밀도 매트릭스(density matrix)로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득하는 단계;
    상기 치료 계획 시스템에서 제공된 방사선 세기 변조체의 설계 조건 정보를 획득하는 단계;
    상기 방사선 세기 변조체의 설계 조건 정보와 상기 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 기초로 방사선 세기 변조체 구조를 생성하는 단계;
    실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 상기 방사선 세기 변조체의 설계 조건 정보를 비교하여 상기 생성된 방사선 세기 변조체 구조를 조정하는 단계; 및
    상기 조정된 방사선 세기 변조체 구조를 기초로 방사선 세기 변조체를 제작하는 단계를 포함하는 방사선 세기 변조체 제작 방법.
  2. 제1항에 있어서,
    상기 획득된 방사선 세기 변조체의 설계 조건 정보는 선원과 변조체 사이의 거리, 빔 중심축의 위치, 변조체가 실제 놓이는 위치 및 변조체의 물질 정보 중 적어도 하나 이상을 포함하는 방사선 세기 변조체 제작 방법.
  3. 제1항에 있어서,
    상기 방사선 세기 변조체 구조를 조정하는 단계는
    상기 설계 조건 정보에서 획득된 설계 물질 정보와 실제 제작 조건에서 획득된 제작 물질 정보를 비교하는 단계;
    상기 설계 물질과 제작 물질의 방사선 감쇄율이 동일한 경우, 상기 생성된 방사선 세기 변조체의 두께를 유지하는 단계; 및
    상기 설계 물질과 제작 물질의 방사선 감쇄율이 상이한 경우, 양 물질 사이의 방사선 감쇄율 차이에 따라 상기 생성된 방사선 세기 변조체의 두께를 조정하는 단계를 포함하는 방사선 세기 변조체 제작 방법.
  4. 제1항에 있어서,
    상기 방사선 세기 변조체 구조를 조정하는 단계는
    상기 설계 조건 정보에서 획득된 설계시 선원과 변조체 사이의 거리 정보와 실제 치료 조건에서 획득된 치료시 선원과 변조체 사이의 거리 정보를 비교하는 단계;
    상기 설계시 선원과 변조체 사이의 거리 정보와 치료시 선원과 변조체 사이의 거리 정보가 동일한 경우, 상기 생성된 방사선 세기 변조체의 크기를 유지하는 단계; 및
    상기 설계시 선원과 변조체 사이의 거리 정보와 치료시 선원과 변조체 사이의 거리 정보가 상이한 경우, 양 거리 사이의 차이에 따라 상기 생성된 방사선 세기 변조체의 크기를 조정하는 단계를 포함하는 방사선 세기 변조체 제작 방법.
  5. 제1항에 있어서,
    상기 방사선 세기 변조체를 제작하는 단계는 3차원 프린터를 이용하여 방사선 세기 변조체를 제작하는 방사선 세기 변조체 제작 방법.
  6. 제5항에 있어서,
    상기 방사선 세기 변조체를 제작하는 단계는
    상기 조정된 방사선 세기 변조체 구조의 정보를 3차원 프린터에서 제작 가능한 정보로 변환하는 단계; 및
    상기 변환 과정에서 방사선 세기 변조체 구조의 정보가 일부 손실된 경우, 손실된 부분을 보정하는 단계를 포함하는 방사선 세기 변조체 제작 방법.
  7. 방사선 치료 계획에 따라 방사선 세기 변조체를 설계하는 치료 계획 시스템;
    상기 치료 계획 시스템에서 설계된 방사선 세기 변조체 정보를 기초로 방사선 세기 변조체를 모델링하는 방사선 세기 변조체 모델링 시스템; 및
    상기 방사선 세기 변조체 모델링 시스템에서 모델링된 방사선 세기 변조체를 기초로 방사선 세기 변조체를 제작하는 3차원 프린터를 포함하되,
    상기 방사선 세기 변조체 모델링 시스템은
    상기 치료 계획 시스템에서 제공된 밀도 매트릭스(density matrix)로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 획득하고, 방사선 세기 변조체의 설계 조건 정보를 획득하는 입력 인터페이스;
    상기 방사선 세기 변조체의 설계 조건 정보와 상기 밀도 매트릭스로 표현된 선량 변조 정보 또는 3차원 구조체 정보를 기초로 방사선 세기 변조체 구조를 생성하는 변조체 구조 생성부; 및
    실제 제작 조건 및 치료 조건 중 적어도 하나 이상과 상기 방사선 세기 변조체의 설계 조건 정보를 비교하여 상기 생성된 방사선 세기 변조체 구조를 조정하는 변조체 구조 조정부를 포함하는 방사선 세기 변조체 제작 장치.
  8. 제7항에 있어서,
    상기 변조체 구조 조정부는
    상기 설계 조건 정보에서 획득된 설계 물질 정보와 실제 제작 조건에서 획득된 제작 물질 정보를 비교하여,
    상기 설계 물질과 제작 물질의 방사선 감쇄율이 동일한 경우, 상기 생성된 방사선 세기 변조체의 두께를 유지하며,
    상기 설계 물질과 제작 물질의 방사선 감쇄율이 상이한 경우, 물질 사이의 방사선 감쇄율 차이에 따라 상기 생성된 방사선 세기 변조체의 두께를 조정하는 방사선 세기 변조체 제작 방법.
  9. 제7항에 있어서,
    상기 변조체 구조 조정부는
    상기 설계 조건 정보에서 획득된 설계시 선원과 변조체 사이의 거리 정보와 실제 치료 조건에서 획득된 치료시 선원과 변조체 사이의 거리 정보를 비교하여,
    상기 설계시 선원과 변조체 사이의 거리 정보와 치료시 선원과 변조체 사이의 거리 정보가 동일한 경우, 상기 생성된 방사선 세기 변조체의 크기를 유지하고,
    상기 설계시 선원과 변조체 사이의 거리 정보와 치료시 선원과 변조체 사이의 거리 정보가 상이한 경우, 양 거리 사이의 차이에 따라 상기 생성된 방사선 세기 변조체의 크기를 조정하는 방사선 세기 변조체 제작 장치.
  10. 제7항에 있어서,
    상기 방사선 세기 변조체 모델링 시스템은
    상기 조정된 방사선 세기 변조체 구조의 정보를 상기 3차원 프린터에서 제작 가능한 정보로 변환하는 출력 인터페이스를 더 포함하는 방사선 세기 변조체 제작 장치.
  11. 제10항에 있어서,
    상기 출력 인터페이스는
    상기 변환 과정에서 방사선 세기 변조체 구조의 정보가 일부 손실된 경우, 손실된 부분을 보정하는 방사선 세기 변조체 제작 장치.
PCT/KR2015/013776 2014-12-16 2015-12-16 방사선 세기 변조체 제조 방법 및 제조 장치 WO2016099142A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/534,706 US10421234B2 (en) 2014-12-16 2015-12-16 Method for manufacturing radiation intensity modulating body and device for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0181629 2014-12-16
KR1020140181629A KR101747209B1 (ko) 2014-12-16 2014-12-16 방사선 세기 변조체 제조 방법 및 제조 장치

Publications (1)

Publication Number Publication Date
WO2016099142A1 true WO2016099142A1 (ko) 2016-06-23

Family

ID=56126942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013776 WO2016099142A1 (ko) 2014-12-16 2015-12-16 방사선 세기 변조체 제조 방법 및 제조 장치

Country Status (3)

Country Link
US (1) US10421234B2 (ko)
KR (1) KR101747209B1 (ko)
WO (1) WO2016099142A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108066901A (zh) * 2016-11-14 2018-05-25 南京中硼联康医疗科技有限公司 基于医学影像的辐射屏蔽装置及方法
CN110575625A (zh) * 2019-09-18 2019-12-17 北京大学第三医院 一种放射治疗组织等效补偿物的制作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473298B1 (en) * 2016-11-14 2020-11-04 Neuboron Medtech Ltd. Medical image-based radiation shielding device and method
WO2018146272A1 (en) * 2017-02-09 2018-08-16 Oncobeta International Gmbh Model for applying radiation, method for producing the same, and use thereof
KR102030255B1 (ko) * 2017-12-13 2019-11-08 (주) 제이에스테크윈 3d 감마 프로브 및 이의 방사선 세기 측정 방법
EP3880302A2 (en) * 2018-11-14 2021-09-22 Hopitaux Universitaires de Genève Medical device for radiotherapy and method of manufacturing the same
KR102104545B1 (ko) * 2018-12-12 2020-04-24 (주) 제이에스테크윈 3d 무선 감마 프로브 및 이의 방사선 세기 측정방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100119109A (ko) * 2009-04-30 2010-11-09 주식회사 서울씨앤제이 방사선 치료 이미지 생성시스템
KR20110039514A (ko) * 2008-05-06 2011-04-19 이온빔 어플리케이션스 에스.에이. 방사선 요법에서 3d 조사량 추적을 위한 장치와 방법
KR20120079726A (ko) * 2011-01-05 2012-07-13 학교법인 건국대학교 회전 조사식 체적 기반 세기조절방사선치료의 선량 검증을 위한 팬톰장치
KR20120087862A (ko) * 2012-02-28 2012-08-07 주식회사 인피니트헬스케어 방사선치료계획 평가장치 및 평가방법
KR101437268B1 (ko) * 2012-02-02 2014-09-02 사회복지법인 삼성생명공익재단 방사선 세기 변조체 제조 방법 및 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102610B1 (en) 1998-08-06 2007-01-17 Wisconsin Alumni Research Foundation Apparatus for preparing a radiation therapy plan
US6777700B2 (en) * 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US7027557B2 (en) * 2004-05-13 2006-04-11 Jorge Llacer Method for assisted beam selection in radiation therapy planning
JP4435829B2 (ja) * 2005-02-04 2010-03-24 三菱電機株式会社 粒子線照射装置
US7550752B2 (en) * 2006-03-28 2009-06-23 Hampton University Hadron treatment planning with adequate biological weighting
WO2008076035A1 (en) * 2006-12-19 2008-06-26 C-Rad Innovation Ab Collimator
US8129701B2 (en) * 2007-02-27 2012-03-06 Al-Sadah Jihad H Areal modulator for intensity modulated radiation therapy
US9687200B2 (en) * 2010-06-08 2017-06-27 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
WO2012066631A1 (ja) * 2010-11-16 2012-05-24 三菱電機株式会社 ボーラス、ボーラスの製造方法、粒子線治療装置、および治療計画装置
KR101193036B1 (ko) 2010-12-13 2012-10-22 주식회사 인피니트헬스케어 방사선치료계획 평가장치 및 평가방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110039514A (ko) * 2008-05-06 2011-04-19 이온빔 어플리케이션스 에스.에이. 방사선 요법에서 3d 조사량 추적을 위한 장치와 방법
KR20100119109A (ko) * 2009-04-30 2010-11-09 주식회사 서울씨앤제이 방사선 치료 이미지 생성시스템
KR20120079726A (ko) * 2011-01-05 2012-07-13 학교법인 건국대학교 회전 조사식 체적 기반 세기조절방사선치료의 선량 검증을 위한 팬톰장치
KR101437268B1 (ko) * 2012-02-02 2014-09-02 사회복지법인 삼성생명공익재단 방사선 세기 변조체 제조 방법 및 장치
KR20120087862A (ko) * 2012-02-28 2012-08-07 주식회사 인피니트헬스케어 방사선치료계획 평가장치 및 평가방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108066901A (zh) * 2016-11-14 2018-05-25 南京中硼联康医疗科技有限公司 基于医学影像的辐射屏蔽装置及方法
CN108066901B (zh) * 2016-11-14 2024-04-12 南京中硼联康医疗科技有限公司 基于医学影像的辐射屏蔽装置及方法
CN110575625A (zh) * 2019-09-18 2019-12-17 北京大学第三医院 一种放射治疗组织等效补偿物的制作方法

Also Published As

Publication number Publication date
US10421234B2 (en) 2019-09-24
KR20160073174A (ko) 2016-06-24
KR101747209B1 (ko) 2017-06-14
US20170361535A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2016099142A1 (ko) 방사선 세기 변조체 제조 방법 및 제조 장치
WO2016099143A1 (ko) 방사선 세기 변조체 검증 방법 및 검증 장치
WO2013115607A2 (ko) 방사선 세기 변조체 제조 방법 및 장치
US7245753B2 (en) Method for determining dental alignment using radiographs
US6853702B2 (en) Radiation therapy dosimetry quality control process
US9731150B2 (en) Radiation dosage monitoring system
WO2014068784A1 (ja) 三次元画像撮影システム及び粒子線治療装置
JP4651591B2 (ja) 位置決め装置
JP2007505654A (ja) データを処理するシステムおよび方法
WO2013062348A1 (ko) 수술영상의 정합 방법
CN111132730B (zh) 与放射治疗设备一起使用的患者监测系统的校准方法
WO2015060691A1 (ko) 방사선 치료기의 품질 보증 시스템 및 그 품질 보증 방법
CN110152207B (zh) 用于患者规划和治疗系统的多用途物体
EP3593859B1 (en) Patient monitoring system
WO2017082449A1 (ko) 다중 에너지 엑스선 촬영 및 광학 영상을 이용한 입체 영상 생성 방법 및 시스템
WO2016010398A1 (ko) 방사선 치료기 및 방사선 치료기의 정도 관리 방법
TW201927367A (zh) 中子捕獲治療系統、中子捕獲治療用患者載置台、患者姿勢確認系統及患者姿勢確認方法
WO2015060488A1 (ko) 자동 위치 인식을 통한 골밀도 측정 시스템 및 그 측정 방법
JPH01209077A (ja) 治療用ビームの位置決め方法
WO2020209665A1 (ko) 방사선을 이용한 진단 및 치료 장치의 방사선 중심점의 품질 보증 시스템 및 방법
WO2016148350A1 (ko) 의료 영상 재구성 장치 및 그 방법
CN111052186B (zh) 患者监测系统生成的模型的准确度的测量方法和设备
GB2366501A (en) Radiotherapy simulation apparatus
WO2023239168A1 (ko) 실시간 방사선 선량 분석 장치, 방법 및 컴퓨터 프로그램
KR20120097855A (ko) 비침습 분할조사 감마나이프 고정 시스템 및 이를 이용한 마스크 고정 위치 보정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15534706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870309

Country of ref document: EP

Kind code of ref document: A1